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Abstract

Background The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replica-
tion in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic
amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has
been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and
immunological significances remain yet to be elucidated.

Methods In the current study, we comprehensively investigated the potential prognostic and immunological role
of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena,
cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases.

Results ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding
normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most
cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch
repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltra-
tion and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be
statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor
types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with
the expression of ORC6.

Conclusions This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic bio-
marker and that ORCE6 is involved in the regulation of various biological pathways, the tumor microenvironment, and
the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and thera-
peutic value in pan-cancer, especially in prostate adenocarcinoma.
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Introduction

The origin recognition complex (ORC) is a six-subu-
nit DNA-binding complex crucial for the initiation of
DNA replication in eukaryotes, as its binding to origin
sequences triggers the replication process [1]. ORC6 is
the smallest subunit of the ORC. Interestingly, ORC6 can
bind to DNA independently in human cells, indicating its
ORC-independent functions [2, 3]. ORCS6 is involved in
the tumorigenic process of a limited number of cancer
types [4-7]. In colorectal cancer, the ORC6 expression is
upregulated, while a lower ORC6 expression correlates
with a favorable long-term cancer prognosis, indicat-
ing that ORC6 may act as an oncogene in the early stage
but exert the suppressor effects in the advanced stage [4].
Furthermore, it has been reported that decreased ORC6
expression may sensitize colon cancer cells to 5-Fluo-
rouracil and cisplatin [6]. In hepatocellular carcinoma,
it has been demonstrated that ORC6 may promote the
tumor proliferation, migration, and invasion [5].

In prostate cancers, androgen receptor (AR) overex-
pression allows the cancer cells to advance to androgen
castration stages. Prostate cancer cells with AR ampli-
fication can endure with androgen deprivation thera-
pies, progressing to castration resistant prostate cancer
(CRPC) [8]. Accumulative evidence have showed that,
during early G1-phase of the cell cycle, nuclear AR in
metastatic CRPC (mCRPC) cells binds to DNA at origins
of replication sites (part of the ORC) needed for licens-
ing DNA replication in the S-phase [9, 10]. Also, AR, as
a licensing factor, remains to be associated with the ORC
during the entire cell cycle progression until the late
mitosis phase before its degradation, which allows again
relicensing to occur in the next cell cycle [9]. Specifically,
ORC6 may also participate in the tumorigenesis, while
the detailed function is unclear [11].

Owing to the development of bioinformatic tools, the
identification and characterization of novel pan-cancer
genes through several public databases, including The
Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx), become efficient methods to iden-
tify new potential drug targets [12—15]. In the current
study, we planned to use multiple databases to clarify
the landscape of ORCS6 status in 33 most common types
of cancer and to perform a comprehensive analysis of
the influence of ORC6 on prognosis across these cancer
types. The relationships between the ORC6 expression
and tumor clinical stage, prognostic significance, biologi-
cal pathways, tumor mutational burden (TMB), micros-
atellite instability (MSI), expression level of genes related
to mismatch repair (MMR), immune subtype, tumor
immune cell infiltration, and immune checkpoint genes
in diverse cancers (especially prostate cancer) were also
investigated.
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Materials and methods

ORC6 mRNA expression levels in pan-cancer

We obtained the ORC6 mRNA expression levels and
clinical data of TCGA and GTEx cohorts from the
UCSC Xena database (https://xenabrowser.net/datap
ages/). p-values<0.05 (two-tailed) were regarded as sta-
tistically significant (*p<0.05, **p<0.01, **p<0.001, and
***p <0.0001). Then, we downloaded the ORC6 mRNA
expression data for diverse cancer cell lines from the
Cancer Cell Line Encyclopedia (CCLE) database (https://
portals.broadinstitute.org/ccle/data) and the DNA copy
number and methylation information from the cBioPor-
tal database (https://www.cbioportal.org/).

Immunohistochemical (IHC) staining and subcellular
localization of ORC6

We further evaluated the ORC6 protein levels based
on the IHC staining data provide by the Human Pro-
tein Atlas (HPA) database (https://www.proteinatlas.
org/). Subcellular localization of ORC6 was observed in
the GeneCards database (https://www.genecards.org/).
The data from the STRING database (https://string-db.
org/) was built for the protein—protein interaction (PPI)
network.

Prognostic value of ORC6

In order to explore the association between ORC6
expression and prognostic information, Kaplan—Meier
analysis of the TCGA datasets was performed. Four sur-
vival indicators, including the overall survival (OS), dis-
ease-specific survival (DSS), disease-free interval (DFI),
and progression-free interval (PFI), were enrolled in the
analysis. We set up univariate Cox regression analyses
to evaluate the prognostic significance of ORC6 in pre-
dicting these four survival indicators in these 33 types of
cancers. The results of the regression analyses are shown
using a forest plot.

