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Abstract 

Background  Cervical cancer is a common malignant tumor of the female reproductive system and is considered a 
leading cause of mortality in women worldwide. The analysis of time to event, which is crucial for any clinical research, 
can be well done with the method of survival prediction. This study aims to systematically investigate the use of 
machine learning to predict survival in patients with cervical cancer.

Method  An electronic search of the PubMed, Scopus, and Web of Science databases was performed on October 1, 
2022. All articles extracted from the databases were collected in an Excel file and duplicate articles were removed. The 
articles were screened twice based on the title and the abstract and checked again with the inclusion and exclusion 
criteria. The main inclusion criterion was machine learning algorithms for predicting cervical cancer survival. The infor-
mation extracted from the articles included authors, publication year, dataset details, survival type, evaluation criteria, 
machine learning models, and the algorithm execution method.

Results  A total of 13 articles were included in this study, most of which were published from 2018 onwards. The most 
common machine learning models were random forest (6 articles, 46%), logistic regression (4 articles, 30%), support 
vector machines (3 articles, 23%), ensemble and hybrid learning (3 articles, 23%), and Deep Learning (3 articles, 23%). 
The number of sample datasets in the study varied between 85 and 14946 patients, and the models were internally 
validated except for two articles. The area under the curve (AUC) range for overall survival (0.40 to 0.99), disease-free 
survival (0.56 to 0.88), and progression-free survival (0.67 to 0.81), respectively from (lowest to highest) received. 
Finally, 15 variables with an effective role in predicting cervical cancer survival were identified.

Conclusion  Combining heterogeneous multidimensional data with machine learning techniques can play a very 
influential role in predicting cervical cancer survival. Despite the benefits of machine learning, the problem of inter-
pretability, explainability, and imbalanced datasets is still one of the biggest challenges. Providing machine learning 
algorithms for survival prediction as a standard requires further studies.
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Introduction
Cervical cancer is the fourth most common cancer in the 
female reproductive system and the seventh most com-
mon cancer worldwide. There is a higher likelihood of 
cancer tumors growing in areas where endocervix cells 
become exocervix cells or near the Squamocolumnar 
Junction (SCJ). Cervical cancer is one of the main factors 
related to the death of females worldwide [1]. According 
to the World Health Organization (WHO) cervical can-
cer report in 2020, there were about 604,127 diagnosed 
cases and 341,831 deaths worldwide, of which 1,056 diag-
nosed cases and 644 deaths occurred in Iran [2]. Sexu-
ally transmitted diseases, multiple partners, smoking, 
weak nutrition, and the immune system play a role in 
the growth and development of cervical cancer [3]. An 
important risk factor for cervical cancer is the persistence 
of human papillomavirus (HPV), especially genotypes 16 
and 18 [4]. Although about 90% of human papillomavirus 
infections heal by themselves within two years, some may 
also lead to the growth of cancerous masses in the cer-
vix [5, 6]. Diagnosing a cancerous mass in the early stages 
increases the patient’s chance of survival and treatment. 
In late diagnosis, the possibility of complete recovery of 
the patient decreases [7]. Cervical cancer is entirely pre-
ventable and treatable if pre-cancer symptoms are identi-
fied at an early stage. The pap smear is frequently used for 
cervix medical diagnosis to track cervical cancer. A few 
cervical cell samples are taken, a cell smear is made, the 
cells are examined under a microscope for abnormalities, 
and the result is a diagnosis of the cervical condition [8]. 
Physicians consider the patient’s chance of survival to 
guide their treatment plan.

Survival prediction is a set of statistical methods for 
data analysis, where the outcome variable is the time to 
an event. In other words, survival prediction is calcu-
lated by considering the time between exposure to the 
event and the occurrence of the event [9]. According to 
the American Society of Clinical Oncology (ASCO), the 
average 5-year overall survival rate for cervical cancer 
is 66%, i.e., about 66% of people diagnosed with cervi-
cal cancer today will survive for at least the next five 
years. The best treatment method for each patient can be 
adopted by evaluating the patient’s clinical and treatment 
data to accurately predict the patient’s survival. Research-
ers have often used classical statistical methods such as 
non-parametric, parametric, and semi-parametric (COX) 
tests to predict survival [10]. In recent years, artificial 
intelligence algorithms, with their impressive capabilities, 
have been in fierce competition with statistical tests and 
have grown significantly in survival prediction.

