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Abstract 

As a highly heterogeneous cancer, the prognostic stratification and personalized management of hepatocellular 
carcinoma (HCC) are still challenging. Recently, Antigen-presenting-cells (APCs) and T-cells-infiltration (TCI) have 
been reported to be implicated in modifying immunology in HCC. Nevertheless, the clinical value of APCs and TCI-
related long non-coding RNAs (LncRNAs) in the clinical outcomes and precision treatment of HCC is still obscure. 
In this study, a total of 805 HCC patients were enrolled from three public datasets and an external clinical cohort. 5 
machine learning (ML) algorithms were transformed into 15 kinds of ML integrations, which was used to construct 
the preliminary APC-TCI related LncRNA signature (ATLS). According to the criterion with the largest average C-index 
in the validation sets, the optimal ML integration was selected to construct the optimal ATLS. By incorporating several 
vital clinical characteristics and molecular features for comparison, ATLS was demonstrated to have a relatively more 
significantly superior predictive capacity. Additionally, it was found that the patients with high ATLS score had dismal 
prognosis, relatively high frequency of tumor mutation, remarkable immune activation, high expression levels of T cell 
proliferation regulators and anti-PD-L1 response as well as extraordinary sensitivity to Oxaliplatin/Fluorouracil/Len-
vatinib. In conclusion, ATLS may serve as a robust and powerful biomarker for improving the clinical outcomes and 
precision treatment of HCC.
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Introduction
Hepatocellular carcinoma (HCC), as the major histologi-
cal subtype of liver cancer, is one of the most common 
cause of cancer-related mortality worldwide [1]. With 
high rates of both recurrence and metastasis, the progno-
sis of advanced HCC patients was poor [2, 3]. Currently, 
transplantation remains the most effective treatment for 
HCC [4, 5]. However, the prognosis of HCC patients after 
transplantation still remains poor because of the differ-
ences in tumor burden and liver function [6, 7]. Previ-
ously, TNM stage is considered as the universal criteria 
for cancer staging [8, 9]. Barcelona Clinic Liver cancer 
(BCLC) system, as the specific liver cancer clinical stag-
ing system, also plays a key role in evaluating the prog-
nosis of HCC [10]. The establishment of BCLC staging 
system has narrowed the difference regarding the man-
agement of patients with HCC and is currently the most 
widely used staging system [11]. In China, the China liver 
cancer (CNLC) staging system is also suitable for pro-
viding treatment recommendations for swiftly advanced 
HCC cases [12]. Nevertheless, increasing evidence has 
shown that all these staging possess certain limitations 
in predicting survival outcomes of advanced HCC [13]. 
Currently, more attention is paid to explore novel biologi-
cal indicators to improve the assessment of HCC progno-
sis [14, 15].

As a highly heterogeneous cancer, the treatment of 
HCC is similarly challenging [16]. As the standard first-
line treatment modality for intermediate stage HCC, 
transcatheter arterial chemotherapy (TACE) urgently 
needs to be improved [17]. The systemic therapy of 
advanced HCC is still limited in traditional chemothera-
peutics (e.g., Oxaliplatin, Fluorouracil and Lenvatinib). 
Despite efforts to improve the efficacy of chemothera-
peutics, the overall survival (OS) outcomes of advanced 
HCC have only seen a marginal increase of 1  year [18]. 
Due to the limitations of traditional therapies, immu-
notherapy has entered the clinical practice stage in the 
treatment of HCC [19]. For example, targeting regulatory 
T cells has been reported as a promising approach in the 
immunotherapy of HCC [20, 21]. But in fact, the role of 
the immune response in HCC still needs to be comple-
mented. T cells, particularly effector or tissue resident T 
cells, which have been found to be involved in the pro-
tection against tumor cells, are often frequently dysfunc-
tional in HCC [22]. Moreover, it is regrettable that as the 
key initiation mechanism of immune response, the roles 
of antigen-presenting-cells (APCs) in HCC immunother-
apy are also urgently explored.