Correlation between ORC6 expression and TMB, MSI,

and MMR gene expression

The TMB analysis was conducted with the R package
(edgeR) using the human pan-cancer somatic data (MAF
data) from TCGA database. The MSI score was used as
per a published study [16]. Both TMB and MSI were cal-
culated using the Pearson’s method. The “Gene_Corr”
module of TIMER2 was utilized to analyze MMR gene
expression levels in the TCGA database. Five important
MMR genes, including MutL protein homolog 1 (MLH1),
MutS protein homolog 2 (MSH2), MutS homologue 6
(MSHS®6), epithelial cell adhesion molecular (EPCAM),
and PMS1 homolog 2 (PMS2) were selected for the cor-
relation analysis. The correlation degree was calculated
with purity-adjusted Spearman and plotted in a heatmap.
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Functional enrichment analysis of ORC6 across cancers
First, we used the data from the TCGA database to
explore the potential biological and molecular functions
of ORC6 via both the Gene Set Enrichment Analysis
(GSEA) and Gene Set Variation Analysis (GSVA). The
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database was selected for GSEA enrichment
analyses with the R package “clusterProfiler” [17-20].
Then, we screened and demonstrated the top 20 most
significant positive correlated pathways. In addition, we
performed the GSVA with the R package “GSVA” using
hallmark pathways from the MSigDB database (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp).

Immune association analysis of ORC6

The ORC6 expression stratified by the immune subtypes
across cancers was investigated in the TISIDB data-
base (http://cis.hku.hk/TISIDB/). The influence of ORC6
expression on immune cell infiltration was analyzed using
the datasets from the TIMER?2 database (http://timer.cistr
ome.org/). Cancer-associated fibroblasts, tumor endothe-
lial cells, T regulatory (Treg) cells, and CD8" T cells were
selected for detailed analysis. The EPIC, MCP-counter,
xCELL, CIBERSORT, CIBERSORT-ABS, quanTIseq, and
TIMER algorithms were utilized to evaluate endemic
tumor cell types in TCGA. The Spearman correlation anal-
ysis between the ORC6 expression and immune check-
point-associated genes was conducted using the TCGA
pan-cancer data and visualized using a heatmap.

IHC analysis of ORC6, FOXP3 and CD4 expressions

in prostate cancer

A total of 19 formalin-fixed and paraffin-embedded
prostate adenocarcinoma tumor tissue samples were
rehydrated and incubated with the anti-ORC6 (1:400;
Genetex, USA), anti-FOXP3 (1:400; Genetex, USA),
and anti-CD4 (1:400; Thermo Fisher Scientific, USA)
antibodies in a humid box at 4 °C. Three representa-
tive 500 x 430 pm areas with more than 50% tumor cell
and more than 30 CD4 + cells were enrolled for stain-
ing analysis. The expression level of ORC6 was evalu-
ated based on the tissue immunostaining score (TIS),
which was defined as the product of the intensity score
(IS) and quantity score (QS) (i.e., TIS=IS x QS). The
positive staining of ORC6 in tumor cells and FOXP3 in
CD4 +cells was regarded as the staining percentage.
The staining percentage scores and the staining inten-
sity scores were calculated as previously published [21].
For the FOXP3 and CD4, positive staining cells were
counted for the Treg and CD4+T cells. Mann—Whitney
U test was applied to calculate the relationship between
the ORC6 expression and Treg and CD4+T cell number
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with the GraphPad Prism 8 (GraphPad Software, USA).
All p-values<0.05 (two-tailed) were regarded as statis-
tically significant, and denoted asxp<0.05,%* *p<0.01
,% % %p<0.001, and* * % *p<0.0001, respectively. We
obtained written informed consent from all patients and
implemented all procedures under the Declaration of
Helsinki.

Results

ORC6 mRNA expression in pan-cancer

We first investigated the ORC6 status in pan-cancer
by analyzing the available data from TCGA, encom-
passing 33 most common types of cancers, including
BLCA, CESE, and DLBC (Table 1). The increased ORC6

