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Abstract
Background  As a common malignant tumor, esophageal carcinoma (ESCA) has a low early diagnosis rate and poor 
prognosis. This study aimed to construct the prognostic features composed of ZNF family genes to effectively predict 
the prognosis of ESCA patients.

Methods  The mRNA expression matrix and clinical data were downloaded from TCGA and GEO database. Using 
univariate Cox analysis, lasso regression and multivariate Cox analysis, we screened six prognosis-related ZNF family 
genes to construct the prognostic model. We then used Kaplan-Meier plot, time-dependent receiver operating 
characteristic (ROC), multivariable Cox regression analysis of clinical information, and nomogram to evaluate the 
prognostic value within and across sets, separately and combined. We also validated the prognostic value of the 
six-gene signature using GSE53624 dataset. The different immune status was observed in the single sample Gene Set 
Enrichment Analysis (ssGSEA). Finally, real-time quantitative PCR was used to detect the expression of six prognostic 
ZNF genes in twelve pairs of ESCA and adjacent normal tissues.

Results  A six prognosis-related ZNF family genes model consisted of ZNF91, ZNF586, ZNF502, ZNF865, ZNF106 and 
ZNF225 was identified. Multivariable Cox regression analysis revealed that six prognosis-related ZNF family genes 
were independent prognostic factors for overall survival of ESCA patients in TCGA and GSE53624. Further, a prognostic 
nomogram including the riskScore, age, gender, T, stage was constructed, and TCGA/GSE53624-based calibration 
plots indicated its excellent predictive performance. Drug Sensitivity and ssGSEA analysis showed that the six genes 
model was closely related to immune cells infiltration and could be used as a potential predictor of chemotherapy 
sensitivity.

Conclusion  We identified six prognosis-related ZNF family genes model of ESCA, which provide evidence for 
individualized prevention and treatment.
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Introduction
Esophageal cancer (ESCA) ranks seventh for incidence 
(604,000) and sixth for mortality (544,000), which means 
it is responsible for one in eighteen cancer deaths [1]. 
Traditional prognostic methods, such as histopathology 
and tumor staging systems, are of limited use and early 
detection remains a difficult goal [2]. Due to the lack 
of specific methods for early diagnosis and treatment, 
ESCA patients’ five-year survival rate is remains dismal 
[3]. The poor outcome urges to identify robust biomark-
ers for predicting the prognosis of ESCA patients.

Zinc finger protein encoded by nearly 5% of the human 
genome is the largest family of transcription factor pro-
teins, which has finger-like DNA binding do-mains and 
plays an important role in many biological processes [4]. 
So far, zinc finger motifs have been classified into eight 
different classes based on their mainchain conforma-
tions and secondary structures around zinc-binding sites, 
including Cys2his2(C2H2)-like, ZN2/Cys6, Treble clef, 
zinc band, Gag joint, Taz2 domain-like, zinc-binding ring 
and metallothionein [5]. Due to the diversity of zinc fin-
ger motifs and these domains, ZFPs play different gene 
regulatory roles in different cellular environments and 
stimuli. ZNF306 promotes the development of colorec-
tal cancer by transcriptionally activating integrin β4 and 
vascular endothelial growth factor [6]. ZNF384 promotes 
the proliferation of Hepatocellular carcinoma by directly 
up-regulating the expression of cyclin D1 [7]. Upregula-
tion of ZNF554 is a potential tumor suppressor and its 
decreased expression may lead to the loss of oncogene 
suppression, activation of tumor pathways, and shorter 
survival of patients with malignant glioma [8]. The over-
expression of ZNF655 promoted the progression of gli-
oma by binding to the promoter of AURKA [9]. ZNF410 
represents a special class of gene regulators, a conserved 
TF, which has a unique regulatory role on chromatin sub-
complexes [10].Taken together, these studies indicate that 
ZNF genes may function as oncogenes involved in the 
occurrence and progression of cancer.

With the development of large-scale genome sequenc-
ing technologies, the integration of prognostic-related 
genetic markers has improved the level of early diagnosis 
of cancer compared with traditional clinical parameters. 
In the current study, we screened prognostic-associated 
ZNF family genes from TCGA dataset and validated the 
prognostic value of the six-gene signature using GEO 
dataset. We also constructed a nomogram based on the 
riskScore and clinical characteristics to predict individual 
overall survival (OS). In conclusion, our work may con-
tribute to the early diagnosis of ESCA patients.