Currently, multiple molecular characteristics have 
been reported to be used in adjuvant treatment of HCC, 
including tumor mutation burden (TMB), immune 
checkpoint inhibitor (ICI) treatment, molecular drugs, 

etc. In addition to immunotherapy, TMB could trig-
ger antitumor activity by activating tumor reactive 
CD39CD8 T cells, suggesting that TMB is also a poten-
tial target for immunotherapy [23]. Recent studies have 
also revealed the feasibility of TMB as a predictor of 
treatment decisions and clinical outcomes in advanced 
HCC [24]. ICI treatment targeting anti-programmed 
cell death-1 (anti-PD-1) or its ligand (anti-PD-L1) plays 
an important role in improving the OS rate of HCC 
[25]. It may provide new methods for the management 
of patients with advanced HCC [26]. Moreover, sev-
eral molecular drugs have also been used as primary 
adjuncts in the management of advanced HCC [27]. Both 
Sorafenib and Lenvatinib are proven to be the most effec-
tive systemic drugs with clinical efficacy of HCC [28]. 
As reported in previous studies, long non-coding RNAs 
(LncRNAs) have been shown to play a more distinct role 
in downregulating cancer cell antigen presentation and 
intronic tumor suppression compared to coding RNAs 
[29, 30]. Emerging evidence have revealed that, especially 
in HCC, LncRNAs play a significant role in the regulation 
of the immune microenvironment, sustained prolifera-
tion and invasion [31]. Moreover, an increasing num-
ber of studies have also validated LncRNAs as powerful 
biomarkers with superior pleiotropy to influence cancer 
phenotypes and may enable precision therapies for HCC 
[32]. Therefore, when attempting to construct a signature 
to accurately forecast prognosis through APCs-related 
genes, LncRNAs provide more advantages in evaluating 
the tumor progression and survival. Meanwhile, despite 
the prospect that multiple adjuvants contribute to HCC 
treatment, the clinical outcomes of HCC patients are 
currently still not promising. There is an urgent need to 
develop ideal indicators to benefit the prognostic assess-
ment of HCC, and provide many improvements for the 
treatment of HCC.

In this study, the combination of APC related genes 
(ARGs) and T-cells-infiltration (TCI) estimation was 
used to identify APC-TCI related LncRNAs (ATRLs). 
Based on the integration of 15 machine learning (ML) 
algorithms, a novel APC-TCI derived LncRNA signature 
(ATLS) was constructed using the expression profiles of 
ATRLs. The predictive performance of ATLS was vali-
dated in 3 public datasets and an external clinical cohort. 
In addition, the superior predictive capacity of ATLS 
was highlighted by incorporating several vital clinical 
characteristics and molecular features for comparison. 
Moreover, the correlations between ATLS and molecu-
lar characteristics (e.g., tumor mutation, drug sensitiv-
ity, PD-1/PD-L1 and T cells regulators, etc.) were also 
explored. Taken together, this work contributes to pro-
viding a novel biology tool to improve the clinical out-
comes and precision treatment of HCC.
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Materials and methods
Data collection and preparation
A total of 805 HCC patients were enrolled in this study, 
containing TCGA cohort (n = 365), GSE14520 cohort 
(n = 221), GSE76427 cohort (n = 115) and The First 
Affiliated Hospital of Wenzhou Medical University 
(FAHWMU) cohort (n = 104). Among them, the entire 
RNA expression profiles and clinical characteristics 
(e.g., age, gender, tumor grade, T stage, N stage and M 
stage) for patients in the TCGA cohort were obtained 
in The Cancer Genome Atlas (https:// portal. gdc. cancer. 
gov/). For further analysis, the RNA expression profiles 
were normalized according to Fragments Per Kilobase 
of exon model per Million mapped fragments (FPKM) 
methods. Meanwhile, we matched the clinical charac-
teristics and RNA expression profiles, extolled the unfit 
patients. Thus, we obtained the TCGA cohort as the 
training cohort. RNA expression profiles from GSE14520 
and GSE76427 cohorts were downloaded from the 
Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo/). The data were retrieved 
based on the GPL3921 [HT_HG-U133A] Affymetrix 
HT Human Genome U133A Array (GSE14520 cohort) 
and GPL10558 Illumina HumanHT-12 V4.0 expression 
bead chip (GSE76427 cohort). Their clinical traits, con-
taining age, gender, ALT, main tumor size, multinodular, 
cirrhosis, TNM stage, BCLC stage, CLIP stage and AFP 
were also obtained from GEO database. Both GSE14520 
cohort and GSE76427 were treated as testing cohort in 
this study. The IMvigor210 cohort was installed based on 
the R package “Imvigor210CoreBiologies”.

