
R E S E A R C H Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Tang et al. BMC Cancer          (2023) 23:303 
https://doi.org/10.1186/s12885-023-10789-3

BMC Cancer

†Wenting Tang, Qiong Shao and Zhanwen He have contributed 
equally to this work.

*Correspondence:
Xiaojuan Li
lixj75@mail.sysu.edu.cn
Ruohao Wu
wurh6@mail.sysu.edu.cn

Full list of author information is available at the end of the article

Abstract
Background Nonerythrocytic spectrin beta 1 (SPTBN1) is an important cytoskeletal protein that involves in normal 
cell growth and development via regulating TGFβ/Smad signaling pathway, and is aberrantly expressed in various 
cancer types. But, the exact role of SPTBN1 in pan-cancer is still unclear. This report aimed to display expression 
patterns and prognostic landscapes of SPTBN1 in human cancers, and further assess its prognostic/therapeutic value 
and immunological role in kidney renal carcinoma (KIRC) and uveal melanoma (UVM).

Methods We firstly analyzed expression patterns and prognostic landscapes of SPTBN1 in human cancers using 
various databases and web-based tools. The relationships between SPTBN1 expression and survival/tumor immunity 
in KIRC and UVM were further investigated via R packages and TIMER 2.0 platform. The therapeutic roles of SPTBN1 in 
KIRC and UVM were also explored via R software. Following this, the prognostic value and cancer immunological role 
of SPTBN1 in KIRC and UVM were validated in our cancer patients and GEO database.

Results Overall, cancer tissue had a lower expression level of SPTBN1 frequently in pan-cancer, compared with those 
in adjacent nontumor one. SPTBN1 expression often showed a different effect on survival in pan-cancer; upregulation 
of SPTBN1 was protective to the survival of KIRC individuals, which was contrary from what was found in UVM 
patients. In KIRC, there were significant negative associations between SPTBN1 expression and pro-tumor immune 
cell infiltration, including Treg cell, Th2 cell, monocyte and M2-macrophage, and expression of immune modulator 
genes, such as tumor necrosis factor superfamily member 9 (TNFSF9); while, in UVM, these correlations exhibited 
opposite patterns. The following survival and expression correlation analysis in our cancer cohorts and GEO database 
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Introduction
Human cancer is a very complicated disorder and tumor-
igenesis is closely correlated with the disturbance of 
genetics and immune system[1]. Therefore, it is meaning-
ful to initiate a pan-cancer study of any tumor-involved 
gene and explore its correlations with prognosis and 
cancer immunity. Thanks to the available of various pub-
lic databases with huge transcript abundance and many 
powerful integrated web-based bioinformatic tools for 
human cancer, such as the cancer genome atlas (TCGA) 
project[2], clinical proteomic analysis consortium 
(CPTAC) dataset[3], gene expression omnibus (GEO) 
database[4], tumor immune estimation resource (V.2.0) 
(TIMER2.0) platform[5] and University of ALabama at 
Birmingham CANcer (UALCAN) data analysis portal[6], 
we could perform comprehensive pan-cancer studies of 
any gene easily.

Spectrin, as an important cytoskeletal protein involving 
in maintaining cell structure and membrane stability, was 
first discovered in red cells in 1968[7, 8]. After that, many 
different spectrin isoforms were successively discovered. 
Based on their tissue/cell distribution, spectrin protein 
could be classified into two types: erythroid spectrin iso-
forms (α-spectrin isoforms) and nonerythroid spectrin 
isoforms (β-spectrin isoforms). Among these nonery-
throid spectrin isoforms, nonerythrocytic spectrin beta 1 
(SPTBN1), also terms as βII-spectrin, is one of conven-
tional β-spectrin isoforms being encoded by SPTBN1 
gene and has been revealed to be necessary for main-
taining normal function or cell shape of epithelials[9]. 
Moreover, SPTBN1 also has multiple biological func-
tions, including cytoskeleton construction, cell motion 
and adhesion, and ion transport[10]. More importantly, 
SPTBN1, acting as an essential regulator of Smad3/4 
complex, can regulate of transforming growth factor-β 
(TGF-β) signaling pathway, maintaining normal cell 
growth, cell development and cell differentiation[11–13]. 
Several studies of embryonic lethality in SPTBN1−/− 
mice demonstrated that pathogenic variants in SPTBN1 
could cause severe deficits of multiple organs, including 
brain, cardiovascular system, intestine and liver[14–16]. 
Recently, SPTBN1 is found to be related to many types 
of human cancers, such as lymphoma, lung carcinoma, 
esophageal carcinoma, liver cancer, ovarian tumor and 
colorectal carcinoma[17–20]. Some studies revealed that 
SPTBN1 could contribute to anti-cancer at early stage 

of cancer via regenerating and repairing damaged tis-
sue[21–23]; while, other publications demonstrated that 
SPTBN1 played important roles in cancer development 
and tumor metastasis via promoting the process of epi-
thelial mesenchymal transition (EMT)[24, 25]. Relevance 
of SPTBN1 biological function and molecular mecha-
nism in pan-cancer have been largely underexplored and 
the role of SPTBN1 in cancer development could be par-
adoxical and might vary among different types or stages/
grades of cancers[20]. For instance, decreased SPTBN1 
expression could promote tumorigenesis and malignant 
manners, and act as a poor prognosis factor in some 
human cancers, like hepatocellular carcinoma[26] or 
high grade of pancreatic cancer[27]; however, increased 
expression of SPTBN1 could also promote carcinogen-
esis and predict poor prognosis in some cancers, such 
as ovarian cancer[28] and stage IV of colon cancer[29]. 
Thus, it still remains unclear whether SPTBN1 could be 
regarded as a friend or woe in pan-cancer.

Previous researches demonstrated that tumor immu-
nity and tumor microenvironment (TME) acted vital 
roles in cancer development and treatment[30]. TME 
includes varieties of cells, such as tumor immune infil-
trating cells (TIICs) and stromal cell[30]. Among these 
cells, regulatory T cell (Treg), helper T cell type 2 (Th1), 
monocyte, M2-macrophage, endothelial cell and cancer-
associated fibroblast are the primary effector TIICs and 
stromal immune cells in cancer immunity. For examples, 
M2-macrophage and Treg could contribute to tumor pro-
gression by helping cancer cells escape and/or promoting 
EMT and abnormal angiogenesis[30]. In addition, can-
cer-associated endothelial cell and fibroblast could also 
participate in development of tumor invasion and metas-
tasis[30]. In contrast, immunotherapy targeting specific 
immune checkpoints related to immune escape has been 
developed rapidly and becomes a robust alternative anti-
tumor strategy to classic anti-cancer therapies[31]. For 
examples, tumor necrosis factor superfamily member 
9 (TNFSF9), programmed cell death-1 (PDCD1) and 
cytotoxic T-lymphocyte-associated protein-4 (CTLA4) 
are the common immune checkpoint markers in tumor 
immunotherapy and have been maturely applied in treat-
ments of many kinds of cancers, including kidney carci-
noma[32] and malignant uveal melanoma[33]. Moreover, 
TGF-β1 is an important known dual-immunomodulatory 
factor in cancer and plays an important role in affecting 

confirmed these previous findings. Moreover, we also found that SPTBN1 was potentially involved in the resistance of 
immunotherapy in KIRC, and the enhance of anti-cancer targeted treatment in UVM.

Conclusions The current study presented compelling evidence that SPTBN1 might be a novel prognostic and 
therapy-related biomarker in KIRC and UVM, shedding new light on anti-cancer strategy.
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the infiltration of multiple types of TIICs and the expres-
sion of immune checkpoint genes[34]. By binding to the 
Smad3/4 complex, SPTBN1 might regulate tumor immu-
nity or cancer progression via the TGF-β/Smad signaling 
pathway[35]. Hence, SPTBN1 is a potential candidate 
immunomodulatory factor and immunotherapy target in 
cancer. Exploiting exact roles of SPTBN1 in human can-
cer progression will contribute to tumor prognosis and 
treatment. However, the correlation between function 
of SPTBN1 and cancer prognosis or tumor immunity 
remains unclear.

In current report, we explore expression patterns of 
SPTBN1 in pan-cancer, and visualize its prognostic land-
scape in human cancers, especially in kidney renal car-
cinoma (KIRC) and malignant uveal melanoma (UVM). 
Then, we explored the potential correlations between 
SPTBN1 expression and TIICs/immune modulator 
markers/response of immunotherapy or anti-cancer tar-
geted treatment in KIRC and UVM. The findings from 
current report demonstrated for the first time that when 
facing different types or grades/stages of human cancers, 
such as KIRC and UVM, SPTBN1 could serve as a dual-
marker for predicting cancer prognosis and response of 
anti-cancer therapy.