Materials and methods
Collection of data
RNA sequencing data of ESCA patients were extracted 
from the Cancer Genome Atlas (TCGA, https://can-
cergenome.nih.gov) and Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Relevant 
clinical information, including age, gender grade, survival 
status, and TNM stage, were also acquired. In this study, 
we collected 163 ESCA samples and 11 adjacent nor-
mal samples from TCGA and 119 ESCA samples from 
GSE53624 dataset. It has become evident that normaliza-
tion of RNA-Seq data is necessary for reliable inferences 
and replication of results [11] [12]. GEO data is in TPM 
format, whereas TCGA data is in FPKM format. In this 
study, we first transform TCGA data into TPM format, 
then normalize TCGA and GEO data using the SVA 
package to minimize the batch effect.The expression lev-
els of ZNF family genes were extracted for survival analy-
sis, and the prognosis-related ZNF genes were identified. 
The prognostic model was constructed by using these 
genes, then verify the accuracy of the model.

Establishment and testing of the risk score model
We randomly separated the TCGA-ESCA patient sam-
ples into training and testing groups. The training cohort 
was used to establish construct the prognosis model and 
the testing cohort was used to verify the model [13]. By 
applying differential expression analysis, univariate Cox 
regression analysis, least absolute shrinkage and selec-
tion operator (LASSO) regression analysis and multivari-
ate Cox regression analysis, we identified six prognostic 
related ZNF family genes which can be viewed as a sig-
nature to predict the disease outcomes of patients with 
ESCA. Subsequently, we divided the training group into 
high- and low-risk groups using the median risk score as 
the cut-off point. Kaplan–Meier survival curve analysis 
was performed to show the difference in OS between the 
two groups. We also plotted the time-dependent receiver 
operating characteristic (ROC) curve and risk nomogram 
to evaluate the prediction accuracy of the model.

Furthermore, univariate and multivariate Cox analy-
ses were performed to confirm that the six prognostic-
related genes signature was an independent prognostic 
factor for ESCA compared to other clinical characteris-
tics—such as age, sex, clinical stage, TNM, and risk score. 
We analyzed the correlation between the risk scores and 
clinical parameters to investigate whether there was any 
difference in risk scores among different clinical param-
eter stratification.

Gene-set enrichment analysis
Gene ontology (GO) term enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed to investigate potential signaling 
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pathways and functions related to the six ZNF family 
genes included in the model [14].

Immune infiltration analysis and prediction of the 
sensitivity toward chemotherapeutic agents
We used the R package “GSEABase” to investigate the 
differential expression and function of 23 infiltrating 
immune cells between the high- and low-risk groups. We 
also used the R package “pRRophetic” to analyze drug 
sensitivity in the high- and low-risk groups.

Quantitative real-time PCR
Total RNA was extracted using Trizol (Cat#9109; 
TaKaRa, Japan) and reversed into cDNA by PrimeScript 
RT Master Mix kit (RR047A; Takara, Japan). All mRNA 
levels were assessed using the SYBR Green PCR Mix 
(RR420A; Takara, Japan) and the CFX Connect (BIO-
RAD, USA). All experiments were performed in triplicate 
and analyzed with the 2−ΔΔCT method. Supplementary 
Table 1 lists the primer sequences.

Statistical analysis
All data were expressed as the mean and standard devia-
tion of at least three independent experiments and ana-
lyzed by GraphPad Prism 7.0 software (La Jolla, CA, 
USA). R software (version x64 4.0.5) was used for sta-
tistical analysis, including Cox regression analysis, ROC 
curve analysis, gene enrichment analysis, and immune 
infiltration analysis.

Results
Features of patients with ESCA enrolled in this study
Sequencing data and corresponding clinical data of 
ESCA, including 163 tumors and 11 paracancerous tis-
sues, were obtained from the TCGA database. Clini-
cal information of 163 ESCA patients including survival 
status, grade of tumor, American Joint Committee on 
Cancer (AJCC) stage, classification of tumor, lymph 
node, and metastasis was summarized in Supplementary 
Table 2.