An additional 104 HCC patients, with complete baseline 
clinical characteristics and expression files of 7 optimal 
APC-TCI related LncRNAs (AC073611.1, AL050341.2, 
LINC02321, LUCAT1, LINC02362, LINC01871, ZNF582-
AS), were enrolled from FAHWMU (Wenzhou, China). 
The expression profiles were obtained based on the quanti-
tative real-time PCR (qRT-PCR). The endogenous expres-
sions of the above 7 LncRNAs in 30 paired HCC and 
adjacent non-tumorous tissue samples were provided (Fig. 
S1). It was found that all these LncRNAs were significantly 
differentially expressed in HCC compared with adjacent 
non-tumorous tissue samples. The primer sequences of 
7 LncRNAs used for qRT-PCR were listed in Table S1. 
The collection of FAHWMU cohort was reviewed and 
approved by the human research ethics committee of the 
FAHWMU. All patients/participants provided their writ-
ten informed consent to participate in this study. Among 
the clinical characteristics in the FAHWMU cohort, 
the laboratory variables were taken from the results of 
a test closest to the date of surgery, included Hepatitis 
B, a-fetoprotein (AFP), CEA (carcinoembryonic anti-
gen) and carbohydrate antigen 19–9 (CA199). And the 

histopathological variables (including Tumor size, Lymph 
node invasion, Vascular invasion, Perineural invasion and 
China Liver Cancer (CNLC) stage) were also included 
based on the professional pathological assessment. Based 
on the  8th edition of the AJCC Staging Manual, the TNM 
stage for each HCC patient was obtained. In addition, age 
and gender were included as the demographic characteris-
tics. Clinical characteristics in the FAHWMU cohort were 
presented in Table S2. FAHWMU cohort was treated as 
the testing cohort to further validate the predictive capac-
ity of ATLS. A total of 107 APCs-related genes (ARGs) 
were obtained from the MsigDB database (http:// www. 
gsea- msigdb. org/) (Table S3).

qRT‑PCR
The total RNA from the liver tissues of the FAHWMU 
cohort was extracted using TRIzol reagent and then 
reverse transcribed into cDNA using ribo SCRIPTTM 
reverse transcription kit. SYBR Green master mix was 
added, and real-time PCR was carried out using a 7500 
rapid quantitative PCR system (Applied Biosystems, 
USA). The expression levels of LncRNAs were cali-
brated with glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH). The CT value of each well was recorded, and 
the relative levels of LncRNAs were calculated using the 
 2−ΔCt method.

Tumor immune infiltration cells infiltration
In this study, CIBERSOFT algorithm was applied to 
quantify the contents of 22 immune infiltration cells 
(ICIs) infiltration. CIBERSOFT was an analytical tool 
from the Alizadeh lab and the Newman lab for esti-
mating gene expression profiles [33]. Gene expres-
sion data were used to estimate the abundance of 
member cell types in mixed cell populations via CIB-
ERSOFT. In addition, single sample gene set enrich-
ment analysis (ssGSEA) was also employed based on 
R package “GSVA” to calculate the relative infiltration 
of 12 immune cells and 11 immune pathways. Moreo-
ver, the relative infiltration contents of 6 immune cells 
were obtained from TIMER database (http:// timer. cistr 
ome. org/). According to the Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expres-
sion data (ESTIMATE) algorithm, the proportion of 
infiltrating stromal cells and immune cells in each 
patient with HCC was estimated [34].

Consensus clustering analysis
Based on the T cells infiltration profiles, consensus clus-
tering was performed by R package “ConsensusCluster-
Plus” [35]. In the cumulative distribution function (CDF) 
curves with the consensus index value from 0.1 to 0.9, 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
http://timer.cistrome.org/
http://timer.cistrome.org/
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the k value with the smallest slope was considered as the 
optimal value to separate the TCI clusters [36].

Weighted correlation network analysis (WGCNA)
WGCNA analysis, based on the WGCNA package, was 
used to describe patterns of gene association between 
different samples [37]. The scale-free network was con-
structed through the total expression files of TCGA 
cohort. And according to the clusters of TCI and net-
work, an appropriate soft threshold β was calculated 
for the co-expression network construction. Then, the 
dynamic tree cutting approach was employed to conduct 
the module identification. The modules with the highest 
correlation were identified by further filtering to identify 
key module clusters. Finally, we determined the LncR-
NAs with high gene significance (GS) and module mem-
bership (MM) as the significant TCI related LncRNAs.