Materials and methods
Expression patterns of SPTBN1 in human cancers
The analysis of differential expression of SPTBN1 at 
mRNA and protein levels between tumor and corre-
sponding adjacent nontumor tissues were based on the 
cancer genome atlas (TCGA) database[2] and clinical 
proteomic tumor analysis consortium (CPTAC) data-
set[3], respectively. Specifically, the analysis of these 
mRNA expression data in pan-cancer was conducted 
by using online platform of TIMER 2.0 with normaliza-
tion of log2 transcripts per kilobase million (log2TPM)
[5]. The analysis of expression data for KIRC and UVM 
were conducted by using UALCAN online platform with 
normalizations of TPM for mRNA level and Z-score for 
protein level[6], respectively. The analysis of the relation-
ships between SPTBN1 mRNA expression and the can-
cer stage/grade in KIRC and UVM were conducted using 
UALCAN online tool with normalizations of TPM.

Survival study of SPTBN1 expression in human cancers
In present section, firstly, the SPTBN1 mRNA expres-
sion data with normalization of fragments per kilobase 
of exon per million readers (FPKM) and survival data 
across 33 types of TCGA cancers were downloaded from 
Genomic Data Commons (GDC)[36]. Then, the correla-
tions between SPTBN1 mRNA expression and survival, 
including survival of overall (OS) and disease-specific 
(DSS), and progression-free interval (PFI), in these 33 
TCGA cancers were analyzed using a Cox regression 

survival analysis in R environment with R package “sur-
vival“[37]. thresholds of Cox analysis were defined as a 
hazard ratio (HR) of 95% confidence intervals (95%CI) 
with a p value < 0.05. Finally, The correlations between 
SPTBN1 expression and survival, including OS, DSS 
and PFI, in KIRC and UVM were further analyzed 
using Kaplan-Meier curve with a Log-rank p method 
in R environment with R packages “survminer“[38] and 
“survival“[37].

Assessment of the Relationships between SPTBN1 
expression and Immune Microenvironment in KIRC and 
UVM
It is widely acknowledged that TME acts an important 
role in cancer development and prognosis[30]. Thus, in 
order to explore the correlations of the estimated pro-
portions of stromal and immune components in TME 
with SPTBN1 expression, we firstly used the “ESTI-
MATE” algorithm in R environment with R packages 
“estimate“[39] and “limma“[40] to analyze stromal and 
immune cells in TME in KIRC and UVM by evaluating 
the scores of stromal and immune, and total ESTIMATE 
score of each specimen, and visualized these results in 
R environment with R package “ggplot2“[41]. Then, by 
using TIMER 2.0 online tool with a cut-off (p) of 0.05 and 
a coefficient (Spearman’s ρ) of 0[5], we further analyzed 
the SPTBN1 expression (log2TPM form) with the infil-
tration levels of 6 types of infiltrating stromal/immune 
cells (endothelial cell, cancer-associated fibroblast, Treg 
cell, Th2 cell, monocyte and M2-macrophage), which all 
had an important role in promoting cancer development 
in KIRC and UVM after adjustment of the tumor purity 
with SPTBN1 expression.

Analysis of the Relationships between SPTBN1 expression 
and Immune Modulator marker genes in human cancers
In order to explore the relationship between SPTBN1 
expression and tumor immunity comprehensively, we 
also analyzed and visualized the correlations between 
SPTBN1 expression (FPKM from) and expression lev-
els of common immune modulator markers (FPKM 
from) that involved in cancer evasion[31], includ-
ing TNFSF9-CD44-CD86-CD274-TIGIT-TNFSF15-
TNFRSF18-CD40-TNFRSF4-VSIR-TNFRSF25-CD27-
TNFRSF8-TNFSF9-CD70-BTNL2-TNFSF18-HHLA2-
PDCD1LG2-IDO2-VTCN1-TIMGD2-ICOSLG-IDO2-
TNFSF14-CD160-LGALS9-PDCD1-CD80-KIR3DL1-
CD276-ADORA2A-HAVCR2-CD200R1-CD28-CD48-
CTLA4-CD40LG-ICOS-LAG3-CD244-TNFSF4-LAIR1-
NRP1-TNFRSF14-CD200-BTLA, across TCGA cancers 
by using R package “reshape2” [42]. In addition, for fur-
ther predicting the potential immunotherapy effects of 
SPTBN1 in KIRC and UVM, we then explored the cor-
relations between SPTBN1 expression (log2TPM form) 
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and 3 common immunotherapy-related marker genes 
(TNFSF9, PDCD1 and CTLA4) expression (log2TPM 
form) in KIRC and UVM using TIMER 2.0 online tool 
with a cut-off (p) of 0.05 and a coefficient (Spearman’s 
ρ) of 0[5], after adjustment of the tumor purity with 
SPTBN1 expression.

Validation of the Relationship between SPTBN1 
and TNFSF9 Expression, and the Prognostic Role 
of SPTBN1 in KIRC by Immunohistochemistry and 
Kaplan-Meier Analysis.

To further validate the TCGA findings of prognos-
tic value and cancer immunological role of SPTBN1 
in KIRC, we collected KIRC tumor samples from 29 
independent patients who were admitted at Sun Yat-
sen University Cancer Center from Dec 2016 to Jun 
2019 (SYSUCC KIRC cohort) for conducting validation 
immunohistochemistry (IHC) experiments. We col-
lected tumor samples and survival data from patients 
who met the following eligibility criteria: (a) individuals 
had a pathological diagnosis of primary KIRC, and were 
excluded the presence of any other malignant disorders 
or any other metastatic tumor; (b) individuals had clear 
and complete baseline clinical data, including age, gen-
der, tumor grade [International Society of Uro-Pathology 
(ISUP) grading system] and stage (TNM staging system), 
date of diagnosis and follow-up/death. This study was 
approved by the Ethical Committee of the Sun Yat-sen 
Cancer Center (Approval Number: B2022-472-01). Due 
to the retrospective study design, the Ethical Commit-
tee of the Sun Yat-sen Cancer Center approved a waiver 
of written informed consent to use the KIRC specimens. 
The specific IHC experimental methods of SPTBN1 
immunostaining have been described in previous publi-
cations[27]. Briefly, all the 29 paraffin-embedded KIRC 
tissue samples were separated into two sections, one 
section of each tumor slice was subjected to immunos-
taining with 1:1000 diluted primary rabbit polyclonal 
anti-SPTBN1 (catalog number: 67978-1-Ig, ProteinTech®, 
Rosemont, IL, USA) overnight at 4 ℃, and the other 
section was immunostained with 1:100 primary rabbit 
anti-TNFSF9 diluent (catalog number: 66450-1-Ig, Pro-
teinTech®, Rosemont, IL, USA) at 4 ℃ overnight. After 
washing and applying appropriate anti-rabbit secondary 
antibodies (catalog number: K3468, DAKO®, Carpinte-
ria, CA) and diaminobenzidine (DAB) substrate mix-
ture (catalog number: GK500710, GeneTech®, Shanghai, 
China) based on the manufacturer’s protocols, KIRC 
slides were visualized by using the Axioplan-2 imaging 
microscope (CarlZeiss®, Göttingen, Germany). Moreover, 
to determine the specificity of the primary SPTBN1/
TNFSF9 antibodies, tumor slides were incubated in nega-
tive control rabbit IgG without the primary SPTBN1/
TNFSF9 antibodies, and no non-specific immunostain-
ing was found under this condition.

Then, semi-quantitative analysis of the IHC-protein 
expression (IHC-P) score was conducted by two inde-
pendent researchers (WT and QS). In short, IHC-P 
score of each immunostained KIRC slide were assigned 
scores separately based on the stained area of IHC stain-
ing and the intensity of IHC staining. Quantitation of 
the IHC staining extent of SPTBN1 was made as follows: 
1, < 33% of the tumor cells (sporadic); 2, 33 -66% of the 
tumor cells (focal); and 3, > 66% of the tumor cells (dif-
fuse). The IHC staining intensity of SPTBN1 was scored 
as follows: 0, absent (no staining); 1, weak/moderate 
staining (light yellow or yellow brown); 2 strong staining 
(deep brown). Multiplication of the staining extent scores 
and staining intensity scores produces a SPTBN1 IHC-P 
score for each tumor slice, with a maximum score of 6 
points (0–6 points), and the final IHC-P score of SPTBN1 
was defined as follows: “-“, 0 point (negative); “+”, 1 point 
(weakly positive); “++”, 2–4 points (positive) and “+++”, 
5–6 points (strong positive). Thus, based on the descrip-
tion of previous study[27], our 29 KIRC tissue samples 
from SYSUCC KIRC cohort were accordingly grouped 
to low SPTBN1-expression tumor tissue group (SPTBN1, 
“-“ and “+”, 0–1 point) and high SPTBN1-expression 
group (SPTBN1, “++” and “+++”, 2–6 points). On the 
other hand, the IHC staining intensity of TNFSF9 was 
scored from 0 to 3 points (0, no staining; 1, weak stain-
ing; 2, moderate staining and 3, strong staining), and the 
IHC staining extent of TNFSF9 was determined by the 
percentage of immunostained tumor cells ranging from 
0 to 4 points (0, < 1%; 1, 1 − 10%; 2, 11 − 50%; 3, 51 − 80% 
and 4, > 80%) as described before[43]. The final IHC-P 
score of TNFSF9 ranging from 0 to 12 was derived from 
the score of the area of positive staining cancer cells × the 
score of IHC staining intensity, and defined as follows: 
“-“, 0 point (negative); “+”, 1–4 points (weakly positive); 
“++”, 5–8 points (positive) and “+++”, 9–12 points (strong 
positive).