Big data are being generated and stored with the 
rapid growth of digital technologies in healthcare and 
the evolution of electronic health records (EHR) [11]. 

Classical statistical methods often focus on the relation-
ship between dependent variables to achieve the final 
result, but machine learning algorithms can learn hid-
den patterns in data. Machine learning algorithms do not 
require implicit assumptions and can manage non-linear 
relationships between variables [12]. Machine learning 
makes computers intelligent without directly teaching 
them how to make decisions and solve problems [13]. 
Today, machine learning algorithms have been studied 
and developed in the diagnosis, prognosis, and predic-
tion of the occurrence of many diseases [14], which per-
formed very well in dealing with Big data [15].

This study aimed to evaluate published studies on 
machine learning algorithms in predicting the survival 
of patients with cervical cancer, considering overall, dis-
ease-free, and progression-free survival.

Materials and methods
This systematic review examined original articles that 
used machine learning algorithms to predict the sur-
vival of patients with cervical cancer and discovered 
knowledge.

Study selection
The article selection method was based on the Preferred 
Protocol for Systematic Reviews and Meta-Analysis 
(PRISMA) and the retrieved articles were imported into 
Excel software. The first search returned 229 articles, 
then 45 review articles and 85 duplicate articles were 
removed. A total of 99 items remained for screening 
based on the eligibility criteria. During the screening pro-
cess, 70 articles were excluded by title and abstract veri-
fication, and 16 articles were excluded based on method, 
results, or study design nature. The screening process 
was performed twice to reduce errors. Any discrepancies 
were resolved through discussions with the second and 
third authors. Finally, 13 articles were thoroughly exam-
ined and included in the study (Fig. 1).

Search strategy
Articles published until October 1, 2022, were col-
lected from three electronic databases, PubMed, Scopus, 
and Web of Science, and the search query consisted of 
three basic parts. The first part was about cervical can-
cer, which included two keywords of "cervical cancer" 
and "Uterine Cervical Neoplasms". The second part was 
about predicting survival with one keyword named "Sur-
vival", and the third part was about artificial intelligence 
with three keywords, including "Machine learning", 
"Deep learning", and "Artificial Intelligence." Details are 
available in Table 1.
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Inclusion and exclusion criteria
This study included original articles and full English text, 
which used machine learning algorithms as predictive 

models for cervical cancer survival.
Books, review articles, meta-analyses, case reports, 

posters and case studies were filtered. In addition, articles 

Fig. 1  Description: Flow diagram of the study identification and selection process, following Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines

Table 1  Keywords and search strategy in three databases: PubMed, Scopus, and Web of Science

#1: (Uterine Cervical Neoplasms OR Cervical Cancer)
#2: (Survival)
#3: (Machine Learning OR Deep Learning OR Artificial Intelligence)

Search strategy: #1 AND #2 AND #3

PUBMED:
(Uterine Cervical Neoplasms[Title/Abstract] OR Cervical Cancer[Title/Abstract]) AND (Survival[Title/Abstract]) AND (Machine Learning[Title/Abstract] OR 
Deep Learning[Title/Abstract] OR Artificial Intelligence[Title/Abstract])

SCOPUS:
(TITLE-ABS-KEY(Uterine Cervical Neoplasms) OR TITLE-ABS-KEY(Cervical Cancer)) AND (TITLE-ABS-KEY(survival)) AND (TITLE-ABS-KEY(Machine Learning) 
OR TITLE-ABS-KEY(Deep Learning) OR TITLE-ABS-KEY(Artificial Intelligence))

WEB OF SCIENCE:
(TS = (Uterine Cervical Neoplasms) OR TS = (Cervical Cancer)) AND (TS = (Survival)) AND (TS = (Machine Learning) OR TS = (Deep Learning) OR 
TS = (Artificial Intelligence))
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that did not sufficiently focus on the implementation of 
machine learning algorithms, cervical cancer, and model 
outputs were excluded in the screening section. All entry 
and exit criteria are listed in Table 2.

Results
From the initial search results, 229 articles were found, 
of which only 13 articles met the study criteria and 
were included in the study for further investigation. All 
included articles were retrospective and used machine 
learning algorithms as modeling to predict cervical can-
cer survival.