Machine learning algorithms integrative
We selected a total of 5 ML algorithms and developed 15 
algorithms combinations to construct the ATLS model. 
The ML algorithms included RandomForest, Stepwise 
Cox (StepCox), Logistic, SurvivalSVM and Lasso. Ran-
domForest was implemented through the randomFor-
estSRC package. It had two parameters, ntree and mtry. 
The ntree represents the number of trees in the forest, 
while the mtry is the number of randomly selected vari-
ables for splitting at each node. The Lasso and Logistic 
regression analyses were performed via the glmnet pack-
age. The regularization parameter of Lasso regression, 
λ, was determined by leave-one-out cross-validation 
analysis. With the aid of the survival package, the step-
wise Cox was implemented. In addition, the survival-
SVM was implemented via survivalsvm package. The 
generation of ATLS could be summarized as follows: 1) 
Univariate Cox regression analysis screened prognostic 
ATRLs in the TCGA cohort; 2) 15 ML algorithms com-
binations were applied to primarily construct the ATLS 
in the TCGA cohort (training cohort); 3) All of the ATLS 
were also verified in 3 testing cohorts (GSE14520 cohort, 
GSE76427 cohort and FAHWMU cohort); 4) the Har-
rell’s concordance index (C-index) was calculated in 
all cohorts, and the ML integrative with highest mean 
C-index value was considered as the optimal integrative 
to develop the ATLS.

Drug sensitivity test and tumor mutation analysis
Mutation raw data for HCC patients in the TCGA cohort 
were downloaded through TCGA database (https:// por-
tal. gdc. cancer. gov/). After upstream analysis of whole 
genome sequencing and whole exome sequencing data 
using the "matpool" R package, we used "Getsample-
summary" function and "getgenesummary" function to 

retrieve the sample information and gene information 
of the data set respectively for somatic mutation analysis 
[38, 39]. The response of HCC patients to possible chem-
otherapeutics drugs (including Doxorubicin, Sorafenib, 
Tipifarnib, Oxaliplatin, Fluorouracil, Lenvatinib) was 
predicted using Genomics of Drug Sensitivity in Cancer 
(GDSC; https:// www. cance rrxge ne. org). The half-maxi-
mal inhibitory concentration (IC50) was estimated using 
the R package ’pRRophetic’ [40].

Immunohistochemistry
Immunohistochemistry (IHC) was performed according 
to the following procedures. 4  μm thick sections were 
cut from paraffin-embedded liver cancer tissue. The sec-
tions were dewaxed, rehydrated. Then, microwave was 
used for antigen repair and hydrogen peroxide block was 
performed to reduce the nonspecific background stain-
ing. 10% serum was used to seal the sections for 1  h at 
37℃. Then, the sections were incubated with anti PD-1 
or PD-L1 antibody overnight. The next day, the samples 
were incubated with secondary antibody. Then, DAB 
detection system was used for the detection of immuno-
reactive signals.

Results
Identification of APC‑TCI derived LncRNAs
As shown in Fig. 1, the overall design of this study could 
be classified as the following 4 steps: 1) Identification of 
APC-TCI derived LncRNAs; 2) Integrative construction 
of the optimal ATLS; 3) ATLS versus clinical traits and 
molecular features; 4) Clinical and molecular value of 
ATLS.

Based on the CIBERSOFT algorithm, the relative con-
tents of TCIs were calculated to perform the consen-
sus clustering analysis. By selecting the optimal k value 
in the CDF curve, key TCI related clusters were deter-
mined (Fig. 2A and Fig. S3A). The distribution of T cells 
contents and ESTIMATE scores was shown in Fig.  2B. 
It was found that the relative fraction of T cells CD8, T 
cells CD4 memory activated, T cells follicular helper and 
T cells regulatory (Tregs) was significantly higher in TCI 
cluster B than that in TCI cluster A, suggesting a higher 
T cell reactive activity in TCI cluster B. Moreover, Stro-
mal score, Immune score and ESTIMATE score were also 
higher in TCI cluster B, indicating that TCI cluster B pos-
sessed the higher tumor purity. According to 12 immune 
cells and 11 immune pathways assessed by ssGSEA, we 
further verified the robust and extensiveness of TCI 
clusters. The results indicated that the relative levels of 
all immune cells (e.g. B cells, CD8 + T cells, DCs, Mac-
rophages, NK cells, pDCs, T helper cells, Tfh, Th1 cells, 
Th2 cells, TIL, Treg) and immune pathways (e.g. APC 
co-inhibition, APC co-stimulation, CCR, Check point, 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerrxgene.org
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Cytolytic activity, HLA, Inflammation-promoting, MHC 
class I, Parainflammation, T cell co-inhibition, T cell 
co-stimulation) were obviously lower in TCI cluster A, 
which was similar to the results above (Fig.  2C and D). 
In the WGCNA analysis between TCI clusters and LncR-
NAs, we set the soft threshold β to 5 to obtain the opti-
mal value for co-expression network construction (Fig. 
S2A and B). Thus, 4 modules were identified, a total of 
1095 TCI derived LncRNAs were screened, and the ME 
brown was considered as the representative of the mod-
ule (Fig. S3B). Moreover, the association between mod-
ules and other clinical characteristics (e.g., age, gender, 
tumor grade, T stage, N stage, M stage) was also ana-
lyzed. With the aid of the Pearson correlation analysis 
between APC related genes and LncRNAs, a total of 876 
APC related LncRNAs were identified. The venn diagram 
further determined 227 ATRLs (Fig. 2E).