To validate the prognostic role of SPTBN1 in KIRC 
based on our previous bioinformatic analysis, a Kaplan-
Meier analysis of OS was performed for KIRC cases with 
low- and high-SPTBN1 expression patterns based on the 
IHC-P score from tumor tissue of SYSUCC KIRC cohort, 
and the last date of follow-up was 20 July 2022.

Validation of the Correlation between SPTBN1 
and TNFSF9 Expression, and the Prognostic Role of 
SPTBN1 in UVM Using Data from GEO database.

To further confirm the TCGA findings of prognos-
tic and immunological role of SPTBN1 in UVM, we 
used expression and survival data of GSE44295 data-
set (Series Matrix File form), which was based on 
the GPL6883 platform of Illumina HumanRef-8 v3.0 
expression bead-chip, consisting of 57 UVM patients 
with full-details of OS from Gene Expression Omni-
bus (GEO) database to achieve it[44]. As all validation 
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analysis based on GSE44295 were dependent on obtain-
ing explicit expression data of SPTBN1 and TNFSF9, 
it was necessary to transform the probes ID (ID_REF) 
in GSE44295 dataset into gene Name (gene_ symbol) 
based on the annotation file supplying by GPL6883 plat-
form via a Perl script. All the expression profiling data 
in GES44295 were normalized using quantile normal-
ization with background subtraction by its contributors 
before download. After transformation (ID_REF → gene_ 
symbol), the distributions of SPTBN1 and TNFSF9 raw 
expression abundances were demonstrated in a boxplot 
(revised_Supplementary File 1 A), and we observed that 
there were many unexplained extreme values in their dis-
tribution boxplots, indicating these GEO-downloaded 
raw expression data should be conducted further nor-
malization before using in the following analysis. After 
performing log2(counts + 1) normalization via R package 
“limma“[40], the distributions of SPTBN1 and TNFSF9 
expression abundances were shown in revised_Supple-
mentary File 1B, and we could observe that the counts-
values distributed almost evenly in their respective 
box plots without any extreme values, indicating the 
log2(counts + 1) normalization expression profiling of 
SPTBN1 and TNFSF9 in GSE44295 dataset could be used 
in the following validation analysis. Based on the median 
of SPTBN1 expression [log2(counts + 1) form], 57 UVM 
patients with known OS data in GSE44295 were divided 
into high- and low-SPTBN1 expression groups to further 
determine whether the expression of TNFSF9 and sur-
vival data between two groups had statistical differences.

SPTBN1-related Gene Set Enrichment Analysis of Gene 
Ontology in KIRC and UVM
In order to analyze the biological functional pathway, 
gene set enrichment analysis (GSEA) was performed in 
the KIRC and UVM cases from TCGA database with 
low- and high-expression cohorts compared with the 
median level of SPTBN1 expression, respectively. The 
top 5 terms of gene ontology (GO) analysis in KIRC and 
UVM. Gene sets with NOM p value < 0.05 and FDR q 
value < 0.25 were regarded as significant enrichment[45].

Construction of a SPTBN1-Associated Immunomodulator-
Gene Prognostic signature in KIRC
Most researches with single genes have poor accuracy in 
clinical settings, so combining multiple genes in a path-
way with a single gene to construct prognostic signatures 
are often used[46]. It could provide a more comprehen-
sive and detailed picture of the clinical significance than 
only using a single gene. Thus, in current section, we 
aim to construct a prognostic signature by combining 
SPTBN1 with SPTBN1-associated immunomodulator-
pathway genes for OS of KIRC under clinical settings. 
Firstly, by including these gene variables into a risk model 

via stepwise Cox regression analysis using R package 
“survival“[37], we can obtain an optimal prognostic gene 
signature. Then, we enter this gene signature with clini-
cal settings (patients’ age, gender, tumor stage and grade) 
into a clinical risk model using univariate and multivari-
ate Cox regression analysis to further determine whether 
this prognostic signature is an independent predictor 
for KIRC prognosis under clinical settings via R pack-
age “survival“[37]. Finally, to access the predictive value 
between this constructed gene signature and SPTBN1 
alone, we perform a 3-years OS receiver operating char-
acteristic (ROC) curve analysis to achieve them by using 
R packages “timeROC“[47].

Evaluation of patients’ response to Immunotherapy in 
TCGA-KIRC with different expression levels of SPTBN1
Immunophenoscore (IPS) is an important indicator to 
evaluate patients’ response to immune check inhibitor 
(ICI) therapy. We therefore downloaded IPS data from 
The Cancer Immunome Atlas (TCIA) (https://tcia.at/
home)[48] and used R package “limma“[40] to analyze 
and visualized differences in response to ICI therapy 
between low- and high-SPTBN1 expression groups in 
TCGA-KIRC cases.

Potential sensitive drug prediction of SPTBN1 in TCGA-
UVM
The half-maximal inhibitory concentration (IC50) is 
an important predictor for assessing the efficacy of an 
anti-cancer targeted drug or the response of a patient to 
anti-cancer targeted treatment. With the help of R pack-
age “pRRophetic“[49], differences in response (IC50) to 
anti-cancer targeted therapies between low- and high-
SPTBN1 expression groups in TCGA-UVM cases were 
explored, and a difference of a drug with a cut-off of p 
value < 0.001 were selected to visualized.

Statistical analysis
In TIMBER 2.0 platform, the analysis of differential 
mRNA expression of SPTBN1 in pan-cancer was con-
ducted by using Wilcoxon test. The correlations between 
gene-gene expression or between gene-biomarkers of 
tumor immunity were assessed using Spearman’s analy-
sis. In UALCAN platform, the analysis of differential 
expression of SPTBN1 at mRNA or protein levels in 
KIRC and UVM were performed by using Wilcoxon test. 
In R software (version 3.6.3) environment, Inter-group 
comparisons from TCGA database were performed for 
continuous variables using the Wilcoxon test for vari-
ables with a normal distribution and the Mann–Whit-
ney U-test for those with a non-normal distribution. 
For survival analysis of TCGA, we used univariate Cox 
regression model and Kaplan-Meier curve with log-rank 
method to evaluate it. In following validation studies 

https://tcia.at/home
https://tcia.at/home
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from our own cohorts and GEO dataset, all statistical 
analyses were conducted using IBM SPSS software (ver-
sion 22.0) (IBM Inc., Armonk, NY, USA). Among them, 
analysis of SPTBN1 and TNFSF9 expression patterns 
in KIRC and UVM tumor samples were performed 
using Mann–Whitney U-test, and survival analysis of 
OS between high- and low-SPTBN1 expression groups 
was performed using Kaplan-Meier curve with log-rank 
method. Results with a p value < 0.05 were considered as 
statistical significance, if not specially noted.

Results
The expression of SPTBN1 was Dysregulated in Pan-cancer
SPTBN1 has been described as a vital intracellular pro-
tein with multiple functions involving in integration of 
the cytoskeleton with ion channels, cell adhesion and 
ion transport[20]. In present study, we aimed to explore 
its function in cancers. The flowchart of the present 

research’s main contents was demonstrated in revised_
Figure 1. Firstly, we used the TIMER2.0 online platform 
to explore the mRNA expression pattern of SPTBN1 
across TCGA cancers. As shown in Fig. 2A, the mRNA 
expression levels of SPTBN1 in the cancer tissues of 
BLCA, BRCA, GBM, KICH, KIRC, LUAD, LUSC, PRAD, 
THCA, UCEC (all p < 0.001), PCPG (p < 0.01), and CESC 
(p < 0.05) were lower than the corresponding adjacent 
normal tissues, however, SPTBN1 mRNA expression in 
the tumor tissues of CHOL, LIHC, STAD (all p < 0.001), 
and HNSC (p < 0.05) were higher than their respective 
adjacent non-tumor tissues. Please note that due to the 
corresponding normal tissue samples in some tumor 
types, like ACC and UVM, were unavailable in TCGA 
database or CPTAC database, we were unable to perform 
differential expression analysis in these cancer types. 
Moreover, the downregulated expression of SPTBN1 
in KIRC vs. corresponding adjacent normal tissues was 