Table 1 Abbreviations of 33 cancer types

Cancer name Abbreviations

Adrenocortical carcinoma ACC
Bladder urothelial carcinoma BLCA
Breast invasive carcinoma BRCA
Cervical squamous cell carcinoma CESC
Cholangiocarcinoma CHOL
Colon adenocarcinoma COAD
Lymphoid neoplasm diffuse large B-cell lymphoma DLBC
Esophageal carcinoma ESCA
Glioblastoma GBM
Head and neck squamous cell carcinoma HNSC
Kidney chromophobe KICH
Kidney renal clear cell carcinoma KIRC
Kidney renal papillary cell carcinoma KIRP
Acute myeloid leukemia LAML
Brain lower grade glioma LGG
Liver hepatocellular carcinoma LIHC
Lung adenocarcinoma LUAD
Lung squamous cell carcinoma LUSC
Mesothelioma MESO
Ovarian serous cystadenocarcinoma ov
Pancreatic adenocarcinoma PAAD
Pheochromocytoma and paraganglioma PCPG
Prostate adenocarcinoma PRAD
Rectum adenocarcinoma READ
Sarcoma SARC
Skin cutaneous melanoma SKCM
Stomach adenocarcinoma STAD
Testicular germ cell tumors TGCT
Thyroid carcinoma THCA
Thymoma THYM
Uterine corpus endometrial carcinoma UCEC
Uterine carcinosarcoma ucs
Uveal melanoma UVM
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expression was observed in 29 types of cancers, including
BLCA, CESE, and PRAD, compared to the corresponding
normal adjacent tissues while decreased ORC6 expres-
sion was observed only in LAML (Fig. 1A). The highest
ORCE6 expression levels were found in TGCT, CESC, and
UCS (Fig. 1B). According to the ORC6 expression levels
in normal human tissues based on the GTEx database,
ORC6 was mainly expressed in the bone marrow, testis,
and spleen (Fig. 1C). According to the information about
distinct cell lines extracted from the CCLE database, the
highest ORC6 expression levels were found in ALL (acute
lymphoblastic leukemia), normal breast (NB), and DLBC
cells (Fig. 1D). Further analysis of TCGA data revealed
that ORC6 expression was significantly increased in
tumor tissues versus adjacent normal tissues in 18 types
of cancers, including BLCA, BRCA, and PRAD (Supple-
mentary Fig. 1). Further comparison of the ORC6 expres-
sion according to the TCGA database revealed that ORC6
expression was significantly increased in higher-stage
tumor tissues than in lower-stage tumor tissues in 11
types of cancers, including ACC, KICH, and LUAD; how-
ever, it was decreased in OV and SKCM tissues (Fig. 2).
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Genetic alterations of ORC6 in pan-cancer

Genetic alterations in ORC6 were investigated in the
cBioPortal database. Patients with PRAD and SARC
harboured a high frequency of gene alterations, among
which gene amplification was most commonly observed
(Supplementary Fig. 2A). Additionally, the ORC6 mRNA
expression level was positively correlated with copy num-
ber alteration (CNA) in 21 types of cancers, including
BRCA, PRAD, and UCS (Supplementary Fig. 2B). More-
over, the DNA methylation level of the ORC6 promoter
was negatively correlated with ORC6 mRNA expression
level in DLBC, ESCA, PCPG, PRAD, TGCT, THCA, and
UCS (Supplementary Fig. 2C).

Protein expression level and subcellular localization

of ORC6

Data regarding ORC6 protein levels in various tumors
and normal tissues were obtained from the HPA data-
base (Supplementary Fig. 3). The ORC6 protein level was
highest in head and neck cancer and testis cancer but
lowest in renal cancer (Supplementary Fig. 3A). In nor-
mal tissues, the ORC6 was overexpressed in the bone
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Fig. 1 Pan-cancer ORC6 mRNA expression level. A ORC6 mRNA expression across cancers. B Mean ORC6 mRNA expression level in tumor tissues
from TCGA database. C Mean ORC6 expression in normal tissues from GTEx database. D Mean ORC6 mRNA expression in tumor cell lines from the
Cancer Cell Line Encyclopedia database (CCLE) database. *p < 0.05, **p <0.01, ****p <0.0001, ns: not significant
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Fig. 3 Overall survival (OS) Analysis dependent on ORC6 expression. A-T Kaplan-Meier curves of OS in diverse types of cancers from TCGA
database. Statistically non-significant results are not shown
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marrow, lymph node, stomach, duodenum, tonsil, colon,
pancreas, and testis (Supplementary Fig. 3B). Typi-
cal IHC staining figures of ORC6 in 17 pairs of tumors
(including BLCA, BRCA, and PRAD) and corresponding
normal tissues were shown in Supplementary Fig. 4. Tis-
sues of normal bladder, breast, cervix, colon, oral tissue,
kidney, cerebral cortex, liver, lung, ovary, pancreas, pros-
tate, rectum, stomach, testis, thyroid, and endometrium
had negative or moderate ORC6 IHC staining, while the
corresponding tumor tissues had moderate or strong
staining. These results were consistent with the results of
ORC6 mRNA expression data from the TCGA database.
The ORC6 was mainly located in the nucleus (Supple-
mentary Fig. 3C). Additionally, the PPI network analy-
sis using the tool STRING identified that ORC6 closely
interacted with ORC1-5, CDT1, CDC6, MCM4, MCM5,
and MCM?7 (Supplementary Fig. 3D).