Characteristics of studies
Most of the imported articles were published from 2018 
onwards, and the last was from 2022 (Table  3). Table  4 
provides additional information and a general view of the 
included studies. A total of eight articles were performed 
in Asia [16–23], four in Europe [24–27], and one in the 
United States [28]. Generally, eight articles on overall 
survival (OS) [17, 19–21, 23, 26–28], six articles on dis-
ease-free survival (DFS) [16, 18, 21–24], and three arti-
cles on survival progression-free (PFS) [19, 25, 28] were 
used to predict the survival of patients with cervical can-
cer. Moreover, two articles were excluded from the study 
due to the use of machine learning algorithms only as a 
tool for feature selection [29, 30].

Database information
Ten articles used hospital and clinic datasets [16, 19, 
21–28], and three articles each used the cancer genome 
atlas [20], SEER [17], and Geo [18]. The datasets used in 
the three articles were more detailed and open to pub-
lic access [17, 18, 20], but private datasets were used in 
the other ten articles. The maximum and minimum 
sizes of the datasets used for modeling were 14,946 and 
85 records, respectively, and the datasets had more than 
1000 records only in three articles [17, 19, 21].

Data preprocessing
A total of 11 articles used data preprocessing techniques 
[16–26], and three mentioned missing data [18, 19, 25]. 
Selected approaches to handle missing data included 

record deletion, multiple imputations, and the nearest 
neighbor algorithm. The feature selection approach was 
used in all the articles except article [27], but only eight 
articles specified the details [16, 18, 20, 21, 23–26]. Logis-
tic regression [24], Naive Bayes [24], Random Forest [24], 
Genetic algorithm [26], lasso [17, 18, 25, 27], k-means 
[19, 20], Support vector machine [18, 19, 26, 28], Ada-
Boost [18], Elastic-net [23], recurrent feature elimination 
(RFE) [16, 25], and deep learning [22, 23, 28] were among 
the algorithms used for feature selection and extraction. 
Two articles mentioned the management of outlier data 
[16, 20], but only one provided more details [16].

Imbalanced data in the dataset causes a lack of gen-
eralizability in the model and is considered a serious 
challenge [31]. The challenge of unbalanced data in the 
dataset was discussed in two articles [25, 26], and the RF 
cost-sensitive method was used to overcome this chal-
lenge in one article [25].

Data modeling
The model was calibrated in three articles [16, 18, 25], 
but the work details were not provided. Hyperparameter 
tuning was used in model training in six articles, but only 
four shared the work details [18, 24, 25, 28].

Six articles used only one machine learning algorithm 
to build the model [16, 17, 20, 22, 23, 26]. Further, two 
or more machine learning algorithms were used in seven 
articles, and their output was compared with each other 
[18, 19, 21, 24, 25, 27, 28]. The most frequent machine 
learning algorithms were random forest, logistic regres-
sion, support vector machine, deep learning, and ensem-
ble and hybrid learning.

Model validation
The selected articles were based on internal validation in 
11 articles and external validation in two articles [18, 24]. 
Most of the studies related to internal validation used the 
cross-validation method.

The most common criteria for evaluating the algorithm 
performance in the articles were the model AUC from 
0.40 to 0.99 in seven articles, regardless of the type of 
survival. C-index was 0.39 to 0.94 in 5 articles, and the 
accuracy was 0.61 to 0.92 in 4 articles. In three articles, 
sensitivity and F1-score were 0.20 to 0.97 and 0.22 to 
0.92, respectively. More details were shown in Table 5.

Regarding articles with more than one model, ensem-
ble and hybrid models in 3 articles [18, 19, 21], random 
forest in 3 articles [24–26], logistic regression [17], and 
deep learning [28] in 1 article had the best performance.

Important variables
Clinical tabular data were used as model inputs in 11 
articles [16, 17, 19–25, 27, 28], which were the only 

Table 2  Inclusion and exclusion criteria for articles in the study

Inclusion criteria Exclusion criteria

Full text access Book

Full text English Review and Meta-analysis

Original articles Letters to the editor

Short article and Poster

Case report
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model inputs in five articles [17, 19, 21, 27, 28]. Image-
based data was used [16, 22–26] in six articles, one of 
which applied the machine learning model trained 
only with images [26]. In two articles, molecular data 
were used to predict survival [18, 20]. According to 

the output of all survival prediction models, can-
cer stage variables, histology, treatment method, and 
tumor-related information have significantly affected 
cervical cancer survival prediction. The important vari-
ables extracted from the included articles are shown in 
Table 6.