Fig. 1 Flowchart for this study’s main contents. SPTBN1, non-erythrocytic spectrin beta 1; TCGA, the cancer genome atlas; CPTAC, clinical proteomic 
analysis consortium; GEO, gene expression omnibus; IHC, immunohistochemistry; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma; TNFSF9, 
tumor necrosis factor superfamily member 9
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Fig. 2 SPTBN1 aberrantly expressed in cancers. (A) Upregulated or downregulated expression levels (log2TPM unit) of SPTBN1 in different cancer types/
subtypes from TCGA data in Pan-cancer in TIMER 2.0 platform. (B) Based on data from TCGA database, SPTBN1 mRNA expression levels (TPM unit) in tumor 
and corresponding normal tissues in KIRC in UALCAN platform. (C) Based on data from CPTAC dataset, the SPTBN1 protein expression status (Z-value 
unit) in primary tumor and normal tissues in KIRC in UALCAN platform. (D, E) SPTBN1 mRNA expression (TPM unit) in different tumor stages of KIRC and 
UVM from TCGA data in UALCAN platform. SPTBN1, non-erythrocytic spectrin beta 1; TCGA, the cancer genome atlas; CPTAC, clinical proteomic analysis 
consortium; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma. UALCAN, University of ALabama at Birmingham CANcer. * p < 0.05; ** p < 0.01; 
*** p < 0.001
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further confirmed at mRNA and protein expression levels 
by using UALCAN online tool (Fig. 2B, C). Subsequently, 
SPTBN1 expression in different grades/stages of TCGA 
cancers were explored by using UALCAN platform. As 
shown in Fig. 2D, SPTBN1 were significantly downregu-
lated in grade 4 (p < 0.001), grade 3 (p < 0.001) and grade 2 
(p < 0.001) compared to grade 1 in KIRC patients. While, 
in UVM, the expression levels of SPTBN1 were obviously 
upregulated in stage 3 (p < 0.001) and stage 4 (p < 0.001) 
compared to stage 2 (Fig. 2E). These above results indi-
cate that for different cancer types or tumor grades/
stages, the expression of SPTBN1 in cancers is aberrant 
and quite different.

Multifaceted prognostic value of SPTBN1 expression in 
cancers
We firstly analyzed the prognostic patterns of SPTBN1 
in human cancers from TCGA database by using univari-
ate Cox regression analysis. As demonstrated in Table 1, 
for OS, SPTBN1 had a protective effect on patients with 
KIRC (HR = 0.53, 95%CI, 0.44–0.64, p = 7.32E-12) and 
READ (HR = 0.49, 95%CI, 0.28–0.84, p = 0.01), and a 
detrimental effect on individuals with ACC (HR = 1.77, 
95%CI, 1.04–2.99, p = 0.035), BLCA (HR = 1.26, 95%CI, 
1.05–1.51, p = 0.014), CESC (HR = 1.67, 95%CI, 1.13–
2.47, p = 0.011) and UVM (HR = 1.74, 95%CI, 1.06–2.87, 
p = 0.029). For DSS, SPTBN1 acted as a detrimental 
role in patients with ACC (HR = 1.94, 95%CI, 1.11–3.38, 
p = 0.02), CESC (HR = 1.73, 95%CI, 1.12–2.68, p = 0.014), 

Table 1 Univariate Cox analysis of OS, DSS and PFI in TCGA tumors between high and low expression of SPTBN1.
OS DSS PFI
Cancer Type HR (95%CI) P Value Cancer 

Type
HR (95%CI) P Value Cancer 

Type
HR (95%CI) P Value

ACC 1.77 (1.04–2.99) 0.035* ACC 1.94 (1.11–3.38) 0.020* ACC 2.74 (1.64–4.58) 0.0001***

BLCA 1.26 (1.05–1.51) 0.014* BLCA 1.24 (1.00-1.54) 0.050 BLCA 1.19 (0.99–1.42) 0.0583

BRCA 0.99 (0.77–1.27) 0.942 BRCA 1.17 (0.94–1.46) 0.149 BRCA 1.07 (0.90–1.27) 0.4232

CESC 1.67 (1.13–2.47) 0.011* CESC 1.73 (1.12–2.68) 0.014* CESC 1.94 (1.33–2.85) 0.0006***

CHOL 0.70 (0.43–1.17) 0.174 CHOL 0.72 (0.45–1.15) 0.171 CHOL 0.92 (0.60–1.41) 0.7038

COAD 0.94 (0.66–1.33) 0.710 COAD 0.98 (0.65–1.50) 0.937 COAD 1.06 (0.78–1.43) 0.7271

DLBC 1.29 (0.68–2.44) 0.430 DLBC 1.07 (0.43–2.68) 0.878 DLBC 1.28 (0.75–2.17) 0.3647

ESCA 1.02 (0.79–1.32) 0.891 ESCA 1.03 (0.76–1.39) 0.843 ESCA 1.02 (0.82–1.28) 0.8471

GBM 0.97 (0.75–1.25) 0.826 GBM 0.96 (0.74–1.25) 0.765 GBM 0.79 (0.59–1.05) 0.1033

HNSC 1.02 (0.84–1.24) 0.858 HNSC 0.95 (0.76–1.20) 0.675 HNSC 0.94 (0.78–1.13) 0.5024

KICH 0.70 (0.27–1.85) 0.475 KICH 0.77 (0.30–1.98) 0.586 KICH 0.73 (0.35–1.53) 0.4050

KIRC 0.53 (0.44–0.64) 7.32E-12*** KIRC 0.47 (0.38–0.58) 3.83E-13*** KIRC 0.61 (0.51–0.73) 8.19E-08***

KIRP 1.42 (1.00-2.02) 0.050 KIRP 1.49 (0.98–2.25) 0.059 KIRP 1.09 (0.82–1.43) 0.5625

LAML 0.92 (0.69–1.23) 0.585

LGG 0.94 (0.64–1.39) 0.774 LGG 1.02 (0.67–1.54) 0.932 LGG 1.05 (0.77–1.42) 0.7553

LIHC 0.99 (0.78–1.27) 0.960 LIHC 1.00 (0.75–1.33) 0.978 LIHC 1.08 (0.89–1.31) 0.4190

LUAD 1.12 (0.91–1.39) 0.270 LUAD 1.08 (0.89–1.30) 0.448 LUAD 1.00 (0.86–1.16) 0.9985

LUSC 1.18 (0.92–1.51) 0.190 LUSC 1.37 (1.08–1.74) 0.010* LUSC 1.20 (0.99–1.45) 0.0583

MESO 1.15 (0.82–1.61) 0.417 MESO 1.09 (0.72–1.66) 0.669 MESO 1.00 (0.70–1.44) 0.9902

OV 1.12 (0.92–1.36) 0.256 OV 1.10 (0.89–1.35) 0.366 OV 0.96 (0.80–1.15) 0.6538

PAAD 1.33 (0.96–1.85) 0.082 PAAD 1.37 (0.95–1.98) 0.093 PAAD 1.44 (1.06–1.97) 0.0209*

PCPG 1.46 (0.49–4.34) 0.500 PCPG 1.52 (0.44–5.28) 0.507 PCPG 1.09 (0.55–2.18) 0.8019

PRAD 0.91 (0.42–1.99) 0.821 PRAD 1.14 (0.32–4.05) 0.842 PRAD 0.90 (0.68–1.19) 0.4437

READ 0.49 (0.28–0.84) 0.010* READ 0.47 (0.20–1.13) 0.093 READ 1.15 (0.67–1.96) 0.6086

SARC 0.96 (0.76–1.22) 0.734 SARC 0.91 (0.70–1.18) 0.472 SARC 0.88 (0.72–1.06) 0.1855

SKCM 0.94 (0.80–1.10) 0.434 SKCM 1.00 (0.84–1.19) 0.985 SKCM 0.94 (0.83–1.07) 0.3618

STAD 1.01 (0.82–1.23) 0.960 STAD 1.09 (0.85–1.41) 0.482 STAD 1.04 (0.84–1.28) 0.7226

TGCT 1.44 (0.24–8.59) 0.689 TGCT 1.19 (0.20–7.12) 0.850 TGCT 0.78 (0.48–1.27) 0.3204

THCA 2.45 (0.97–6.20) 0.059 THCA 2.49 (0.85–7.30) 0.096 THCA 0.84 (0.58–1.24) 0.3885

THYM 0.62 (0.24–1.59) 0.321 THYM 0.09 (0.01–0.75) 0.026* THYM 0.90 (0.54–1.50) 0.6956

UCEC 0.91 (0.66–1.25) 0.556 UCEC 0.81 (0.55–1.18) 0.264 UCEC 0.83 (0.65–1.08) 0.1656

UCS 0.80 (0.46–1.39) 0.421 UCS 0.79 (0.44–1.41) 0.423 UCS 0.68 (0.41–1.12) 0.1315

UVM 1.74 (1.06–2.87) 0.029* UVM 1.88 (1.11–3.20) 0.019* UVM 1.81 (1.16–2.85) 0.0095**
OS, overall survival; DSS, disease-specific survival; PFI, progression-free interval; TCGA, the cancer genome atlas; SPTBN1, non-erythrocytic spectrin beta 1. * P < 0.05, 
** P < 0.01, *** P < 0.001.