Integrative construction of APC‑TCI derived LncRNA 
signatures (ATLS) based on the machine learning 
algorithms
Based on the expression profiles of 227 ATRLs and the 
related-OS as well as OS status, a total of 50 prognosis-
related ATRLs were screened by applying univariate Cox 
regression analysis. Theses ATRLs were subjected to our 
ML algorithms to develop the optimal ATLS. A total of 
six regression analyses (e.g., Lasso, StepCox, RandomFor-
est, SurvivalSVM, Logistic) were obtained to fit 15 kinds 
of ML algorithms. By applying these algorithms, we fitted 
15 kinds of ML based models. The C-index of each model 
was calculated in the TCGA cohort and 3 validation 

cohorts (GSE14520 cohort, GSE76427 cohort and 
FAHWMU cohort) (Table S4). The mean C-index of 15 
prognostic models in all independent cohorts was sub-
sequently calculated to further compare the robust and 
accuracy for these models. Interestingly, the combination 
of Lasso and StepCox got the highest average C-index 
among others (Mean C-index = 0.7675), and the single 
C-index in the TCGA cohort (0.82), GSE14520 cohort 
(0.78) and FAHWMU cohort (0.87) was obviously higher 
than other ones (Fig. 3A). This result could reveal that the 
combination of Lasso and StepCox was more robust than 
other ML algorithms integrations. Thus, the combina-
tion of Lasso and StepCox was determined as the most 
powerful integration to construct the optimal ATLS. In 
the Lasso regression analysis, when the partial likelihood 
deviation reached the minimum value, the optimal solu-
tion was obtained (Fig. S4A and B). Thus, a total of 19 
key genes were identified as the critical genes to further 
perform the StepCox analysis, which finally determined 
7 optimal ATRLs (AC073611.1, AL050341.2, LINC02321, 
LUCAT1, LINC02362, LINC01871, ZNF582-AS) and 
their coefficients to generate the ATLS (Fig.  3B). The 
ATLS risk score for each HCC patient was calculated 
based on the following formula:

ATLS risk score = 0.45*AC073611.1 + 0.40*AL050341.
2 + 0.20*LINC02321 + 0.30*LUCAT1 – 0.29*LINC02362 
– 0.30*LINC01871 – 0.43*ZNF582-AS.

All patients were assigned into the high- and low-risk 
groups based on the median value of risk score (Fig. S5). 
As shown in Fig.  3C-F, patients in the high-risk group 
had a significantly dismal OS rate in comparison with 

Fig. 1 The overall design of this study
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low-risk patients in the TCGA cohort and 3 validation 
cohorts (all p < 0.05).

Evaluation of ATLS with clinical traits and molecular 
features
Subsequently, we compared the ATLS with other clini-
cal traits in all independent cohorts. The results were 
analyzed by time dependent ROC curves and univari-
ate Cox analysis. As indicated by Fig. 4A, the area under 
the ROC curve (AUC) value of ATLS reached 0.758 in 
the  1st years, 0.765 in the  2nd years and 0.766 in the  3rd 
years in the TCGA cohort. Compared to other clinical 
traits and molecular characteristics (age, gender, grade, 
T stage, N stage, M stage, TMB and ESTIMATE scores), 
the clinical prognostic value of ATLS was significantly 
better (Fig.  4D, HR = 0.834, 95%CI = 3.059–22.755). 
In the GSE14520 cohort and GSE76427 cohort, the 
AUC value of ATLS reached 0.75, which further veri-
fied the robust performance of ATLS (Fig.  4B and C). 
In addition, the potential value of ATLS as independ-
ent prognostic indicator was further validated in the 
GSE14520 cohort (Fig.  4E, HR = 4.624, 95%CI = 1.137–
18.802) and the GSE76427 cohort (Fig.  4F, HR = 8.026, 
95%CI = 4.538–14.192).