Construction and evaluation of the prognostic risk 
signature
This study was designed to investigate the prognos-
tic significance of ZNF family in ESCA. The process of 
constructing and validating the six prognosis-related 
ZNF family genes signature is shown in Fig.  1. First, 
we performed univariate Cox regression and identi-
fied 12 remarkably prognosis-associated gens (ZNF641, 
ZNF484, ZNF629, ZNF91, ZNF45, ZNF502, ZNF25, 
ZNF586, ZNF510, ZNF865, ZNF106, and ZNF225) 
(Fig. 2A). Then, we used LASSO regression to build the 
prognostic signature and determine the coefficients 
(Fig. 2B -C). Finally, six ZNF family genes were enrolled 
in the signature, and each coefficient represented the 
weight of the expression of the corresponding coeffi-
cients (P < 0.05, Supplementary Table  3). The unpaired 
t-test was used to analyze the expression differences of 
six prognosis-related ZNF family genes in 163 ESCA 

Fig. 1  Flowchart for generating and validating the six prognosis-related ZNF family genes signature
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Fig. 2  Selection of prognostic ZNF family genes with prognostic value. (A) Risk ratio forest plot shows that twelve prognosis-related ZNF family genes, 
were significantly related to OS of ESCA patients. (B) Adjusted parameters of LASSO regression model. (C) Figure for LASSO coefficient spectrum of prog-
nostic ZNF family genes
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patients and 11 normal esophageal samples. These find-
ings suggested that compared with normal esophageal 
tissues, the expression of ZNF91 and ZNF586 were 
upregulated, while ZNF502, ZNF865, ZNF106, ZNF225 
were downregulated in ESCA patients (Fig. 3A-B).

Next, we used multivariate Cox regression to calculate 
their respective coefficients (βi) to establish a risk score 
model. We set the median risk.

score as the cutoff value and divided 173 patients into 
high-risk and low-risk groups (Fig.  3C). Then, we per-
formed PCA to assess the distinct distribution between 
the high- and low-risk groups. Patients tended to sepa-
rate into two clusters, which clearly indicated that the 
status of ESCA patients in the two risk score groups 
was different (Fig. 3D). As shown in the scatter plot, The 
higher the risk the more death patients (Fig.  3E). Addi-
tionally, the negative correlation between risk score and 
prognosis was affirmed by Kaplan-Meier survival curve 
(P < 0.001, Fig. 3F).

Testing of the risk score model
After calculating the risk scores of all patients in TCGA, 
we divided the training set and testing set samples into 
high- and low-risk groups according to the median value 
of risk score, as shown in Fig. 4A and B. We found that 
in both the training and testing sets, the proportion of 
patients with ESCA who died in the high-risk group was 
higher than that in the low-risk group (Fig. 4C-D). More-
over, six prognosis-related ZNF family genes in the risk 
model showed the same expression pattern in the train-
ing and testing sets (Fig.  4E-F). The Kaplan-Meier sur-
vival curve showed that the clinical outcomes of patients 
in the low-risk group were better than those in the high-
risk group (P = 0.001; Fig.  4G), both in the testing set 
(P = 0.02; Fig. 4H).

Correlation between the model and the clinical parameters
We then analyzed the correlation between the risk scores 
and other clinical parameters. According to the Kaplan-
Meier analysis, the model based on six prognosis-related 
ZNF family genes had significantly distinct risk strati-
fication ability in ESCA. The results presented that the 
high-risk patients in ESCA exhibited obviously worse 
prognosis (Fig.  5A-G, I). Whereas, in the patients with 
N2-3 (Fig.  5H), M1 (Fig.  5J) subgroups, this conclusion 
did not hold.

Independent prognostic analysis and construction of a 
nomogram
Both univariate and multivariate Cox analyses showed 
gender, stage, T grade and the prognostic risk model 
could be used independently to predict the prognosis of 
ESCA (Fig. 6A-B). We then further compared these vari-
ables and found that the risk score was more accurate 

than the pathological stage and age in predicting OS 
at one years. The AUCs at one years for the risk score, 
gender, stage and the T grade were 0.848, 0.500, 0.625 
and 0.536, respectively (Fig.  6C). We also drew a time-
dependent ROC curve for the patients in the two groups 
(Fig. 6D). The AUC values for the risk score at 1, 3 and 
5 years were 0.848, 0.872, 0.952. We also constructed a 
nomogram to estimate the probability of survival at 1, 
3 and 5 years. The predictive factors including gender, 
stage, T stage, and the ZNF family genes prognostic sig-
nature, were used to construct the nomogram for OS 
(Fig. 6E). The C-index value of the nomogram was 0.826. 
The calibration curves depicting the actual and nomo-
gram-predicted survival at 1, 3 and 5 years were relatively 
in accord with the reference lines (Fig. 6F). These results 
suggest that the nomogram including our prognostic sig-
nature is precise and reliable.