Page 9 of 20Tang et al. BMC Cancer          (2023) 23:303 

LUSC (HR = 1.37, 95%CI, 1.08–1.74, p = 0.01) and UVM 
(HR = 1.88, 95%CI, 1.11–3.20, p = 0.019), and a protective 
role in patients with KIRC (HR = 0.47, 95%CI, 0.38–0.58, 
p = 3.83E-13) and THYM (HR = 0.09, 95%CI, 0.01–0.75, 
p = 0.026). For PFI, SPTBN1 played a protective role in 
cases with KIRC (HR = 0.61, 95%CI, 0.51–0.73, p = 8.19E-
08), and a detrimental role in cases with ACC (HR = 2.74, 
95%CI, 1.64–4.58, p = 0.0001), CESC (HR = 1.94, 95%CI, 
1.33–2.85, p = 0.0006), PAAD (HR = 1.44, 95%CI, 1.06–
1.97, p = 0.0209) and UVM (HR = 1.81, 95%CI, 1.16–2.85, 
p = 0.0095). Given the multifaceted prognostic role of 
SPTBN1 in various types of cancer, we subsequently 
focused on the role of SPTBN1 in KIRC and UVM. We 
divided the cancer patients into high-SPTBN1 expres-
sion and low-SPTBN1 expression groups based on the 
median expression level of SPTBN1 and explored the 
correlation of SPTBN1 expression with the prognosis of 
patients with KIRC and UVM from the TCGA database 
using Kaplan-Meier plotter. As shown in revised_Fig-
ure 3A, overexpression of SPTBN1 was associated with 
favorable prognosis of OS for KIRC (p < 0.001), while, 
bad prognosis of OS for UVM (p = 0.012). In addition, 
high expression level of SPTBN1 was linked to favorable 
prognosis of DSS (p < 0.001) and PFI (p < 0.001) for KIRC, 

however poor DSS (p = 0.004) and PFI (p = 0.008) for 
UVM (revised_Figure 3B, C). The above findings suggest 
that the level of SPTBN1 expression is a multifaceted fac-
tor affecting the survival of cancers, and in different types 
of human cancers, SPTBN1 may show different prognos-
tic value in cancers.

Contradictory findings of KIRC and UVM in Correlations of 
SPTBN1 expression and Immune Infiltration
It is widely noticed that the TME is a complicated mix-
ture with various types of stromal cells and TIICs[30]. 
These cells act as a vital role in regulating the progres-
sion and development of cancers and affecting cancer 
patients’ survival. Recently, SPTBN1 is reported to be 
associated with many types of cancers for its essential 
roles in regulation of EMT and chronic inflammation 
in TME[20]. Thus, it is necessary to analyze the corre-
lation between SPTBN1 expression and immune infil-
tration in tumors. Based on our above survival analysis 
results, we chose KIRC to represent tumors with favor-
able survival and UVM to represent tumors with poor 
survival when SPTBN1 reached an upregulated expres-
sion level. ESTIMATE algorithm was firstly used to ana-
lyze the correlation of SPTBN1 expression and estimated 

Fig. 3 Kaplan-Meier survival curves comparing high and low expression of SPTBN1 in KIRC and UVM from TCGA data. Survival analysis of (A) OS, (B) DSS, 
and (C) PFI in KIRC (upper) and UVM (lower). The hazard ratios with 95% confidence intervals of SPTBN1 expression in Kaplan-Meier plots were calculated 
based on univariate Cox model. SPTBN1, non-erythrocytic spectrin beta 1; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma; TCGA, the cancer 
genome atlas; OS, overall survival; DSS, disease-specific survival; PFI, progression-free interval; HR, hazard ratio; 95%CI, 95% confidence interval. ** p < 0.01; 
*** p < 0.001
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proportion of stromal/immune cells in TME in KIRC 
and UVM. For KIRC, the expression level of SPTBN1 
had significant positive association with stromal cell 
proportion (R = 0.17, p = 0.00011) and significant nega-
tive association with immune cell proportion (R =-0.22, 
p = 1.7E-07) in TME (Fig.  4A). While, for UVM, high 
expression level of SPTBN1 had obvious positive cor-
relations with the proportions of stromal cell (R = 0.48, 
p = 8.9E-06) and immune cell(R = 0.41, p = 0.00017) 
(Fig.  4B). Specifically, by using TIMER 2.0 online plat-
form, we further found that the SPTBN1 expression had 
a significant positive association with the infiltration 
of stromal cells, including endothelial cells (R = 0.625, 
p = 2.35E-51) and cancer-associated fibroblast (R = 0.131, 
p = 4.78E-03), and a obvious negative association with 
the infiltration of TIICs, including Treg cells (R =-0.305, 
p = 2.31E-11), Th2 cells (R =-0.316, p = 3.54E-12), mono-
cytes (R =-0.177, p = 1.32E-04) and M2-macrophage (R 

=-0.251, p = 4.82E-08) in KIRC after adjusting tumor 
purity (Fig.  5A). However, in UVM, overexpression of 
SPTBN1 positively correlated with the upregulated lev-
els of infiltrating stromal cells, including endothelial cells 
(R = 0.352, p = 1.69E-03) and cancer-associated fibroblast 
(R = 0.325, p = 3.94E-03), and infiltrating immune cells, 
including Treg cells (R = 0.387, P = 5.01E-04), Th2 cells 
(R = 0.358, p = 1.38E-03), monocytes (R = 0.234, p = 4.08E-
02) and M2-macrophage (R = 0.338, p = 2.67E-03) after 
adjusting tumor purity (Fig.  5B). These results in this 
section strongly suggest that SPTBN1 is tightly corre-
lated with immune and stromal cell infiltration in TME 
and could affect individuals’ survival by interacting with 
immune infiltration. The relationships between SPTBN1 
expression and immune infiltration in cancers could be 
positive or negative depending on the types of tumors.

Fig. 4 Analysis of the correlation of the estimated proportion of stromal and immune cells with SPTBN1 expression in tumor microenvironment in KIRC 
and UVM using ESTIMATE algorithm. (A) In KIRC, SPTBN1 expression was positively correlated with StromalScore (left), and negatively with ImmuneScore 
(middle) and not correlated with ESTIMATEScore (right). (B) In UVM, SPTBN1 expression was positively correlated with StromalScore (left), ImmuneScore 
(middle) and ESTIMATEScore (right). SPTBN1, non-erythrocytic spectrin beta 1; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma. p value < 0.05 
were considered to be statistically significant
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Relationships between SPTBN1 expression and Immune 
modulator markers in cancers
Immunosurveillance acts as an important role in affect-
ing the prognosis and treatments of tumors. tumor cells 
could escape immunosurveillance via interacting with 
immune modulator markers, such as TNFSF9, CTLA4 
and PDCD1, which are known as important molecules 
for cancerigenesis or cancer immunotherapy. The above 
results indicate that SPTBN1 could act as a multifac-
eted prognostic biomarker and a promising biomarker 
for immune infiltration in cancers, especially in KIRC 
and UVM. It has meaningful to explore the relationships 
between SPTBN1 expression and common immunomod-
ulator genes in cancers. Thus, we explored relationships 
between SPTBN1 and 47 common types of immuno-
modulator genes in TCGA cancers (revised_Suppmen-
tary File 2). Specifically, in TCGA-KIRC, SPTBN1 
expression were negatively associated with the expres-
sion levels of 23 types of immunomodulator markers (all 
p < 0.05), and positively correlated with 8 types of immu-
nomodulator genes expression (all p < 0.05). However, In 
TCGA-UVM, SPTBN1 expression were all positively cor-
related with the expression levels of 34 types of immu-
nomodulator genes (all p < 0.05) (revised_Figure 6 A). by 
using TIMER 2.0 online tool and adjusting tumor purity, 
we found that SPTBN1 expression had negative correla-
tions with the expression levels of TNFSF9 (R =-0.238, 
p = 2.31E-07), PDCD1 (R =-0.191, p = 3.81E-05) and 
CTLA4 (R =-0.16, p = 5.67E-04) in KIRC (revised_Fig-
ure 6B). On the contrary, in UVM, SPTBN1 expression 

had positive associations with the expression levels of 
TNFSF9 (R = 0.533, p = 5.95E-07), PDCD1 (R = 0.547, 
p = 2.65E-07) and CTLA4 (R = 0.454, p = 3.41E-05) 
(revised_Figure 6  C). All these results together strongly 
indicate that SPTBN1 expression is widely correlated 
with immunity in cancers.