Table 4  Classification of the features of the included articles

TCGA​ The cancer Genome Atlas, GEO Gene Expression Omnibus, SEER Surveillance, Epidemiology, and End Results, RF Random Forest, SVM Support Vector Machine, LR 
Logistic regression, DL Deep Learning, H&E L Hybrid and Ensemble learning, MAE Mean absolute error

Characteristics Categories Number (n)

OS DFS PFS

Location Asia 5 [17, 19–21, 23] 5 [16, 18, 21–23] 1 [19]

Europe 2 [26, 27] 1 [24] 1 [25]

USA 1 [28] - 1 [28]

Dataset sources Hospitals 6 [19, 21, 23, 26–28] 5 [16, 21–24] 3 [19, 25, 28]

SEER 1 [17] - -

TCGA​ 1 [20] - -

GEO - 1 [18] -

Dataset privacy Public 2 [17, 20] 1 [18] -

Private 6 [19, 21, 23, 26–28] 5 [16, 21–24] 3 [19, 25, 28]

Data source Single 6 [17, 20, 23, 26–28] 5 [16, 18, 22–24] 2 [25, 28]

Multiple 2 [19, 21] 1 [21] 1 [19]

Preprocessing Yes 6 [17, 19, 20, 23, 26, 27] 5 [16, 18, 22–24] 1 [19]

No 2 [21, 28] 1 [21] 2 [25, 28]

Feature selection Yes 7 [17, 19–21, 23, 26, 28] 6 [16, 18, 21–24] 3 [19, 25, 28]

No 1 [27] - -

# Models One 4 [17, 20, 23, 26] 3 [16, 22, 23] -

Two or more 4 [19, 21, 27, 28] 3 [18, 21, 24] 3 [19, 25, 28]

Models type RF 3 [21, 26, 28] 3 [16, 21, 24] 2 [25, 28]

LR 1 [19] 2 [17, 24] 2 [19, 25]

SVM 2 [20, 27] 1 [24] -

DL 2 [23, 28] 2 [22, 23] -

H&E L 2 [19, 21] 2 [18, 21] 1 [19]

Validation Internal 8 [17, 19–21, 23, 26–28] 4 [16, 21–23] 3 [19, 25, 28]

External - 2 [18, 24] -

Evaluation metrics AUC​ 4 [19, 20, 23, 27] 4 [16, 19, 23, 24] 1 [25]

C-index 5 [17, 19, 21, 23, 26] 2 [21, 23] 1 [19]

Sensitivity 1 [27] 3 [18, 22, 24] -

Precision - 2 [18, 24] 1 [25]

Specificity 1 [27] 1 [22] -

Accuracy 1 [27] 2 [18, 22] 1 [25]

F1-score - 2 [18, 24] -

MAE 2 [21, 28] 1 [21] 1 [28]

NPV / PPV - 1 [22] -

Data types Clinical 5 [17, 19, 21, 27, 28] 1 [21] 2 [19, 28]

Image 1 [26] - -

Molecular - 1 [18] -

Clinical + Image 1 [23] 4 [16, 22–24] 1 [25]

Clinical + Molecular 1 [20] - -
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Discussion
A systematic review of 229 articles resulted in the inclu-
sion of 13 articles. The selected articles contained qual-
itative and quantitative information about predicting 
and analyzing the survival of cervical cancer patients 
using machine learning algorithms. The number of 
articles using machine learning algorithms to predict 
cervical cancer survival was few. Studies related to all 
three types (overall survival, disease-free survival, and 
progression-free survival) were inevitably included in 

the study due to the variation in survival and the small 
number of studies specific to each type of survival.

