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Abstract 

Background  Breast cancer has become the most common malignant tumour worldwide. Distant metastasis is one 
of the leading causes of breast cancer-related death. To verify the performance of clinicomics-guided distant metasta-
sis risk prediction for breast cancer via artificial intelligence and to investigate the accuracy of the created prediction 
models for metachronous distant metastasis, bone metastasis and visceral metastasis.

Methods  We retrospectively enrolled 6703 breast cancer patients from 2011 to 2016 in our hospital. The figures of 
magnetic resonance imaging scanning and ultrasound were collected, and the figures features of distant metastasis 
in breast cancer were detected. Clinicomics-guided nomogram was proven to be with significant better ability on 
distant metastasis prediction than the nomogram constructed by only clinical or radiographic data.

Results  Three clinicomics-guided prediction nomograms on distant metastasis, bone metastasis and visceral metas-
tasis were created and validated. These models can potentially guide metachronous distant metastasis screening and 
lead to the implementation of individualized prophylactic therapy for breast cancer patients.

Conclusion  Our study is the first study to make cliniomics a reality. Such cliniomics strategy possesses the develop-
ment potential in artificial intelligence medicine.
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Introduction
Breast cancer (BC) has become the most common malig-
nant tumour worldwide, its incidence was reported to 
increase by approximately 0.5% yearly [1]. The 5-year 
survival of early-stage BC patients is approximately 95%; 
once distant metastasis (DM) occurs, prognosis signifi-
cantly deteriorates [2, 3]. Accurate identification of BC 
patients at high risk for DM risk, prophylactic treatment 
and close follow-up could improve the prognosis of BC 
patients. An earlier window for treatment can potentially 
be created with the identification of BC patients at high 
metastatic risk.

Prior studies predicted DM in BC patients with estab-
lished mathematical models [4, 5]. Currently, most 
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models are created based only on clinical or radiographic 
data. Artificial intelligence (AI) guided models are known 
to have the potential for wide application [6–8]. The 
clinicomics approach involves multiple disease features 
that are routinely evaluated [9, 10]. Such features include 
complete history, epidemiological distribution, physi-
cal examination, laboratory testing, imaging evaluation, 
and histological examination. We hypothesized that the 
incorporation of multidimensional data into the predic-
tion model could result in a deeper understanding of 
the disease and a higher prognostic prediction accuracy. 
No studies have been conducted to validate this hypoth-
esis since it was first described in 2005. Data dimension 
reduction before the application of AI was the main 
dilemma for the validation and development of clinicom-
ics methods. Currently, radiomics and deep learning can 
comprehensively analyse features from imaging and even 
from videos, making clinicomics a potential reality.

In the present study, we aimed to verify the perfor-
mance of clinicomics-guided prognostic prediction 
for breast cancer via artificial intelligence and to inves-
tigate the accuracy of the created prediction models 
for metachronous DM, bone metastasis and visceral 

metastasis. These models can potentially guide metachro-
nous DM screening and lead to the implementation of 
individualized prophylactic therapy for BC patients with 
a high risk for DM.

Materials and methods
Study design and participants
This case–control study protocol was approved by the 
Ethics Committee of Tianjin Medical University Can-
cer Institute & Hospital, Tianjin, China (EK2018125). 
A total of 6,703 consecutive BC patients from the hos-
pital between January 2011 and December 2016 were 
included. The detailed inclusion and exclusion criteria 
were as follows: (1) a histopathological diagnosis of inva-
sive BC through surgically resected specimens and/or 
needle biopsy; (2) availability of diagnostic-quality preop-
erative magnetic resonance imaging (MRI) scanning and 
ultrasound (US) images; (3) MRI scanning and US exam 
conducted before neoadjuvant therapy or surgical resec-
tion; (4) no DM present at diagnosis; and (5) follow-up 
data available for at least five years. Sixty-two patients 
with DM and 124 randomly selected patients without 

Fig. 1  The flowchart of the proposed distant metastasis prediction system
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Table 1  Clinicopathologic characteristics between breast cancer patients with /without distant metastasis