Validation of the Correlations Between SPTBN1 
Expression and Immune Checkpoint Markers 
(TNFSF9) Expression in KIRC and UVM from Our 
Cancer Center and GEO Database.

As demonstrated in revised_Figure 7  A, IHC staining 
comparison of SPTBN1 expression status in tumor sam-
ples from clinical KIRC patients was performed. Accord-
ing to the staining results of IHC-P score of SPTBN1 
from our own KIRC cases (SYSUCC KIRC cohort), we 
could group SYSUCC KIRC cohort (29 subjects) to high 
SPTBN1-expression KIRC group (18 subjects) and low 
SPTBN1-expression KIRC group (11 subjects). Then, to 
further validate the bioinformatic results that SPTBN1 
expression was negatively associated with the expression 
of multiple immune modulator biomarkers in KIRC, we 
decide to detect expression of TNFSF9, an important 
immunotherapy checkpoint marker in KIRC, in tumor 
samples from high and low SPTBN1-expression KIRC 
groups using IHC staining (revised_Figure 7B). The IHC 
results demonstrated that the IHC-P score of TNFSF9 
protein was significantly lower in high SPTBN1-expres-
sion group (18 cases) than those in low SPTBN1-expres-
sion group (11 cases) (Mann–Whitney U score = 39.5, 
P = 0.006). These IHC findings confirmed the above 

Fig. 5 Analysis of the relationship between SPTBN1 expression and immune/stromal cell infiltration in KIRC and UVM using TIMER 2.0. (A) In KIRC, SPTBN1 
expression was negatively correlated with immune cell infiltration, including Treg cell, Th2 cell, monocyte and M2-macrophage, and positively correlated 
with stromal cell infiltration, including endothelial cell and cancer-associated fibroblast. (B) In UVM, SPTBN1 expression was positively correlated with 
infiltration of immune cell and stromal cell, including Treg cell, Th2 cell, monocyte, M2-macrophage, endothelial cell and cancer-associated fibroblast. 
SPTBN1, non-erythrocytic spectrin beta 1; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma. p value < 0.05 were considered to be statistically 
significant
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bioinformatic results that high expression of SPTBN1 
had a significant negative correlation with the expres-
sion level of TNFSF9 in KIRC (revised_Figure 7  C and 
revised_Supplementary File 3).

On the other hand, we also confirmed the reliability of 
previous TCGA results that SPTBN1 expression was pos-
itively associated with the expression of immune modula-
tor markers related to immunotherapy in UVM. By using 
log2(counts + 1) normalization expression data of an 
independent UVM patient cohort (57 cases) from GEO 
database (GSE44295), we divided these patients into high 
SPTBN1-expression UVM group (29 cases, SPTBN1-
mRNA expression level > 8.67) and low SPTBN1-expres-
sion UVM group (28 cases, SPTBN1-mRNA expression 
level < 8.67) according to the median expression level of 
SPTBN1-mRNA. The expression correlation between 
SPTBN1 and TNFSF9 in these two groups was shown 
in revised_Figure 8 A, and the results was in agreement 
with the findings in TCGA database. The expression level 
of TNFSF9 was also distinctly higher in tumor samples 
from high SPTBN1-expression UVM group compared to 
ones with low SPTBN1-expression level (Mann–Whitney 
U score = 245.0, p = 0.01). These GEO results validated the 
above TCGA findings that high expression of SPTBN1 
had strong positive correlations with TNFSF9 expression 
in UVM (revised_Supplementary File 4).

Validation of the Prognostic Roles of SPTBN1 in 
KIRC and UVM from Our Cancer Center and GEO 
Dataset.

We have previously demonstrated that KIRC patients 
with high expression level of SPTBN1 exhibited favor-
able prognosis of OS in TCGA database. Following this, 
we conducted a retrospective survival analysis on our 
own KIRC subjects (SYSUCC KIRC cohort) to confirm 
whether high expression level of SPTBN1 could predict 
a favorable prognosis of individuals with KIRC. Survival 
study of the 29 KIRC cases was performed. As demon-
strated in Fig.  7D, KIRC cases with high IHC-P score 
of SPTBN1 (high SPTBN1-expression KIRC group, 18 
cases) had significant longer OS times compared to those 
with low IHC-P score of SPTBN1 (low SPTBN1-expres-
sion KIRC group, 11 cases) (Log Rank = 4.184, p = 0.041) 
(revised_Supplementary File 3), which was in agreement 
with the previous bioinformatic findings in patients with 
KIRC from TCGA database.

We also performed a clinical survival analysis on 
UVM patients from GSE44295 to validate TCGA find-
ings that high expression level of SPTBN1 could predict 
a poor prognosis of patients with UVM. As shown in 
revised_Figure 8B, we found UVM cases with high levels 
of mRNA expression of SPTBN1 in tumor samples (high 
SPTBN1-expression UVM group, 29 subjects) had obvi-
ous shorter OS times than that with low expression lev-
els of SPTBN1 (low SPTBN1-expression UVM group, 28 
subjects) (Log Rank = 4.357, p = 0.036) (revised_Supple-
mentary File 4), which was consistent with our previous 
TCGA findings in UVM patients.

Fig. 6 Analysis of the correlation between SPTBN1 expression and common immune modulator marker sets. (A) Correlation between SPTBN1 expression 
and 47 immune modulator marker sets across TCGA-KIRC and TCGA-UVM. Specifically, (B) In KIRC, SPTBN1 expression was negatively correlated with the 
expression of TNFSF9, PDCD1 and CTLA4. (C) In UVM, SPTBN1 expression was positively correlated with the expression of TNFSF9, PDCD1 and CTLA4. 
SPTBN1, non-erythrocytic spectrin beta 1; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma; TNFSF9, tumor necrosis factor superfamily 
member 9; PDCD1, programmed cell death 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4. * p < 0.05; ** p < 0.01; *** p < 0.001. p value < 0.05 were 
considered to be statistically significant
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GO Enrichment Analysis of SPTBN1 in KIRC and UVM
To explore the potential different functional roles that 
SPTBN1 took part in the carcinogenesis of KIRC and 
UVM, we used GSEA to determine it. As demonstrated 
in revised_Figure 9 A, GO enrichment term revealed that 
low expression of SPTBN1 in TCGA-KIRC samples could 
promote KIRC progression mostly via affecting the pro-
cess of epidermoid cell differentiation; while, in TCGA-
UVM samples, high expression level of SPTBN1 could 
involve in the carcinogenesis of UVM mainly by dys-
regulating immunity-related activities, such as immune 
response signaling pathway and leukocyte migration, and 
electrolyte homeostasis, like metal-ion transportation 

and divalent ions homeostasis (revised_Figure 9B). These 
elements based on GO functional analysis probably pro-
vide some information to explain our above clinical find-
ings that downregulation of SPTBN1 was associated with 
poor prognosis in KIRC patients, and upregulation of 
SPTBN1 was related to poor prognosis in UVM patients.

The Prognostic implication of SPTBN1-Associated 
Immunomodulators in KIRC
To explore the prognostic value of SPTBN1-associ-
ated immunomodulators in KIRC, we entered those 31 
immunodulator gene (revised_Figure 6 A) with SPTBN1 
into a stepwise multivariate Cox regression model and 

Fig. 7 Validation analysis for determining the immunological and prognostic role of SPTBN1 in KIRC based on bioinformatic findings. (A) Representative 
images of different expression levels of SPTBN1 protein in KIRC tumor tissue samples via IHC staining. (B) Representative photomicrographs of IHC stain-
ing of TNFSF9 protein in KIRC tumor samples from high and low SPTBN1-expression groups. (C) The IHC-P scores of TNFSF9 in KIRC samples between 
high and low SPTBN1-expression groups were compared using Mann-Whitney U-test. (D) Overall survival analysis of clinical KIRC individuals between 
high and low SPTBN1-expression groups by using Kaplan-Meier curve with log-rank test. SPTBN1, non-erythrocytic spectrin beta 1; KIRC, kidney renal 
clear cell carcinoma; TNFSF9, tumor necrosis factor superfamily member 9; IHC, immunohistochemistry; IHC-P, immunohistochemistry protein expression. 
* p < 0.05; ** p < 0.01
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generated an optimal prognostic 14-gene signature 
(ADORA2A-CD27-CD44-CD70-CD200-IDO1-LAIR1-
LGALS9-NRP1-PDCD1-TNFRSF25-TNFSF18-VSIR-
SPTBN1) for KIRC. The correlations between these 14 
genes and OS of KIRC were presented in revised_Fig-
ure 10 A. The risk score was calculated by adding up the 
expression value and coefficient of each gene and could 
divide KIRC patients into high- and low-risk groups 