External validation of the prognostic gene signature
To confirm the prognostic model had similar predictive 
values in different populations, the GEO cohort was used 
for external confirmation. Supplementary Table 2 shows 
the demographics and clinicopathologic characteristics 
of ESCA patients in the GEO validation cohort. Similarly, 
we performed univariate (riskScore (P < 0.001)) and mul-
tivariate Cox regression analyses (riskScore (P < 0.001)) to 
evaluate the prognostic significance of the model com-
bined with various clinicopathologic parameters (Fig. 7A-
B). In addition, risk score was more accurate than the 
clinicopathologic parameters in predicting OS at one 
years. The AUCs at one years for the riskScore, age, gen-
der, T, N, and stage were 0.815, 0.616, 0.511, 0.605, 0.505 
and 0.557, respectively (Fig. 7C). Therefore, the prognos-
tic riskScore model constructed by the GEO validation 
cohorts was an independent prognostic factor for ESCA. 
The riskScore model also showed a favorable predictive 
ability for the 1-, 3- and 5-year OS rates, with AUC values 
of 0.815, 0.798 and 0.783, respectively (Fig. 7D). Further-
more, total of 119 ESCA patients in the GEO set were 
classified into low- and high-risk group (Fig. 7E-F), and 
the OS of the ESCA patients in the high-risk group was 
significantly lower than that of the patients in the low-
risk group (P < 0.001; Fig.  7G). Finally, we established a 
prognostic nomogram to predict the survival probabil-
ity based on the GEO validation cohort (Fig.  8A). The 
calibration curves depicting the actual and nomogram-
predicted survival at 1, 3 and 5 years were relatively in 
accord with the reference lines (Fig. 8B).

Functional enrichment analysis and evaluation of immune 
cell infiltration
To evaluate the infiltration scores of immune cells and 
immune-related functions, we performed ssGSEA analy-
sis to quantify the scores of immune cell infiltration and 
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Fig. 3  ZNF family genes signature predicts overall survival in patients with ESCA. (A-B) A heatmap and box plot showed the differential expression of six 
prognosis-related ZNF family genes between high-and low-risk subgroups. The gene expression was scaled by log2 (original expression of gene + 1). (C-D) 
The distribution of risk scores for each patient. With the median risk score as the cutoff, ESCA patients were divided into high- and low-risk subgroups. (E) 
Relationship between survival time (years) and survival status for each patient. (F) Kaplan-Meier curve of patients in the high- and low-risk subgroups to 
validate the predictive value of ZNF genes signature. The difference between the high- and low-risk subgroups was measured by the log-rank test, with 
a P-value < 0.001. OS, Overall Survival
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Fig. 4  Development and validation of the risk model for patients with ESCA. (A, B) Distribution of the ESCA patients with different risk scores in the train-
ing set and testing set. According to the median of the patient’s risk score, the ESCA patients were divided into high- (red) and low-risk(blue) groups. (C, 
D) The distribution of survival status of ESCA patients. The blue blots represent the patients who are alive, and red represents the patients who are dead. 
(E, F) Heat map depicting the expression patterns in the six prognosis-related ZNF family genes between high- and low-risk groups. (G, H) Overall survival 
(OS) of high-risk and low-risk patients in the testing group and training group

 