Prognostic significance of ORC6 in pan-cancer
Subsequently, we estimated the survival indicators,
including OS, DSS, DFI, and PFI. The OS analysis dem-
onstrated that ORC6 expression level was as an unfavora-
ble indicator for patients with 18 types of cancers (e.g.,
KIRC, KIRP and PRAD), and a protective marker only for
patients with OV and THYM (Fig. 3). Higher expression
of ORC6 was significantly associated with worse progno-
sis in DSS for patients with 17 types of cancers (e.g., ACC,
LGG and PRAD), while lower expression of ORC6 was
only negatively correlated with the prognosis of COAD,
OV, and THYM (Supplementary Fig. 5). According to
DFI analysis, ORC6 high expression level was as an unfa-
vorable indicator for patients with BRCA, COAD, KIRP,
LIHC, LUAD, PAAD, PRAD, SARC, and THCA, and a
protective marker for patients with OV (Supplementary
Fig. 6). Finally, according to PFI analysis, ORC6 high
expression level acted as an unfavorable indicator for
patients with 23 types of cancers (e.g., KIRP, LIHC and
PRAD), and as a protective marker only in patients with
GBM, OV, STAD, and THYM (Supplementary Fig. 7).

To further explore the influence of ORC6 on OS, the
univariate Cox regression analysis was performed. The
results indicated that high ORC6 expression level was
simultaneously associated with low OS and DSS in 13
types of cancers (e.g., KIRC, KIRP and PRAD), while low
ORCE6 expression was associated with low OS and DSS in
patients with OV (Fig. 4A-B). Based on DFI analysis, high
ORC6 expression was as an unfavorable indicator for

(See figure on next page.)
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patients with BRCA, KIRP, LIHC, PAAD, PRAD, SARC,
and THCA, but a protective marker in OV (Fig. 4C).
Finally, the high expression level of ORC6 was associated
with a decreased PFI in 13 types of cancers, including
KIRP, LIHC, and PRAD (Fig. 4D). In summary, ORCE sig-
nificantly influenced all survival metrics of only five types
of cancers (i.e., BRCA, KIRP, LIHC, PAAD, and PRAD).

Evaluation of ORC6 expression and TMB, MSI, and MMR
genes expression

ORC6 expression level was positively correlated with
TMB in 10 types of cancers, including LUAD, PRAD and
STAD (Fig. 5A). Additionally, it was significantly posi-
tively correlated with MSI in 10 types of cancers, includ-
ing PRAD, SARC and STAD, but negatively correlated
with MSI in DLBC (Fig. 5B). Five MMR gene expres-
sion levels were significantly positively correlated with
ORC6 expression level in most cancers analyzed (e.g.,
MLHI: 65.6%; MSH2: 96.9%; MSHG6: 90.6%; PMS2: 71.9%;
EPCAM: 62.5%) (Fig. 5C).

GSEA and GSVA of ORC6

The potential biological pathways associated with ORC6
was predicted through the KEGG pathway analysis, and
the top 20 pathways are shown in Fig. 6 and Supplemen-
tary Fig. 8. The high ORC6 expression was significantly
associated with the cell cycle and DNA replication related
pathways (Fig. 6 and Supplementary Fig. 8). It is notewor-
thy that ORC6 was also involved in the MMR pathway in
14 types of cancers, including ESCA, GBM and PRAD
(Fig. 6). These results indicate a potential role of ORC6 in
adjusting the tumor microenvironment. The GSVA score
revealed that ORC6 was positively correlated with some
cell proliferation pathways (e.g., G2M checkpoint, E2F tar-
gets and MYC targets v1-2), “DNA Repair” pathway and
“unfolded protein response” pathway in almost all cancers
(Fig. 7). These pathways have been identified to be cor-
related with the advanced stage of cancers and may ben-
efit from immunotherapy [22, 23]. In addition, ORC6 was
negatively correlated with several immune pathways (e.g.,
IL2-STAT5 signaling, inflammatory response and IL6-
JAK-STATS3 signaling) in the majority of cancers (Fig. 7).