Validation of ATLS in the external clinical cohort
In the FAHWMU cohort, it was found that the AUC 
values of ATLS were 0.837, 0.950, 0.943 in the  1st,  2nd 
and  3rd years, respectively (Fig.  5A). The multivari-
ate ROC curves showed that the average AUC value of 
ATLS (AUC = 0.899) was also significantly higher when 
compared with other clinical features and molecu-
lar traits (e.g., gender, age, TNM stage, CNLC stage, 
Tumor size, Hepatitis B, Lymph node invasion, Vascular 
invasion, Perineural invasion, albumin, AFP, CEA and 
CA199) (Fig.  5B). The univariate Cox analysis showed 
that several clinical traits (age, TNM stage, CNLC 
stage, Tumor size Vascular invasion, Perineural inva-
sion, albumin, AFP, CEA and CA199) and ATLS could 
independently predict the prognosis as independent 
indicators (Fig.  5C, all p < 0.05, HR > 1, ATLS: p = 0.004, 
HR = 6.021, 95%CI = 1.753–20.673). The multivariate 
Cox regression analysis further revealed that the ATLS 
could serve as an independent risk indicator compared 

to other clinical traits (Fig.  5D, p = 0.071, HR = 4.273, 
95%CI = 0.883–20.683).

The implication of ATLS to the molecular characteristics 
and immune infiltration
Lastly, the GO and KEGG enrichment analyses were per-
formed to explore the molecular mechanism of the ATLS 
(Fig. 6A) [41, 42]. Our results demonstrated that the cel-
lular functions between ATLS groups were mainly dif-
fered from key regulatory role like cell proliferation and 
immune response (e.g., nuclear division, chromosome 
segregation, immunoglobulin receptor binding, immu-
noglobulin complex, etc.). Similarly, the cellular pathways 
were mainly differed form cell cycle and important meta-
bolic pathways (e.g., Central carbon metabolism in cancer, 
Cell cycle, Carbon metabolism, etc.) (Fig. 6B). The distri-
bution of mutant gene, mutation frequency and mutation 
type for HCC patients in the low ATLS group was shown 
in Fig. 6C. We also found that the relative levels of muta-
tion frequency and TMB were significantly lower in the 
low ATLS group (Fig. 6D). In addition, the ATLS was also 
positively correlated with OS of HCC patients. In Fig. 6E, 
the sensitivity of patients in ATLS groups to 6 chemo-
therapeutics drugs (Doxorubicin, Sorafenib, Tipifarnib, 
Oxaliplatin, Fluorouracil, Lenvatinib) was evaluated. It 
was found that patients with high ATLS score tended to 
have lower IC50s for these chemotherapeutics drugs (all 
p < 0.05), illustrating that they may have higher sensitivity 
to chemotherapy treatment.

As shown in Fig. 7A, the distribution of 22 main tumor 
immune infiltration cells and ESTIMATE scores between 
different ATLS groups was described. Figure 7B revealed 
that ATLS could significantly assess the levels of T cell 
regulator factors (all p < 0.05). The association between 
ATLS and PD-1/PD-L1 expression levels was analyzed 
based on the IHC staining images (Fig. S6A-D). It was 
found that the expression levels of PD-1/PD-L1 were 
remarkably higher in the high-risk group. Through the 
immune cells data obtained from TIMER database, we 
further validated the positive correlation between ATLS 
and immune infiltration (Fig. 7C, all p < 0.05). As shown 
in Fig. S7, it was demonstrated that patients with higher 
ATLS score had a higher response to anti-PD-L1 treat-
ment (IMvigor210 cohort, p = 0.007).