Page 8 of 18Hong et al. BMC Cancer          (2023) 23:301 

Fig. 5  Kaplan-Meier curves showing the differences in prognosis between the high- and low- risk groups in different clinical subgroups, including male 
(A), female (B), stage I-II (C), stage III-IV (D), T0-2 (E), T3-4 (F), N0-1 (G), N2-3 (H), M0(I), M1(J)
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Fig. 6  Assessing risk factors and constructing nomogram of prognosis. Univariate analysis (A) and multivariate analysis (B) were performed for screening 
of risk factors. (C) The ROC curves of clinicopathological characteristics and risk score for 1-year OS. (D) The ROC curves for 1-, 3-, and 5-year OS (E) An 
established nomogram model incorporated with the six prognosis-related ZNF family genes and clinicopathological parameters for prediction of OS in 
the TCGA dataset. (F) Calibration curves showed the concordances between predicted and observed 1-, 3-, and 5-year survival rates of ESCA patients 
based on the nomogram after bias corrections
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Fig. 7  External validation of the prognostic gene signature. Univariate analysis (A) and multivariate analysis (B) were performed for screening of risk fac-
tors in GEO dataset. (C) The ROC curves of clinicopathological characteristics and risk score for 1-year OS. (D) The ROC curves for 1-, 3-, and 5-year OS. (E) 
Distribution of the ESCA patients with different risk scores in high- and low riskScore groups. (F) The distribution of survival status of ESCA patients. (G) 
Overall survival (OS) of high-risk and low-risk patients
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Fig. 8  Established nomogram model. (A) An established nomogram model incorporated with the six prognosis-related ZNF family genes and clinico-
pathological parameters for prediction of OS in the GEO dataset. (B) Calibration curves showed the concordances between predicted and observed 1-, 
3-, and 5-year survival rates of ESCA patients based on the nomogram after bias corrections
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immunity-related functions. In the high-risk patients, 
activated dendritic cell, CD56dim natural killer cell, mac-
rophage, neutrophil and type 17 T helper cell were signif-
icantly higher than in low-risk patients (P < 0.01; Fig. 9A). 
In the high-risk patients, the functions were at higher 
levels, including ABC-co-inhibition, CCR, cytolytic 
activity, parainflammation, and TIL (P < 0.05; Fig.  9B). 
Our investigation indicated that the high-risk group had 
elevated immune activity, which might contribute to 
the occurrence of cancer. We performed GO analysis of 

the mRNAs co-expressed with the six prognosis-related 
ZNF family genes. GO and KEGG enrichment analysis 
showed that the target genes were mainly enriched in 
cell cycle, DNA replication and Fanconi anemia pathway 
(Fig. 9C-D).

Analysis of drug sensitivity
We analyzed the sensitivity difference of chemotherapy 
drugs for ESCA in the current stage of clinical trials 
between the high- and low-risk groups, with the drug 

Fig. 9  Functional enrichment analysis and immune analysis. (A) Comparison of the infiltration of 21 immune cells between the different risk-groups. 
(B) Comparison of 14 immune-related functions between the different risk-groups. (C) GO analysis of highly related mRNAs. (D) KEGG analysis of highly 
related mRNAs. BP: biological process. CC: cellular component. MF: molecular function. *P < 0.05, **P < 0.01, ***P < 0.001
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sensitivity expressed by IC50. We showed that patients 
in the high-risk group were more sensitive to AP-24,534 
(P = 0.019, Fig.  10A), BMS-509,744 (P = 0.011, Fig.  10B), 
CGP-082996 (P = 0.04, Fig.  10C), HG-6-64-1 (P = 0.05, 
Fig.  10E), MG-132 (P = 0.015, Fig.  10F), Midostaurin 
(P = 0.037 Fig.  10G,), Ruxolitinib (P = 0.015 Fig.  10H,) 
Sunitinib (P = 0.022, Fig.  10I), TAE684 (P = 0.041, 
Fig. 10J), and Thapsigargin (P = 0.0084, Fig. 10K), whereas 
patients in low-risk group were more sensitive to Erlo-
tinib (P = 0.017, Fig. 10D), which indicated that the model 

could be used as a potential predictor of chemotherapy 
sensitivity.

External validation in expression
RT-qPCR assay was conducted to quantify the mRNA 
level of the six ZNF family genes in 12 pairs of esopha-
geal cancer tissue samples (Fig. 11). Results indicate that 
ZNF91 (Fig. 11A), and ZNF586 (Fig. 11C) were upregu-
lated in esophageal cancer tissue than adjacent tissue, 
whereas ZNF502 (Fig. 11B), ZNF865 (Fig. 11D), ZNF106 
(Fig. 11E), and ZNF225 (Fig. 11F) was downregulated.