The three included studies that used open-access data-
bases were more transparent and competitive in pre-
processing and model building. Multiple researchers 
can analyze open-access databases to discover the most 
valuable features and the best machine-learning model 
for that particular dataset. Another essential thing even 
mentioned in the article [32] was the correlation of the 
model output with the data of a specific geographical 
environment and the change of medical prescriptions 
over time. Generalizability and the time interval between 
data collection and modeling can be evaluated in the 
applicability of the model output. Databases with open 
access were more suitable and valuable for studying and 
predicting survival.

The included articles used datasets with different sizes 
and types for modeling. The largest dataset included in 
the study was related to the article [17], with 14,946 clini-
cal tabular data and C-index (0.86). The smallest dataset 
included in the study is related to the article [26] with 85 
image data records (PET/CT) and C-index (0.77). Image 
datasets had fewer records than other datasets among 
the imported articles. According to the reports of (Illia 
Horenko) [33], small datasets used in model training 
often cause overfitting of the model and reduce the mod-
el’s capacity for generalization. Image datasets sometimes 
make the model more accurate than tabular data, which 
can be caused by the power of image processing algo-
rithms [34]. Feature extraction, feature selection, transfer 
learning, fine-tuning, augmentation, object segmenta-
tion, and object detection were the most critical advan-
tages of image processing algorithms [34–36]. In addition 
to the cases mentioned, convolutional neural networks 
obtained valuable results on 3D images [37]. Recently, 
medical image datasets have been used to predict the 
survival of patients. However, larger image datasets and 

Table 5  Classification of the used evaluation criteria into types of survival from the lowest to the highest

Table 5 description: All of the articles that employed the selected criteria were split according to the kind of survival, and the minimum and maximum rates for each 
criterion were then shown

Evaluation method OS DFS PFS

Min Max Min Max Min Max

AUC​ 0.40 0.99 0.56 0.88 0.67 0.81

C-index 0.39 0.94 0.41 0.89 0.69 0.79

Sensitivity 0.75 0.97 0.20 0.93 - -

Specificity 0.0 0.60 0.93 0.93 - -

Precision - - 0.33 91.14 76.5 80.1

Accuracy 0.61 0.89 0.84 0.92 0.73 0.84

F1-score - - 0.22 0.92 - -

Mean Absolute Error 21.18 39.2 11.24 12.43 28.8 29.3

Table 6  Influential variables in predicting types of survival 
extracted from articles

BMI Body Mass Index, HPV Human Papillomavirus

Table 6 description: From the entered articles, all variables that could reliably 
predict cervical cancer survival were retrieved, categorised, and then displayed 
according to the type of survival.

Selected Features OS (n) DFS (n) PFS (n)

FIGO Stage 5 [17, 20, 21, 23, 25] 4 [16, 21–23] 2 [19, 25]

Heart Rate 1 [25] - 1 [25]

Laboratory test 1 [25] - 1 [25]

Treatment type 3 [17, 21, 25] 1 [21] 2 [19, 25]

Race/ethnicity 2 [20, 25] - 1 [25]

Hypertension - - 1 [25]

Histopathology 4 [19–21, 23] 5 [16, 21–24] 1 [25]

Age 3 [17, 20, 23] 3 [22–24] 1 [25]

Height 1 [20] - -

Tumor Size 3 [19, 21, 23] 3 [16, 21, 23] -

Lymph Node metastasis 3 [19, 21, 23] 3 [22–24] 1 [19]

positive lymph node 
numbers

1 [23] 1 [23] -

Lymph vascular space 
invasion

1 [23] 1 [23] -

BMI - - 1 [25]

HPV 1 [20] - -
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more optimal convolutional neural network structures 
should reach a robust model.

Only two of the articles included in this study had 
external validation. Article [18] with molecular data and 
the other article [24] with the combination of clinical 
tabular data and images (PET/CT) obtained precision of 
0.82 and 0.42 respectively. The model’s generalizability 
is more reliable in external validation due to the use of 
different data. Most included articles used the five-fold 
cross-validation method for internal validation. Cross-
validation is a resampling method for evaluating a model 
with limited data [38]. The advent of open-access data-
sets and standard databases of medical data has made it 
more feasible to evaluate models using external valida-
tion methods.