Correlations of ORC6 expression with immune
characteristics

Six immune subtypes (e.g., C1: wound healing; C2: IFN-y
dominant; C3: inflammatory; C4: lymphocyte depleted;

Fig. 4 Univariate Cox regression analysis of ORC6. A Forest plot demonstrated the hazard ratios of OS correlated with ORC6 expression in diverse
types of cancers from TCGA database. B Forest plot demonstrated the hazard ratios of DSS correlated with ORC6 expression in diverse types of
cancers from TCGA database. C Forest plot demonstrated the hazard ratios of DFI correlated with ORC6 expression in diverse types of cancers
from TCGA database. D Forest plot demonstrated the hazard ratios of PFl correlated with ORC6 expression in diverse types of cancers from TCGA

database. The red frame highlights the significant results
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A

pvalue Hazard ratio
KIRP <0.001  2.140(1.671-2.741)
LGG <0.001 1.568(1.355-1.815)
KIRC <0.001 1.530(1.311-1.784)
MESO  <0.001 1.993(1.540-2.579)
ACC <0.001  2.146(1.491-3.087)
LIHC <0.001 1.268(1.126-1.427)
PAAD 0.002 1.403(1.129-1.745)
PRAD 0.007 2.026(1.218-3.368)
LUAD 0.007  1.186(1.047-1.343)
KICH 0.009  2.630(1.279-5.407)
PCPG 0.009  2.173(1.218-3.877)
BRCA 0.032  1.139(1.011-1.283)
Uvm 0.035  1.470(1.028-2.101)
oV 0.037 0.889(0.795-0.993)
HNSC 0.054 1.168(0.997-1.368)
READ 0.060  0.699(0.481-1.015)
SARC 0.081 1.170(0.981-1.396)
THYM 0.134  0.652(0.373-1.140)
CHOL 0.245 1.360(0.810-2.283)
SKCM 0.261 1.083(0.943-1.244)
ESCA 0.322  1.137(0.882-1.467)
ucs 0.441 1.218(0.737-2.015)
CESC 0.498  1.118(0.810-1.543)
LUSC 0.629 0.963(0.825-1.124)
LAML 0.643 1.072(0.799-1.438)
GBM 0.670  1.038(0.873-1.235)
COAD 0.706  1.069(0.755-1.515)
BLCA 0.816  0.983(0.852-1.134)
DLBC 0.847  0.933(0.464-1.876)
STAD 0.862  0.986(0.842-1.154)
THCA 0.887 0.953(0.489-1.856)
TGCT 0.899 1.110(0.221-5.580)
UCEC 0.905 0.982(0.732-1.318)

Cc

pvalue Hazard ratio
KIRP <0.001  2.206(1.584-3.072)
PRAD 0.001 1.680(1.229-2.298)
LIHC 0.002 1.197(1.069-1.341)
THCA 0.005  2.214(1.277-3.837)
BRCA 0.006  1.262(1.068-1.491)
PAAD 0.009  1.705(1.145-2.540)
ov 0.010 0.813(0.695-0.951)
SARC 0.012  1.315(1.062-1.627)
MESO 0.168  1.769(0.786-3.982)
LUAD 0.188  1.126(0.944-1.343)
KICH 0.262 2.034(0.589-7.026)
LUSC 0.286 1.177(0.873-1.586)
ACC 0.309  1.293(0.788-2.123)
STAD 0.316  0.869(0.662-1.143)
CESC 0.377  1.267(0.749-2.143)
CHOL 0.390 1.335(0.691-2.579)
ucs 0.403  1.537(0.561-4.207)
COAD 0.443 1.337(0.637-2.804)
READ 0.533  0.648(0.165-2.540)
UCEC 0.567 1.136(0.734-1.760)
TGCT 0.580 1.144(0.710-1.843)
DLBC 0.638 0.678(0.134-3.423)
BLCA 0.772  1.055(0.733-1.519)
KIRC 0.851  0.969(0.696-1.348)
ESCA 0.881  0.964(0.598-1.554)
HNSC 0.919  1.021(0.679-1.536)
PCPG 0.950 0.970(0.372-2.529)
LGG 0.988  1.003(0.655-1.538)