Fig. 10  Drug sensitivity analysis to drugs of high- and low-risk subgroups. Differential chemotherapeutic responses in high- and low-risk patients (A-K).
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Fig. 11  Expression of six prognosis-related ZNF family genes in twelve pairs of esophageal cancer tissue samples. *P < 0.05; **P < 0.01; ns > 0.05
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Discussion
Esophageal cancer is one of the most common cancers 
with high morbidity and mortality [15]. Current thera-
peutic strategies for ESCA include surgery, chemother-
apy, radiotherapy, molecular targeted therapy and their 
combination [16, 17]. In addition, immunotherapy is also 
playing an increasingly significant role [2, 18]. However, 
the prognosis remains poor and the overall Five-year 
survival rate is very low [19]. Therefore, achieving early 
diagnosis and effective treatment remains challeng-
ing. Identification of novel biomarkers will help assess 
prognosis, screen out patients in need of Immune inter-
vention and drug therapy. Zinc finger proteins (ZFPs) pri-
marily function as transcription factors in tumorigenesis 
and tumor progression involved in various tumor, such 
as esophageal squamous cell carcinoma cells [20],lung 
cancer [21], hepatocellular carcinoma [7], kidney renal 
clear cell carcinoma [22], oral squamous cell carcinoma 
[23]. Transcription factors (TFS) are proteins that play 
important roles in complex biological processes, such 
as metabolism, autophagy, apoptosis, immune response, 
stem cell maintenance and differentiation [24].

The TCGA database of 163 cases of esophageal cancer 
has improved our ability to diagnose, treat, and prevent 
cancer [25]. Based on the mRNA expression matrix and 
clinical data from the TCGA-ESCA cohort, we identi-
fied six prognostic-associated ZNF genes that may be 
clinically valuable biomarkers. Patients with ESCA were 
divided into two subgroups with different survival out-
comes based on a prognostic model of six ZNF family 
genes. We also established a risk score model to predict 
the prognoses of patients with ESCA based on these 
prognostic genes. Importantly, the ability of the prognos-
tic model to distinguish high-and low-risk patients, and 
to estimate OS, was similarly validated in the GSE53624 
dataset. Moreover, we combined risk score with other 
clinical variables to conduct a nomogram to establish a 
quantitative prognostic evaluation method for patients 
with ESCA.

Our ZNF family gene-based signature included six 
genes, i.e., ZNF91, ZNF586, ZNF502, ZNF865, ZNF106 
and ZNF225. ZNF91 is likely to play an important role 
in cell proliferation and/or anti-apoptosis, and may serve 
as a molecular marker for AML [26]. Upregulation of 
ZNF91 could promote irradiation resistance by regulat-
ing the stem cell-like properties of NSCLC cells. Abnor-
mal expression of ZNF91 is related to the occurrence 
and development of bladder cancer [26, 27], colorec-
tal cancer (CRC) [28]and ovarian cancer [29, 30]. Our 
results also showed that ZNF91 is upregulated and plays 
an oncogenic role in ESCA. Genome-wide differential 
gene/microRNA signatures show that ZNF502 might be 
a prognostic biomarker in cytogenetically normal acute 
myeloid leukemia [31]. In our study, the expression of 

ZNF502 is low in esophageal carcinoma, which is associ-
ated with poor prognosis. ZNF106 is a RNA-binding pro-
tein that binds to the core splicing factor RNA-binding 
motif protein 39 and localizes to nuclear spots near the 
spliceosome [32]. We found that mRNA level of 106 was 
significantly reduced in ESCA tissues, this was similar to 
the reported results that ZNF106 expression was down-
regulated and associated with a good predictive value in 
Bladder Cancer [33, 34]. Little research has been done on 
the role of ZNF225 in ESCA, and a few evidences suggest 
ZNF225 inhibits autophagy and promotes apoptosis of 
hepatocellular carcinoma cells. Our findings on ZNF225 
are supported by evidence that this ZNF protein serves 
as prognostic genes. In contrast, the roles of ZNF586, 
and ZNF865 in ESCA onset and development had not, 
to our knowledge, been as yet explored. Based on current 
knowledge, our findings suggest that the six prognosis-
related ZNF family genes may exert important roles in 
the tumorigenesis and progression of ESCA.