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

Age (mean ± SD, years) 47.4 (9.23) 49.7
(9.96)

1.020
(0.991–1.054)

0.166 48.3 (10.8) 42.5 (13.6)

Family history of BC

  Yes 3 (3.41) 2 (4.65) 1.255
(0.304–5.192)

0.754 3 (8.33%) 0 (0.00%)

  No 85 (96.59) 41 (95.35) 33 (91.67%) 19 (100.00%)

Breast-feeding histories

  Yes 77 (87.50) 35 (81.40) 0.731
(0.339–1.575)

0.423 31 (86.11%) 15 (78.95%)

  No 11 (12.50) 8 (18.60) 5 (13.89%) 4 (21.05%)

Abortion

  Yes 55 (62.50) 21 (48.84) 0.639
(0.3513–1.162)

0.142 21 (58.33%) 10 (52.63%)

  No 33 (37.50) 22 (51.16) 15 (41.67%) 9 (47.37%)

Reproductive history

  Yes 85 (96.59) 38 (88.37) 0.455
(0.179–1.157)

0.098 33 (91.67%) 16 (84.21%)

  No 3 (3.41) 5 (11.63) 3 (8.33%) 3 (15.79%)

Menstrual status

  Menstruate 57 (64.77) 23 (53.49) 1.503
(0.825–2.738)

0.183 21 (58.33%) 14 (73.68%)

  Menopause 31 (35.23) 20 (46.51) 15 (41.67%) 5 (26.32%)

Age of menarche 14.6 (1.71) 14.3 (2.03) 0.9402 (0.7914–1.117) 14.4 (1.78) 14.8 (1.69)

Lymph node metastasis 0.484

  Have 18 (20.45) 26 (60.47) 4.197 (2.27–7.759)  < 0.001 12 (33.33%) 11 (57.89%)

  None 70 (79.55) 17 (39.53) 24 (66.67%) 8 (42.11%)

molecular subtyping

  1 9 (10.23) 5 (11.63) 1.109 (0.8039–1.53) 0.529 4 (11.11%) 2 (10.53%)

  2 59 (67.05) 23 (53.49) 26 (72.22%) 10 (52.63%)

  3 5 (5.68) 6 (13.95) 1 (2.78%) 3 (15.79%)

  4 15 (17.05) 9 (20.93) 5 (13.89%) 4 (21.05%)

ER

  Positive 68 (77.27) 27 (62.79) 0.634 (0.3412–1.178) 0.149 30 (83.33%) 10 (52.63%)

  Negative 20 (22.73) 16 (37.21) 6 (16.67%) 9 (47.37%)

PR

  Positive 65 (73.86) 25 (58.14) 0.6001 (0.3271–1.101) 0.099 30 (83.33%) 10 (52.63%)

  Negative 23 (26.14) 18 (41.86) 6 (16.67%) 9 (47.37%)

HER2 status

  Positive 27 17 1.09 (0.735–1.616) 0.669 23 10

  Negative 61 26 13 9

Ki-67

  Positive 78 (88.64) 38 (88.37) 1.003 (0.991–1.016) 0.600 31 (86.11%) 16 (84.21%)

  Negative 10 (11.36) 5 (11.63) 5 (13.89%) 3 (15.79%)

TPSA

  Positive 10 (11.36) 6 (13.95) 1.268 (0.5349–3.006) 0.59 3 (8.33%) 3 (15.79%)

  Negative 78 (88.64) 37 (86.05) 33 (91.67%) 16 (84.21%)

CA153

  Positive 1 (1.14) 10 (23.26) 7.407 (3.573–15.36)  < 0.001 0 (0.00%) 4 (21.05%)

  Negative 87 (98.86) 33 (76.74) 36 (100.00%) 15 (78.95%)

CEA

  Positive 0 (0.00) 9 (20.93) 9.77
(4.489–21.26)

 < 0.001 1 (2.78%) 3 (15.79%)

  Negative 88 (100.00) 34 (79.07) 35 (97.22%) 16 (84.21%)
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DM were included in the present study. The flow chart of 
the present study is shown in Fig. 1. The patients’ demo-
graphic and clinicopathological characteristics were col-
lected from their medical records (Table  1). To validate 
the performance of the prediction model, the included 
patients were randomly divided into two sets: the training 
set (70%, N = 131) and the validation set (30%, N = 55).