Fig. 4 (Seelegend on previous page.)
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pvalue Hazard ratio
KIRP <0.001  2.603(2.034-3.331)
KIRC <0.001 1.815(1.508-2.184)
LGG <0.001 1.556(1.335-1.814)
MESO  <0.001  2.517(1.752-3.616)
LIHC <0.001 1.393(1.193-1.627)
ACC <0.001  2.161(1.485-3.143)
KICH 0.002  3.972(1.654-9.537)
PRAD 0.004  2.603(1.356-4.997)
PAAD 0.005  1.419(1.109-1.816)
BRCA 0.007  1.255(1.064-1.482)
PCPG 0.012  2.300(1.201-4.403)
LUAD 0.014  1.224(1.042-1.438)
ov 0.021  0.872(0.777-0.980)
UVM 0.041 1.474(1.015-2.139)
HNSC 0.124  1.174(0.957-1.441)
SARC 0.171 1.144(0.944-1.387)
THYM 0.172  0.603(0.292-1.246)
SKCM 0.196  1.103(0.951-1.279)
ucs 0.224  1.405(0.813-2.428)
ESCA 0.302  1.180(0.861-1.617)
CHOL 0.368  1.291(0.741-2.248)
DLBC 0.435  0.705(0.293-1.697)
COAD 0.491  0.843(0.519-1.370)
READ 0.499  1.470(0.481-4.490)
CESC 0.513  1.129(0.784-1.627)
LuUsc 0.673  1.056(0.820-1.359)
GBM 0.679  1.041(0.862-1.257)
BLCA 0.691 1.036(0.869-1.236)
UCEC 0.755  1.060(0.733-1.534)
STAD 0.796  0.974(0.796-1.192)
THCA 0.852  1.102(0.397-3.064)
TGCT 0.964  0.964(0.198-4.698)

pvalue Hazard ratio
PRAD  <0.001 1.784(1.477-2.156)
KIRP <0.001 1.903(1.496-2.422)
LIHC <0.001 1.248(1.127-1.383)
LGG <0.001 1.300(1.146-1.475)
ACC <0.001 1.744(1.319-2.306)
KIRC <0.001 1.380(1.169-1.629)
uvm <0.001 1.824(1.280-2.597)
KICH 0.002  2.647(1.424-4.922)
PAAD 0.002  1.384(1.122-1.708)
MESO 0.003  1.471(1.143-1.892)
BRCA 0.005  1.198(1.057-1.359)
HNSC 0.013  1.235(1.046-1.458)
THCA 0.027  1.542(1.051-2.262)
oV 0.055  0.906(0.818-1.002)
LUAD 0.059  1.118(0.996-1.255)
SARC 0.067  1.148(0.990-1.330)
BLCA 0.068  1.150(0.990-1.336)
SKCM 0.123  1.094(0.976-1.226)
ucs 0.143  1.433(0.886-2.319)
ESCA 0.159  1.185(0.935-1.502)
THYM 0.181  0.776(0.535-1.125)
CESC 0.197  1.243(0.893-1.731)
PCPG 0.220  1.294(0.857-1.955)
GBM 0.285  0.910(0.766-1.081)
STAD 0411  0.932(0.788-1.102)
CHOL 0.524  1.154(0.743-1.791)
TGCT 0.583  1.139(0.716-1.814)
LUSC 0.711 1.036(0.859-1.251)
READ 0.739  1.088(0.661-1.793)
UCEC 0.805  1.034(0.792-1.350)
COAD 0.887  1.023(0.745-1.406)
DLBC 0.954  0.982(0.532-1.812)
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Fig. 5 Tumor mutation burden (TMB) and microsatellite instability (MSI) analysis of ORC6 expression level across cancers. A TMB analysis of ORC6
expression level in 33 TCGA tumor types. B MSI analysis of ORC6 expression in 33 TCGA tumor types. *p < 0.05, **p <0.01, ***p <0.001, ****p <0.0001.
C Correlation between five MMR gene expression with ORC6 expression level in various tumor types

C5: immunologically quiet; C6: TGF-B-dominant) pre-
sented significantly different ORC6 expression levels in
15 types of cancers, including BRCA, LIHC, LUAD and
PRAD (Supplementary Fig. 9). No differences in ORC6
expression levels in immune cells were observed in the
other types of cancers.

According to the TCGA database, the ORC6 expres-
sion level was inversely related to the infiltration level
of cancer-related fibroblasts in seven types of cancers,
including BRCA, LUSC, STAD, and TGCT (Fig. 8A).

In contrast, a negative correlation was found in KICH
(Fig. 8A). Additionally, ORC6 expression level was nega-
tively correlated with tumor endothelial cell infiltration in
11 types of cancers, including ESCA, KIRC, LUAD, LUSC
and STAD, while a positive correlation was observed in
LGG (Fig. 8B). Furthermore, a negative correlation was
detected between ORC6 expression level and Treg cell
infiltration in ESCA and LUSC, whereas a positive corre-
lation was observed in PRAD (Fig. 8C). Finally, a positive
correlation was found between ORC6 expression level
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Fig. 6 Gene Set Enrichment Analysis (GSEA) of ORC6 across cancers. A-N KEGG results of ORC6 GSEA in indicated tumor types using pan-cancer

data from TCGA

and CD8+T cell infiltration in KIRC and UVM (Fig. 8D).
Furthermore, to validate the correlation between ORC6
expression and Treg cell infiltration, IHC staining of
FOXP3, which serves as a lineage specification factor
of Treg cells, was performed in tumor samples from 19
patients with prostate adenocarcinoma. Since the median
TIS of ORC6 was 6, we stratified the patients into ORC6