(revised_Supplementary File 5). The Kaplan-Meier sur-
vival curve elucidated those cases with low-risk had sig-
nificant longer survival time than those with high-risk 
(HR = 1.40, 95%CI, 1.30–1.50, p < 0.001); meanwhile, the 
distribution plots of risk score, survival status and signa-
ture gene expression heatmap also demonstrated a good 
predictive value of this prognostic signature (revised_Fig-
ure 10B). As shown in revised_Figure 10 C, the risk score 

Fig. 9 GO analysis of SPTBN1 expression in TCGA-KIRC and TCGA-UVM samples based on GSEA. (A) The enriched gene sets in GO collection via low 
expression of SPTBN1 in KIRC samples. (B) The enriched gene sets in GO collection by high expression of SPTBN1 in UVM samples. Each line showing one 
specific gene set with unique color. Downregulated gene sets gathered in the right of x-axis of the plot; while, upregulated gene sets located in the left of 
x-axis of the plot. Only top 5 gene sets with NOM p < 0.05 and FDR q < 0.25 were shown in the plot. GO, gene ontology; SPTBN1, non-erythrocytic spectrin 
beta 1; TCGA, the cancer genome atlas; KIRC, kidney renal clear cell carcinoma; UVM, uveal melanoma; GSEA, gene set enrichment analysis

 

Fig. 8 Validation study for confirming TCGA findings of SPTBN1 in UVM using data from GEO database. (A) TNFSF9 expression in UVM samples between 
high and low SPTBN1-expression groups from GSE44295 dataset were compared using Mann-Whitney U-test. (B) Overall survival analysis of UVM patients 
with high and low expression of SPTBN1 from GSE44295 dataset were determined by Kaplan-Meier curve with log-rank test. TCGA, the cancer genome 
atlas; SPTBN1, non-erythrocytic spectrin beta 1; UVM, uveal melanoma; GEO, gene expression omnibus; TNFSF9, tumor necrosis factor superfamily mem-
ber 9. * p < 0.05
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based on this prognostic signature was obviously associ-
ated with survival in KIRC in the univariate Cox model 
(HR = 1.431, 95%CI, 1.33–1.54, p < 0.001). More impor-
tantly, multivariate Cox model showed that the risk score 
based on 14-gene signature was an independent predictor 
of prognosis in KIRC after adjusting for clinical settings, 
including age, gender, tumor grade and stage (HR = 1.229, 
95%CI, 1.131–1.337, p < 0.001). The area under the 
3-years ROC curve (AUC) value of the risk score based 
on 14-gene signature was 0.722, and when combining 
above clinical features, the AUC value could reach 0.832; 
however, when using risk score based on SPTBN1 alone 
via stepwise Cox regression analysis (revised_Supple-
mentary File 6), the AUC value was only 0.655, indicating 
that analyzing a single gene has limitations on prognostic 
prediction compared to a pathway-associated gene signa-
ture in clinical settings (revised_Figure 10D).

Analysis of SPTBN1 expression for Predicting 
Immunotherapy response in patients with KIRC
Additionally, the correlation between SPTBN1 expres-
sion and immunotherapy response (ICI therapy) in KIRC 

patients was analyzed via TCIA and TCGA databases 
using IPS evaluation method (revised_Supplementary 
File 7 and File 8). Revised_Figure 11  A-C demonstrated 
that IPS, IPS-CTLA4 plus PD1 blockers, and IPS-
CTLA4 blocker were significantly higher in low-SPTBN1 
expression KIRC group compared with those with high-
SPTBN1 expression (all p < 0.05); while, IPS-PD1 blocker 
showed no significant difference between two groups 
(p = 0.1, Revised_Figure 11D). These results indicated 
that SPTBN1 was potentially involved in the resistance 
of immunotherapy of certain ICI therapy combinations, 
including CTLA-4 blocker and CTLA-4 plus PD1 block-
ers, in KIRC. We speculate that KIRC patients with high 
expression level of SPTBN1 might not gain enough ben-
efit from ICI therapy.

Analysis of SPTBN1 expression for Predicting Response of 
Anti-Cancer targeted treatment in patients with UVM
On the other hand, the correlation between SPTBN1 
expression and anti-cancer targeted treatment response 
in TCGA-UVM patients was explored using IC50 score. 
Revised_Figure 12  A-G showed that the IC50 scores 

Fig. 10 Development and evaluation of the prognostic gene signature based on SPTBN1-associated immunomodulators and SPTBN1. (A) The HR of 
genes integrated into the optimal prognostic 14-gene signature based on the stepwise Cox regression method are displayed in the forest plot for KIRC. 
(B) Prognostic evaluation of the 14-gene signature model in KIRC based on the risk score, including Kaplan-Meier curve, distribution of risk score along 
with survival status, and gene expression heatmap. (C) Univariate and multivariate Cox regression analyses of the risk score along with clinical features 
(age, gender, tumor grade and stage) in KIRC. (D) Time-dependent ROC curves at 3-years for evaluating risk scores based on 14-gene signature and 
single gene SPTBN1 in KIRC. SPTBN1, non-erythrocytic spectrin beta 1; HR, hazard ratio; KIRC, kidney renal clear cell carcinoma; ROC, receiver operating 
characteristic. * p < 0.05; ** p < 0.01; *** p < 0.001
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of Rucaparib, CCT018159, PF-4,708,671, Fedratinib, 
Pazopanib, Lapatinib, and XMD8-85 were lower in the 
SPTBN1 high-expression UVM group compared with 
those in low-expression group (all p < 0.001), reflect-
ing that UVM patients with high expression of SPTBN1 
may exhibit a favorable response to anti-cancer targeted 
therapy.

Discussion
Recently, more and more studies indicated that dys-
regulation of SPTBN1 had close links with many kinds 
of human disease, including congenital organ anoma-
lies[16] and cancers[20]. However, the exact function of 
SPTBN1 in cancer progression and therapy has not been 
well-studied and still need further illumination. Through 
searching literatures in PubMed database, we could not 

find any literature associated with pan-cancer analysis 
of SPTBN1. Thus, we prepared this study to explore the 
prognostic and immunological role of SPTBN1 in pan-
cancer, especially in KIRC and UVM.

Previous publications suggested that downregulation 
of SPTBN1 expression was frequently found in many 
kinds of cancers[20]. In present study, by using TIMER 
2.0 web-based platform to explore the expression pat-
terns of SPTBN1 across TCGA cancers at mRNA level, 
we revealed the consistent findings that SPTBN1, com-
pared to expression level in nontumor adjacent tissues, 
was frequently down-expressed in tumor tissues in most 
types of cancers, including BRCA, BLCA, CESC, GBM, 
KICH, KIRC, KIRP, LUAD, LUSC, PCPG, PRAD, THCA 
and UCEC. In addition, by integrating independent data-
bases of TCGA and CPTAC, we further validated that the 

Fig. 11 Violin plots illustrated the comparisons of the (A) IPS, (B) IPS-PD1 plus CTLA4 blockers, (C) IPS-CTLA4 block, and (D) IPS-PD1 blocker between 
low- and high-SPTBN1 expression TCGA-KIRC patient groups. IPS, immunophenoscore; TCGA, the cancer genome atlas; KIRC, kidney renal clear cell 
carcinoma; SPTBN1, non-erythrocytic spectrin beta 1; PD1, programmed cell death 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4. * p < 0.05; *** 
p < 0.001
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expression of SPTBN1 was significantly downregulated 
in tumor tissues compared with normal tissues in KIRC 
patients at both mRNA and protein expression levels. 
Moreover, based on TIMER 2.0 online platform, we also 
found that with the tumor progression, the expression of 
SPTBN1 was gradually decreased in KIRC cases; mean-
time, in UVM patients, the expression level of SPTBN1 
was gradually increased (Fig.  1), implying that SPTBN1 
expression is closely related to tumor types and stages/
grades, and it should be noted that the role of SPTBN1 
in cancer development may vary depends on different 
contexts.