Fig. 2 Identification of APCs and TCI derived LncRNAs. A The consensus clustering matrix of TCI when k = 2. B The distribution of different 7 T 
cells fractions (based on the CIBERSOFT algorithm) and ESTIMATE scores (based on the ESTIMATE algorithm) between TCI clusters (*: p < 0.05, ***: 
p < 0.001). C and D The distribution of 12 immune cells (C) and 11 immune pathways (D) inferred by ssGSEA algorithm between TCI clusters (*: 
p < 0.05, **: p < 0.01, ***: p < 0.001). E The venn diagram showed the common genes between APCs related LncRNAs and TCI derived LncRNAs 
(inferred by WGCNA correlation analysis)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 A novel ATLS was developed and primarily validated in all datasets. A The comparison of C-index of 15 ML algorithms across training cohort 
(TCGA cohort) and 3 validation cohorts (GSE14520 cohort, GSE76427 cohort and FAHWMU cohort). B The coefficients of 7 LncRNAs finally obtained 
in the stepCox regression analysis. C‑F Kaplan–Meier curves of OS according to the ATLS in TCGA cohort (log-rank test: p = 6.648e-11) (C), GSE14520 
cohort (p = 1.867e-09) (D), FAHWMU cohort (p = 1.212e-11) (E), and GSE76427 cohort (p = 5.826e-03) (F)
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Fig. 4 Comparison of ATLS and other clinical characteristics. A‑C The time-dependent ROC curves of ATLS in the TCGA cohort (A), GSE14520 cohort 
(B) and GSE76427 cohort (C) for predicting the OS in the  1st,  2nd and  3rd years. D‑F The univariate Cox analysis of clinical characteristics and ATLS in 
the TCGA cohort (D), GSE14520 cohort (E) and GSE76427 cohort (F)

(See figure on next page.)
Fig. 5 ATLS could serve as an independent risk factor. A Time dependent ROC curves for predicting the OS in the  1st,  2nd and  3rd years of ATLS in 
the FAHWMU cohort. B The comparison of ATLS and other external clinical traits (e.g., gender, age, TNM stage, CNLC stage, Tumor size, Hepatitis B, 
Lymph node invasion, Perineural invasion, albumin, AFP, CEA and CA199) in predicting the OS for the patients in the FAHWMU cohort. C Univariate 
Cox analysis displayed the individual prognostic value of clinical traits and ATLS. D Multiple Cox analysis showed the combined prognostic value of 
clinical traits and ATLS
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Fig. 5 (See legend on previous page.)
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Fig. 6 The influence of ATLS to the molecular characteristics. A GO function enrichment analysis based on the DEGs selected by ATLS. B KEGG 
pathways enrichment analysis of ATLS. C TMB characteristics for individual HCC patient with low ATLS score. D TMB characteristics for HCC patients 
in the high ATLS group. E Drug sensitivity analysis displayed the sensitivity of 6 chemotherapeutics drugs (Doxorubicin, Sorafenib, Tipifarnib, 
Oxaliplatin, Fluorouracil, Lenvatinib) to different ATLS groups
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Fig. 7 The implication of ATLS to immune infiltration. A The distribution of ATLS and 22 main tumor immune infiltration cells in the TCGA cohort. B 
The boxplot displayed the association between ATLS and T cells profiles derived genes in the TCGA cohort (*: p < 0.05; **: p < 0.01; ***: p < 0.001). C 
The scatterplots demonstrated the correlation between ATLS and immune infiltration cells



Page 13 of 16Wang et al. BMC Cancer          (2023) 23:284  

Discussion
The poor prognosis of HCC may be mainly attributed to 
the failure of early detection and early diagnosis in most 
patients [43]. Current HCC staging systems (e.g., TNM 
staging system, JSH staging system, BCLC staging sys-
tem, etc.) have provided great convenience in the prog-
nostic evaluation and treatment regimen qualification of 
HCC [44, 45]. However, due to the complex mechanisms 
and geographic variations of HCC, these staging systems 
also have some limitations in the diagnosis and decision-
making process for advanced HCC. For example, the 
TNM staging system lacks measures of liver function 
and patient physical status, resulting in its poor ability 
to guide the treatment of patients with newly diagnosed 
HCC [46]. Currently, there are a large number of studies 
aiming to explore more robust prognostic indicators for 
HCC [47, 48]. It has been reported that Circ-ZEB1 may 
serve as a key indicator for the evaluation of proliferation 
and apoptosis levels in HCC [49]. CD151 or combination 
of CD151/c-Met has also been found to play an important 
role in predicting the invasiveness and prognosis of HCC 
[50]. It is undeniable that these indicators are greatly ben-
eficial for the assessment of HCC. But as a single gene 
or pathway, it is difficult to guarantee that no errors are 
generated in practical applications. Meanwhile, the AUC 
value of single indicator is less satisfactory when it is used 
in large cohorts. For these aspects, our ATLS model con-
tributes to complementing the original gaps. With the aid 
of ML integrations, it is confirmed that the calculation of 
the ATLS score was straightforward and practical. Con-
sidering the possible error from a single index, the ATLS 
score is more precise and credible in clinical applications. 
Additionally, as highlighted in our results, ATLS showed 
a more significant prediction of clinical outcomes com-
pared with traditional staging systems.