TIS <6 group and TIS>6 group. The number of Treg in
ORC6 TIS >6 group is more than that of ORC6 TIS<6
group (mean 7.43 vs 5.47, p=0.021, Fig. 8E), while there
is no difference of CD4+T cell numbers between the
two groups (mean 51.57 vs 50.69, p=0.757, Fig. 8F). Of
note, the FOXP3 + /CD4 + ratio was also higher in ORC6
TIS>6 group than that of ORC6 TIS<6 group (mean
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Fig. 7 Gene Set Variation Analysis (GSVA) of ORC6 across cancers in

0.14 vs 0.11, p=0.757, Fig. 8G). Representative staining
images are shown in Fig. 8H-K.

The association between ORC6 expression and immune
related genes expression levels was then evaluated. ORC6
expression level was significantly correlated with the
expression level of a majority of immunosuppressive and
immunostimulatory markers in BRCA, DLBC, KIRC,
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LIHC, LUSC, OV, PAAD, PRAD, THCA, and UVM
(Fig. 9 and Supplementary Fig. 10). Interestingly, in most
tumor types, immunosuppression-related genes, espe-
cially TGFBR1 and PD-L1 (CD274), exhibited a specific
correlation with the ORC6 expression (Fig. 9). Altogether,
these results indicate that ORC6 may promote immuno-
suppression in a wide array of cancer types.
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Discussion

Previous studies have demonstrated that ORC6 is
involved in a range of biological events during tumor pro-
gression [24, 25]. However, the prognostic value of ORC6
expression levels and its potential effect on processes
related to tumor development, such as the regulation of
the tumor microenvironment and immunosuppression,
in a number of human cancers remain unknown and
require further study. As far as we know, this is the first
comprehensive analysis of the expression and biological
function of ORC6 from a pan-cancer perspective.

The pan-cancer analysis demonstrated that ORC6
expression was significantly upregulated in 29 types of
cancers, including BLCA, CESE and PRAD. Analysis of
ORCE6 protein levels using IHC staining results revealed
similar results, confirming that ORC6 broadly partici-
pates in the tumorigenesis of different types of cancers.
Previous studies demonstrated that ORC6 may irreplace-
ably promote the cell proliferation through coordinating
chromosome replication and segregation with cytoki-
nesis [26, 27]. Interestingly, we found that ORC6 plays
multifaceted roles during tumorigenesis, inhibiting or
promoting tumor progression depending on the specific
types of cancers. The ORC6 overexpression is correlated
with worse prognostic outcomes in the majority of can-
cers (e.g., KIRC, LIHC, and PRAD) whereas it correlated
with a better prognosis in COAD, OV and THYM. Sev-
eral previous studies also verified our results [4, 7, 27].
The atypical correlation between ORC6 overexpression
and prognosis in OV may be attributed to the fact that
ORCE is under-expressed exists in the higher stage of OV
tumor tissues compared to the lower stage. Altogether,
these results imply that ORC6 expression level may pre-
dict the prognosis of cancer patients. Nonetheless, the
precise molecular mechanism of action of ORC6 in these
cancers remains to be elucidated.

The TMB represents the number of somatic gene muta-
tions existed in the cancer cells [28]. MSI refers to genetic
instability caused by impaired DNA MMR [29]. MMR
maintains the integrity and stability of the whole genome
by correcting DNA replication or recombination errors
[30]. Several studies have identified that both TMB and
MSI can be useful predictive biomarkers for response to

(See figure on next page.)
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immunotherapy [31-35]. Additionally, MMR deficiency
is a sensitive predictor of anti-PD-1/PD-L1 immunother-
apy efficacy in multiple cancers [36]. Our study revealed
that ORC6 expression level was closely related with TMB
in 10 types of cancers (e.g., LUAD, PRAD and STAD),
with MSI in 11 types of cancers (e.g., PRAD, SARC and
STAD), and with the expression of 5 MMR genes in a
majority of cancers (e.g., HNSC, LIHC and PRAD). Our
data showed that GSEA demonstrated a strong correla-
tion between ORC6 and MMR pathways in 14 types of
cancers (e.g., PRAD, STAD, and KIRC). Therefore, ORC6
might be a potential therapeutic marker for immuno-
therapy response. The development of immunotherapy
has permitted to greatly improve the perspective of can-
cer patients at an advanced stage of cancer in recent years
[37-40]. Nonetheless, the success of immunotherapy is
influenced and sometimes compromised due to tumor-
immune system interaction [41]. Our data showed that
ORCE6 expression level was significantly related to differ-
ent immune subtypes in 15 types of cancers (e.g., BRCA,
LIHC, and PRAD); these data may partially explain why
ORCS plays different roles in the prognosis and immuno-
therapy response of diverse cancers.