By univariate Cox analysis, lasso regression and mul-
tivariate Cox analysis, we screened six prognosis-related 
ZNF family genes to construct the prognostic model. 
Survival and ROC curve analyses showed that these six 
genes had good diagnostic ability and could be used to 
screen out ESCA patients who had poor prognoses.when 
compared to previously reported models [35, 36], our 
model(At 1, 3, and 5 years, the risk score’s AUC values 
were 0.848, 0.872, and 0.952, respectively) has greater 
predictive power. However, the specific molecular mech-
anisms of these six prognosis-related ZNF family genes 
in ESCA remain unclear, and the underlying molecu-
lar mechanisms should be explored. Subsequently, we 
assessed the relationship between risk score model and 
clinical variables and found that the risk score model had 
significantly distinct risk stratification ability in ESCA. 
Nomogram has long been used in oncology to calcu-
late the prognosis of patients with esophageal cancer 
based on the relevant clinical parameters [37–39]. We 
then established a nomogram to more intuitively predict 
1-year, 3-year, and 5-year survival estimates in patients 
with ESCA and found that the risk score was more accu-
rate than the pathological stage and age in predicting OS 
from TCGA and GEO dataset.

Next, we analyzed the differences in immune cell infil-
tration and response rates to chemotherapy sensitivity 
among different groups of patients with ESCA based on 
the model. ESCA was enriched in immune-suppressive 
cell populations, including Tregs, exhausted CD8 T, CD4 
T and NK cells, M2 macrophages, and tDCs [40]. Accu-
mulating evidence regards the tumor immune microenvi-
ronment can potentially influence the patient’s response 
to immune checkpoint inhibitors, tumor immunity, such 
as PD-L1 expression on tumors, tumor-infiltrating lym-
phocytes and tumor-associated macrophages [41]. Thus, 
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our model can be used as an indicator to predict immune 
cell infiltration and immune response in patients with 
ESCA. At present, surgical resection, radiotherapy and 
chemotherapy are the main clinical treatment methods 
for ESCA, However, due to the limited efficacy and seri-
ous adverse effects of conventional treatment, the result 
is still unsatisfactory. As a new treatment method, target 
therapy has a good application prospect [41, 42]. In our 
study, patients in the high-risk group were more sensi-
tive to AP-24,534, BMS-509,744, CGP-082996, HG-6-
64-1, MG-132, Midostaurin, Ruxolitinib, Sunitinib, 
TAE684and Thapsigargin. From what has been discussed 
above, our results revealed differences in immune cell 
infiltration and immune response between the groups. 
ZNF-gene signature for ESCA was able to predict che-
motherapy sensitivity and may thus help guide treatment 
selection.

We further conducted GO and KEGG analyses to 
evaluate biological functions. Enrichment analysis of bio-
logical functions and pathways of the ZNF family gene 
indicated that these prognosis gene were significantly 
enriched in Cell cycle, DNA replication and Fanconi ane-
mia pathway.

Summarily, this study found that ZNF genes were dif-
ferentially expressed in ESCA tissues and the reason 
may be different from the mechanism in the process of 
tumor formation. As the largest transcription regulator 
family in mammals, zinc finger (ZNF) protein expres-
sion regulation mechanism is very complex, including 
Genetic variation [43], Epigenetic modifications [44] and 
Posttranslational regulation [45]. We used the Kaplan-
Meier analysis to study the prognostic significance of the 
six prognosis-related ZNF family genes and found that 
ZNF502, ZNF865, ZNF106 and ZNF225 gene expres-
sions were related to good prognoses in patients with 
ESCA, while high ZNF586 and ZNF91 gene expressions 
were related to poor prognoses. We further confirmed 
the expressions of these genes at the tissue level. The 
results suggested that the signatures of these six genes 
may assess treatment outcomes and predict patient 
survival.

However, the current study has multiple limitations. 
Firstly, there are few normal tissues in TCGA database, 
which need to be verified by expanded samples. Second, 
the functional relationship between the ZNF gene signa-
ture members and non-tumor cells in the tumor micro-
environment, especially infiltrating immune cells, could 
not be elucidated and requires future in vitro and in vivo 
studies. The effect on proliferation, invasion and migra-
tion of ZNF family genes in ESCA requires further be 
verified in vitro and in vivo.

Conclusion
In summary, we first constructed a prognostic model of 
ESCA based on features of ZNF family genes that divides 
ESCA patients into two subgroups with different survival 
outcomes and constructed a nomogram to help clinical 
decision-makers provide optimal treatment. The prog-
nostic signature is related to different immune cell and 
predicts sensitivity to chemotherapeutic agents which 
might be novel targets for developing immunotherapies 
in low-risk and high-risk ESCA patients. These progno-
sis-related ZNF family genes may play vital roles in ESCA 
occurrence, progression, invasion and metastasis. Addi-
tionally, these findings have led to the development of 
new clinical therapeutic targets or prognostic marker.
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