It has been reported that increased infiltration of T 
cells could enhance antitumor immunity and increase 
the sensitivity of anti-PD-L1 immunotherapy, resulting 
in the satisfy outcomes for HCC patients [51, 52]. Previ-
ously, TCI-related pathways have also been reported to 
play a key role in the proliferation, migration and inva-
sion of HCC [53]. Targeting these immune-related genes 
or pathways, many relevant genetic signatures have 
been constructed to assess their values in the progno-
sis stratification of HCC [54, 55]. For instance, Ma et al. 
constructed a signature associated with Jab1/CSN5 in 
predicting the prognosis of HCC [56]. Huang et al. devel-
oped a novel TME related LncRNAs signature to deter-
mine the prognosis and immune response of HCC [57]. 
Recently, Chaudhary et  al. also found that multi omics 
combined features with the aid of ML can effectively 

predict the prognosis of HCC [57]. All these signatures 
remarkably benefit the prognostic evaluation of HCC. 
But unfortunately, the lack of sufficient clinical external 
cohorts and cross-sectional comparisons inevitably result 
in the limitations. To ameliorate it, our ML integrations 
were developed to ensure the precision and efficiency. 
Thus, our ATLS model has a superior predictive capac-
ity compared with traditional clinical characteristics and 
molecular features.

Previously, immunotherapy has been proven to be 
effective in all stages of HCC and may serve as a com-
pletely new modality for HCC management [58]. ICI 
treatment, as breakthrough immunotherapies, also 
greatly improves the prognosis of patients with advanced 
HCC [59]. Current studies have revealed that HCC 
patients with increased PD-L1 expression are more effec-
tively treated with anti-PD-1 and anti-PD-L1 therapies 
[60]. Our results demonstrated that there was a positive 
correlation between PD-1/PD-L1 and ATLS. Hence, the 
ATLS may play a role in assessing ICI treatment. For 
HCC patients, TP53 mutations are generally associated 
with poor prognosis [61]. As one of the highly mutated 
genes, TTN has also been confirmed as a key regulatory 
gene driving HCC [62]. We found that the ATLS model 
can effectively predict the mutation levels of TP53 and 
TTN, which may be a novel indicator in the evaluation 
of tumor mutation and prognosis of HCC. Doxorubicin 
has been proven to significantly improve the OS and 
RFS for HCC patients plus sorafenib [63]. Sorafenib, as 
a tolerated molecular agent, also has a potential role in 
the adjuvant treatment of HCC [64, 65]. As highlighted 
in our results, the ATLS showed the exciting value in 
assessing the levels of tumor mutation, drug sensitivi-
ties, immune infiltration and T cells regulators. All the 
data suggest that ATLS has the potential to be a benefi-
cial indicator, thus improving prognosis assessment and 
clinical-decision making for HCC.

The advantages of the ATLS could be summarized as 
follows: First of all, we integrated multiple ML algo-
rithms to build the ATLS, ensuring its predictive perfor-
mance. Secondly, the robustness and superiority of the 
ATLS were further compared among multiple cohorts 
with a variety of clinical traits and molecular features. In 
addition, the deeper clinical applications of ATLS were 
further explored by integrating multiple molecular char-
acteristics. Meanwhile, many limitations of the ATLS 
should also be revealed. Firstly, larger scale clinical data 
are needed to further validate the clinical application 
values of the ATLS. Secondly, more in-depth in  vivo or 
in  vitro experiments are needed to further explore the 
joint regulatory roles of LncRNAs in our ATLS.
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Conclusion
In conclusion, we developed a robust and powerful signa-
ture based on the ML integrations in this study. In mul-
tiple independent clinical cohorts, the signature showed 
more superior performance in predicting OS, compared 
to other clinical indicators. Furthermore, the ATLS also 
showed the exciting value in assessing the levels of tumor 
mutation, drug sensitivities, immune infiltration and T 
cells regulators. The ATLS could serve as a promising 
indicator, which contributes to improving the prognosis 
assessment and clinical-decision making for HCC.
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