On the other hand, we applied a Cox regression anal-
ysis to evaluate the prognostic value (OS, DSS and PFI) 
of SPTBN1 expression across TCGA cancers. The analy-
sis revealed that upregulated SPTBN1 expression could 
be used as a poor prognosis factor for OS, DSS and PFI 
in ACC, CESC and UVM. In contrast, in KIRC, a low 
expression level of SPTBN1 was indicated to be associ-
ated with a poor prognosis factor for OS, DSS and PFI 
(Table 1). In addition, we used another method, Kaplan-
Meier analysis, to perform a survival analysis to further 
evaluate the prognostic value of SPTBN1 in KIRC and 
UVM, and the results were in agreement with the find-
ings of Cox regression analysis that decreased expression 
of SPTBN1 was closely associated with poor prognosis 
of OS, DSS and PFI in KIRC, and favorable prognosis of 
OS, DSS and PFI in UVM (Fig. 3). Taken together, these 
results strongly demonstrate that in different kinds of 

cancers, such as KIRC and UVM, SPTBN1 can serve as 
a multifaceted indicator with different prognostic value. 
To the best of our knowledge, there is no study has found 
the direct links between SPTBN1 expression and progno-
sis of KIRC and UVM. By using tumor samples obtained 
from our cancer center and expression data obtained 
from independent dataset GSE44295, our following vali-
dation studies proved for the first time that low expres-
sion of SPTBN1 was directly linked to an unfavorable 
clinical prognosis in KIRC patients, and a favorable clini-
cal prognosis in UVM cases (Figs.  7 and 8). Although 
present study may offer a novel view associated with can-
cer patients’ survival, especially in patients with KIRC 
and UVM; however, considering the contradictory prog-
nostic roles of SPTBN1 in different cancer types, pos-
sible mechanisms involved in SPTBN1 regulated tumor 
progression are still needed discussing. As previous pub-
lications shown, SPTBN1 could play multifaceted roles 
in different kinds or stages of cancers via functioning in 
DNA repair to inhibit tumor progression[21] and in EMT 
to promote tumor progression[25]. We speculated that 
in early grades of primary tumor with low aggressive-
ness manner, like KIRC, high expression level of SPTBN1 
could exert its anti-cancer effect through DNA repair 
in damaged tissue; while, with the primary tumor pro-
gression, the expression level of SPTBN1 was reduced 
accordingly and the anti-cancer effect was gradually dis-
appeared. On the other hand, in cancer with high aggres-
siveness manner that could metastasize extensively at 

Fig. 12 Box plots demonstrated the comparisons of IC50 scores of anti-cancer targeted drugs in low- and high-SPTBN1 expression TCGA-UVM patient 
groups via pRRophphetic R package. (A) Rucaparib. (B) CCT018159. (C) PF-4,708,671. (D) Fedratinib. (E) Pazopanib. (F) Lapatinib. (G) XMD8-85. IC50, 
half-maximal inhibitory concentration; TCGA, the cancer genome atlas; UVM, uveal melanoma; SPTBN1, non-erythrocytic spectrin beta 1. *** p < 0.001
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early stage, like UVM, high expression level of SPTBN1 
could exert its pro-cancer effect via EMT to promote 
tumor metastasis since early stage. With cancer metas-
tasis progressing, the expression level of SPTBN1 was 
further increased and the pro-cancer effect was gradu-
ally amplified. Moreover, GO functional analysis based 
on GSEA demonstrated that downregulation of SPTBN1 
could exert its pro-cancer effects via affecting normal 
epidermoid cell differentiation in KIRC; while, upregu-
lation of SPTBN1 could also exert its pro-cancer effects 
by dysregulating normal immunity-related activities, 
and electrolyte homeostasis in UVM (revised_Figure 9). 
These speculations and GO findings may help explain 
contradictory roles of SPTBN1 in different kinds of can-
cers. However, whether SPTBN1 could exert different 
roles and mechanisms in cancer development for differ-
ent cancer types or stages still need additional experi-
ments to prove it.

TME is a complicated milieu with a full of nontumor 
cells around cancer cells. Among these noncancerous 
cells, infiltrated immune cells, such as Treg cell, Th2 cell, 
monocyte and M2-macrophage, play an important role 
in the protumor immune response, including immune 
escape and cancer metastasis[30]. So far, it is unclear 
whether SPTBN1 expression has close relationship with 
tumor infiltration of immune cells. As demonstrated in 
Figs. 4 and 5, we did find significant associations between 
SPTBN1 expression in tumor immune cells infiltration in 
KIRC and UVM. Intriguingly, SPTBN1 overexpression in 
KIRC was negatively correlated with the invasion of pro-
tumor immune cells; however, in UVM, the correlation 
was positive, implying SPTBN1 expression in KIRC and 
UVM may interact with immune infiltration in different 
manners and this finding could also help explain contra-
dictory outcomes in cancer patients’ survival. The dif-
ferent interaction manners between SPTBN1 expression 
and infiltration of pro-tumor immune cells in different 
kinds of cancers could provide novel insights into under-
standing of the paradoxical role of SPTBN1 in affecting 
the occurrence, development and metastasis of tumor.

In contrast, cancer immunotherapy can recover the 
normal body’s function of antitumor immune response 
via regulating the expression of checkpoint genes, such 
as TNFSF9, PDCD1 and CTLA4. Here, we collected 47 
common immune modulator genes, and analyzed the 
correlations between SPTBN1 expression and expression 
of these immune modulator genes across TCGA can-
cers (revised_Supplementary File 2 and revised_Figure 
6  A). We found that in KIRC, SPTBN1 expression was 
negatively associated with the expression of more than 
20 types of immune modulator genes; while, in UVM, 
SPTBN1 expression was positively associated with the 
expression of more than 30 types of immune modula-
tor genes. Among these immune modulator genes, the 

expression levels of TNFSF9, PDCD1 and CTLA4 were 
all negatively correlated with SPTBN1 expression in 
KIRC, and positively correlated with SPTBN1 expres-
sion in UVM (revised_Figure 6B, C). These findings 
could also help explain the contradictory prognosis value 
of SPTBN1 in KIRC and UVM. Importantly, these find-
ings shed light on understanding the potential role of 
SPTBN1 in cancer immunity. Moreover, further analy-
sis of SPTBN1 for predicting ICI therapy response in 
patients with KIRC revealed that SPTBN1 was poten-
tially involved in the resistance of certain ICI therapy, 
such as CTLA-4 blocker and CTLA-4 plus PD1 blockers 
in KIRC(revised_Figure 11); meanwhile, further study 
of SPTBN1 for predicting anti-cancer targeted therapy 
response in individuals with UVM demonstrated that 
SPTBN1 might also have a potential to involve in the 
enhance of anti-cancer targeted treatment in UVM 
(revised_Figure 12). These results revealed that SPTBN1 
has a potential to serve as a biomarker not only for 
immunotherapy, but also for anti-cancer targeted treat-
ment. However, additional prospective clinical studies 
based on real-world are needed in future for confirm-
ing it. For further proving these bioinformatic findings 
based on TCGA, we then performed a series of valida-
tion experiments (Figs. 7 and 8) and the results were in 
agreement with previous TCGA findings that SPTBN1 
expression had negative and positive relationships with 
TNFSF9 expression in KIRC and UVM, respectively, fur-
ther suggesting its potential to be a novel biomarker for 
anti-cancer therapies and prognosis in KIRC and UVM.

Yet it’s worth noting that the tumor suppressing and 
survival predicting roles of SPTBN1 in many types 
of human solid adenocarcinoma. For examples, by 
using weighted gene co-expression network analysis 
(WGCNA), Mantini G and his colleagues constructed a 
prognostic signature. From their prognostic signature, 
they revealed that SPTBN1 could serve as an indepen-
dent predictor of predicting OS of pancreatic ductal ade-
nocarcinoma (PDAC) under clinical settings; they also 
found higher expression of SPTBN1 was associated with 
longer survival in patients with PDAC[50]. Moreover, 
Zhu H and his colleagues constructed a prognostic sig-
nature containing SPTBN1, and also found that SPTBN1 
might be a potential tumor suppressor gene and could 
serve as an independent biomarker for predicting prog-
nosis of patients with lung adenocarcinoma (LUAD)[51]. 
Similar to their findings, as shown in our study, we found 
higher expression of SPTBN1 was obviously correlated 
with longer survival in patients with KIRC, and could 
serve as an independent survival predictor for KIRC. 
Taken these results together, we speculate that SPTBN1 
might have a potential to serve as a protective biofac-
tor for some specific types of solid adenocarcinoma. A 
more comprehensive pan-cancer based on human solid 
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adenocarcinoma is obviously needed to confirm this dis-
tinct biological manner of SPTBN1 in the future.

However, even though the bioinformatic analysis and 
following validation experiments in present study pro-
vided us some novel and reliable insights of SPTBN1 in 
clinical significance of KIRC and UVM, further molecu-
lar mechanistic experiments at cellular level and prospec-
tive clinical studies at multiple-center are both needed, 
which will be the focus of our future work.

Conclusion
Overall, the findings from present study indicate that 
SPTBN1 could affect pan-cancer prognosis and closely 
associate with immune infiltration in TME. Specially, for 
KIRC and UVM, two different cancer types with different 
manners of aggressiveness, SPTBN1 upregulation is cor-
related with a low risk and immune infiltration for KIRC, 
and a high risk and immune infiltration for UVM. Impor-
tantly, to the best of our knowledge, there is no publica-
tion focusing on the prognostic and therapeutic roles of 
SPTBN1 in KIRC and UVM. Our data provide some new 
contents in this respect. By performing a series of bioin-
formatic analysis and following validation experiments, 
we demonstrated for the first time that SPTBN1 could be 
a potential prognostic and therapy-related biomarker in 
KIRC and UVM.
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