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Preclinical cancer modeling came a long way since its 
infancy days as adherent 2D in vitro cell lines. Individ-
ual and collaborative international efforts over the years 
led to a large portfolio of in vitro cell lines derived from 
patient tumors, including thorough characterization at 
the genetic and pharmacological levels [1]. Although very 
useful for mechanistic studies, such cell lines undergo 
selection and adaptation in culture, due to e.g. lack of 
physical and biological pressure from the TME and non-
physiological media composition. Together with the 
ongoing genetic drift and cell line misclassifications [2], 
these parameters ultimately lead to inadequate responses 
to therapeutics [3]. Numerous adaptations have emerged 
in recent years to improve in vitro conditions towards the 
3D architecture and oxygen gradient. These include 3D 
growth as spheres, serum-free and physiological media, 
adapted oxygen levels as well as physical forces added 
by e.g. hanging drop cultures and bioreactor-based cul-
ture rotations [4]. A significant step forward came with 
the rise of tumor organoids. Although definition of the 
term ‘’organoid’’ is not clearly established, such cultures 
should represent a more complex organization than 3D 
spheres, allowing for a better preservation of the genetic 
and phenotypic heterogeneity. Importantly, organoids 
can be derived from less aggressive tumors, leading to an 

Cancers, in particular those of the aggressive nature, form 
very dynamic ‘aberrant organs’ that ultimately profit from 
their hosts to develop and survive. Although certain his-
topathological and genetic traits are common among can-
cers of the same (sub-)type, in essence each patient tumor 
is unique. The inherent inter-patient and intra-tumoral 
heterogeneity present at the cellular and molecular lev-
els is a major hurdle for experimental cancer modeling. 
It is becoming clear that preclinical models recapitulat-
ing the dynamic tumor ecosystem, composed of tumor 
cells embedded in the adequate tumor microenvironment 
(TME), will be key for improving success rates of thera-
peutics in the clinic. Still, the research community will 
have to accept the intrinsic limitations of preclinical can-
cer modeling and develop a battery of protocols aiming 
at answering diverse questions step-by-step with models 
tailored best to each individual biological hypothesis.
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Abstract
Cancer models are indispensable research tools for elucidating the mechanisms involved in tumor onset, 
progression and treatment resistance. They are key in evaluating therapeutics prior clinical trials. In this editorial, 
we invite contributions for a BMC Cancer’s Collection of articles addressing ‘Advances in pre-clinical cancer models’ 
towards relivable outcomes at the preclinical stage.
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expanded diversity of patient-derived models [5, 6]. The 
ongoing efforts in developing cell printing [7] and tumor-
on-chip technologies [8], incorporating diverse cell scaf-
folds, extracellular matrix components and microfluidics 
towards physiological gradients of soluble factors and 
oxygen, will lead to improved phenotypes of tumor cells 
ex vivo.

In vivo xenotransplantation of small tissue fragments 
in the flanks of rodents, i.e. patient-derived xenografts 
(PDXs), has been long considered as the most reliable 
option for the serial propagation of human tumors in 
vivo without a culture step [9, 10]. Similarly to tumor 
organoids, PDXs can be derived from more genetically 
diverse and less aggressive tumors [11]. Orthotopic 
implantations (i.e. PDOXs) are currently more favorable 
in the research community due to the more suitable TME 
in the organ of origin. However, due to technical draw-
backs, the majority of orthotopic models are nowadays 
based on the implantation of enzymatically dissociated 
cells or primary organoids cultured short-term ex vivo 
[6]. If all steps of metastasis are essential, the implanta-
tion should be performed via blood or to the initial pre-
metastatic organ, allowing for tumor cells to undergo a 
full process of cell migration from the primary site to dis-
tant organs. Importantly, most likely, these models will 
only be available in expert laboratories due to their high 
cost and advanced expertise.

The ongoing challenge in the field is the robust incor-
poration of the adequate cellular components of the 
TME to current models. Any in vitro cultures, includ-
ing organoids, lead to an inevitable loss of non-neoplas-
tic cells upon passaging. Upon xenografting, TME cells 
are immediately replaced by the host counterparts. The 
obligatory use of immunodeficient animals for xenograft-
ing leads to lack of the adaptive immune system. The 
long-standing solutions for investigating the TME are 
animal models, including genetically-engineered mouse 
models (GEMMs), chemically induced models and allo-
genic transplantations of cultured tumor cells of animal 
origin. The application of embryonic stem cell-derived 
chimeras and the development of CRISPR-based gene 
editing technologies have recently boosted the field. 
Despite being widely used for testing novel immuno-
therapeutics at the preclinical stage, these models are 
currently highly criticized for the lack of resemblance to 
human disease. The breaking step would be the incor-
poration of not only gene mutations, but also genetic 
chromosomal copy-number alterations. Another promis-
ing option is the inclusion of missing TME components 
back to the preclinical models based on the patient tumor 
material. Numerous co-culture protocols are emerging 
allowing to integrate different types of non-neoplastic 
cells into tumor cultures or to integrate tumor cells into 
normal organoids [12, 13]. While technological advances 

allow for cells printing on sophisticated scaffolds and 
the introduction of immune cells via tubes resembling 
blood vessels, the ongoing challenge lies in the continu-
ous source of relevant non-neoplastic cells and in finding 
a medium composition fitting all cell types in the co-cul-
ture system. In vivo, humanized mice bring an additional 
promise: while the PBMC-based models allow for the 
incorporation of mature allogenic or autologous tumor 
cells, humanized models based on the CD34 + hemato-
poietic stem cells allow a wider experimental window and 
the incorporation of immune cells from the early onset 
of the tumor growth [9]. This includes newer human-
ized PDX models that are able to recapitulate the human 
immune system beyond T-cells, including components 
of the adaptive and innate immune system [14]. These 
sophisticated models that rely on specific transgenic mice 
(e.g. MISTRG) come with limitations related to scalabil-
ity, cost, and applicability across cancer types.

Cancer models are key tools for assessing efficacy of 
novel therapeutics prior clinical trials. In the era of per-
sonalized medicine, in depth characterization of the 
models at the omics levels is crucial to link treatment 
outcomes to specific tumor profiles [6, 15]. Nowadays, 
advanced models allow for detailed molecular analyses 
upon treatment in time and space, an assessment that 
cannot be performed in patients. Still, the advancements 
of preclinical cancer modeling come at a price. Preclini-
cal testing requires more advanced readouts as the model 
becomes more complex. Biochemical assays commonly 
applied in classical cell cultures are not appropriate for 
complex models. High-throughput readouts based on 
imaging combined with novel analytical algorithms will 
be instrumental in discriminating drug efficacy in tumor 
cells and associated TME components.

While quoting a famous aphorism in statistics by 
George E. P. Box: ‘’All models are wrong, but some are 
useful”, we expect that development of a plethora of pre-
clinical models will allow us to tailor cancer modeling 
towards specific and clinically-relevant studies. In recog-
nition of the important field, we are now welcoming sub-
missions to our new Collection of articles titled ‘Advances 
in pre-clinical cancer models’. More details can be found 
here: https://www.biomedcentral.com/collections/apcm. 
We hope that this Collection will provide a useful plat-
form for novel protocols and discoveries advancing 
preclinical cancer modeling. We aim to discuss diverse 
modeling options in vitro, ex vivo and in vivo.
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