Data wrangling and preprocessing play an essential 
role in modeling and model output. Medical datasets 
often include noise, redundant data, outliers, missing 
data, and irrelevant variables [39]. Hoeren mentioned 
that the actual value of data lies in its usability [40], and 
data quality is the most critical concern in model train-
ing. Data cleaning is one of the essential solutions in the 
data preprocessing stage for reducing errors, preventing 
model bias caused by dirty data, and obtaining the best 
results [41]. Therefore, data preprocessing such as clean-
ing, transformation, reduction, and integration, should 
be conducted properly, which includes 70–80% of the 
training and model workload [42]. All the included stud-
ies paid attention to this principle.

Among all the included articles, six used hyperparam-
eter tuning and feature selection methods in their study 
[18, 21, 24–26, 28]. Studies often used hyperparameter 
tuning and feature selection to avoid overfitting or to 
achieve high-accuracy models [24, 25]. According to arti-
cles [25, 32], selecting appropriate modeling variables 
directly affected the model’s output. Therefore, feature 
selection, extraction, reduction, and engineering are nec-
essary to reach an ideal model. Hyperparameter tuning is 
one of the essential steps in the model-building pipeline, 
which can produce a model with high accuracy by finding 
the most optimal input parameters. Most of the entered 
studies used the Grid search method for this opera-
tion. Considering that feature selection in convolutional 
neural networks is done automatically, having back-
ground knowledge can enhance the model’s reliability. 
Approaches such as Bayesian Optimization and Evolu-
tionary algorithms like Genetic Algorithms [26] and Arti-
ficial Fish Swarm [18] can be more suitable approaches 
for hyperparameter tuning and feature selection.

Recently, the use of Hybrid and Ensemble models 
has increased in the medical field, especially in predict-
ing survival. Three of the included studies that used 
the abovementioned methods to predict survival have 

obtained acceptable accuracy and precision [18, 19, 
21]. Random forest (RF) and Extreme Gradient Boost-
ing (XGBoost) models are also among Ensemble learn-
ing (EL) algorithms [26]. Developing and optimizing 
machine learning models using hybrid and ensemble 
techniques continuously improve computational aspects, 
performance, generalizability, and accuracy [43]. Ensem-
ble models, like deep learning algorithms, have sponta-
neous feature selection ability. In these two Ensemble 
and Hybrid learning methods, several models with weak 
learners are trained to solve a specific problem and com-
bined to achieve better results [44].

Most studies have used a combination of clinical, imag-
ing, and molecular data to predict survival to achieve 
greater accuracy in training machine learning models. 
Articles [22–25] used a combination of clinical data types 
with more accuracy and reliability. Most articles that 
used composite data to predict cervical cancer survival 
occurred from 2021 onwards. Random forest and deep 
learning were the most used in mixed data modeling. 
All types of patient data, with the help of artificial intel-
ligence, can play a significant role in Precision Medicine.

With recent advances in artificial intelligence, deep 
learning algorithms have undeniably gained power as 
well. Deep learning algorithms are able to recognize pat-
terns from large, extensive and heterogenous data. They 
have also provided an admirable ability to process image, 
video, text, audio and signals [45]. According to compar-
ative studies, it has been determined that artificial intel-
ligence has a better performance than classical statistics 
[45]. With the daily advancement of technologies and 
the rapid expansion of artificial intelligence science, we 
will see the use of transformers [46], meta learning [47] 
and quantum machine learning [48] in medical data pro-
cessing in the near future. Nevertheless, solutions to the 
questions of interpretability and explainability should be 
considered together with the immense potential of AI in 
health research [49].

Conclusions
Recording and storing patient information has become 
easy and is overgrowing due to the growth and improve-
ment of hospital information systems (HIS) and elec-
tronic health record systems (EHRs). Classical statistical 
models such as Cox are used in many survival studies but 
are no longer compatible with many medical data. Today, 
machine learning algorithms have become a focal point 
in research and development because of their unique 
abilities in pattern recognition in data, feature selec-
tion and extraction, and great power in medical image 
processing.

Most of the survival articles of the last few years have 
used machine learning algorithms to predict the survival 
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of cervical cancer patients. Combining heterogeneous 
multidimensional data with machine learning techniques 
could affect the prediction of cervical cancer survival. 
The low or lack of explainability in machine learning 
algorithms has prevented the official use of artificial 
intelligence models in health. Machine learning is more 
accurate than other statistical methods in predicting the 
survival of cervical cancer patients, but more studies are 
needed to become a standard.
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