Accumulative evidence have showed that, immune
microenvironment is significantly associated with
tumor prognosis[42, 43]. Immune cell infiltration is
considered to be an indicator of the immune micro-
environment within tumors [44—-46]. We report herein
for the first time a statistical association between
ORC6 expression level and immune cell infiltra-
tion. We identified a positive correlation between
ORCE6 expression and the immune infiltration level of
CD8+ T-cells in tumors of KIRC and UVM, while a
statistical negative correlation between ORC6 expres-
sion and the immune infiltration level of cancer-asso-
ciated fibroblasts, tumor endothelial cells, and Treg
cells in certain tumors by means of multiple immune
deconvolution methods. Previous studies have demon-
strated that immune cell infiltration may contribute to
tumorigenesis, development, and metastasis [47-49].
Cancer-associated fibroblasts are the most abundant
cancer stromal cells that induce tumor cell prolif-
eration, therapeutic resistance and immune exclusion

Fig. 8 Association between ORC6 expression and cancer-associated fibroblast, tumor endothelial cell, T requlatory (Treg) cell, and CD8 4T cell
infiltration. A Association between ORC6 expression and cancer-associated fibroblast infiltration using TIMER2 database. B Association between
ORC6 expression and tumor endothelial cell infiltration using TIMER2 database. C Association between ORC6 expression level and Treg cell
infiltration using TIMER2 database. D Association between ORC6 expression level and CD8 +T cell infiltration using TIMER2 database. Red frame
highlights the significant results. E The association between the ORC6 expression and FOXP3 + cell number based on immunohistochemical (IHC)
results. F The association between the expression of ORC6 and CD4+T cell number based on immunohistochemical (IHC) results. G The association
between the ORC6 expression and FOXP3 4 /CD4 + ratio based on immunohistochemical (IHC) results. H Hematoxylin and eosin staining of
prostate adenocarcinoma tissue. I IHC staining of ORC6 in prostate adenocarcinoma tumor tissue. J IHC staining of CD4 in prostate adenocarcinoma
cancer tissue. K IHC staining of FOXP3 in CD4 4T cells which were infiltrated in prostate adenocarcinoma cancer tissue
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Fig. 9 Association between ORC6 expression and immunosuppressive genes across cancers in The Cancer Genome Atlas

[50, 51]. Tumor endothelial cells play a crucial role in
tumor angiogenesis and the suppression of T cells in
the tumor environment [52, 53]. Treg cells can inhibit
T cell proliferation and secrete immunomodulatory
cytokines [54]. Finally, CD8" T cells function as killer
cells that dominate antitumor immune responses and
greatly influence the outcome of cancer immunother-
apy [55]. The pan-cancer analysis revealed differences
in correlation between ORC6 and infiltration of differ-
ent types of immune cells.

Of special note, our data, for the first time to the best
of our knowledge, demonstrated that the ORC6 is asso-
ciated to Treg cell infiltration in prostate cancer. This
effect might be attributed to the enhanced differentia-
tion of naive CD4+ T cells to Treg cells [56], which was
supported by our results of IHC staining. Also, such a
sophisticated mechanism may also involve the altered
AR’s role as licensing factor during the entire cell cycle
progression be inhibit the AR mechanism, which is
open to be investigated in the future studies. Further-
more, our data also showed that the ORC6 expression

level is positively correlated with immunosuppressive
and immunostimulatory genes across cancers, hinting
that ORC6 may act as a potential immune checkpoint.
Altogether, ORC6 may be a potential target for immu-
notherapy, which needs to be enlightened with further
preclinical investigations.

Several research significances and values of this study
are worth being highlighted. Firstly, ORC6 plays an
important role in tumorigenesis and may work as an
independent prognostic biomarker for many types of
cancers. Secondly, we found ORC6 may affect genetic
stability by regulating MMR pathways and genes. Thirdly,
ORC6 was identified to influence the tumor immune
microenvironment by adjusting the immune cell infiltra-
tion. Finally, ORC6 may tune the therapeutic outcome
of immunotherapy via regulating immunomodulatory
gene expression across cancers. Meanwhile, further in-
depth investigations based on the data from the present
study are needed to explore the sophisticated functions
of ORC6 and its relevant molecular mechanism in indi-
vidual cancer.
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In conclusion, this pan-cancer analysis comprehen- f\uthor details
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