MRI and US technique
All patients underwent MRI and US examinations 
within 2  weeks before breast  surgery. Magnetic reso-
nance images were acquired using scanners manufac-
tured by two companies, a 1.5-T system (Signa Infinity 
Excite II, GE Healthcare) before 2013, and a 3.0-T MRI 
system (Discovery MR750, GE Medical Systems) after 
2013. The detailed MRI parameters are shown in the 
Supplementary Materials and Methods. All ultra-
sound images were acquired using a GE LOGIQ7 or 
GE LOGIQ E9 ultrasound machine with a 6 ~ 15.0 MHz 
probe.

Imaging feature detection and radiomics signature 
construction
MRI and US images were retrieved from picture archiv-
ing and communication systems (PACS) for image 

segmentation and analysis. The lesions were segmented 
by a radiologist with more than 8  years of experience 
using ImageJ (https://​imagej.​nih.​gov/​ij/). Another expe-
rienced radiologist (with 30  years of experience) was 
consulted when the lesion boundaries in US were not 
determined clearly.

A total of 2569 radiomics features (855 features from 
magnetic resonance T2 weighted images (T2WI), 859 
features from dynamic-contrast  enhanced MRI  (DCE-
MRI) and 855 from US images) were extracted for each 
patient. Detailed information about the feature extrac-
tion algorithms is provided in Supplementary Table S1. 
The feature extraction method was performed using in-
house software written with MATLAB R2018b (Math-
Works, Inc., Natick, Massachusetts).

In order to test the prediction ability of different image 
types, we built models based on each type and a model 
based on the integrated features from all types. We fol-
lowed a three-step procedure to determine reliable radi-
omic features. First, the Wilson test was used to identify 
features that were highly correlated to the biomarkers 
with a significant value (P < 0.05). Pearson correlation 
matrices were used to evaluate the correlation between 
the features, and the correlation coefficient greater than 
0.8 was considered redundant. One of two features with 
a lower P-value was excluded. Subsequently, the optimal 

Abbreviations: ER Expression of the oestrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2, TPSA Total prostate-specific 
antigen, CA125 Carbohydrate antigen 125, CEA Carcinoembryonic antigen, CA153 Carbohydrate antigen 125

Table 1  (continued)

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

CA125

  Positive 4 (4.55) 8 (18.60) 3.195
(1.479–6.9)

0.003 4 (11.11%) 2 (10.53%)

  Negative 84 (95.45) 35 (81.40) 32 (88.89%) 17 (89.47%)

Operation

  No surgery 0 (0.00) 7 (16.28) 0.8021 (0.4741–1.357) 0.411 0 (0.00%) 0 (0.00%)

  Conserving 39 (44.32) 8 (18.60) 16 (44.44%) 7 (36.84%)

  Radical 49 (55.68) 28 (65.12) 20 (55.56%) 12 (63.16%)

Endocrinotherapy

  Yes 11 (12.50) 0 (0.00) 1.281e-08 (0-Inf ) 0.996 1 (2.78%) 0 (0.00%)

  No 77 (87.50) 43 (100.00) 35 (97.22%) 19 (100.00%)

Radiotherapy

  Yes 13 (14.77) 10 (23.25) 1.476 (0.7272–2.997) 0.281 4 (11.11%) 4 (21.05%)

  No 75 (85.23) 33 (76.74) 32 (88.89%) 15 (78.95%)

Chemotherapy

  Yes 79 (89.77) 42 (97.67) 4.124 (0.5675–29.97) 0.161 34 (94.44%) 19 (100.00%)

  No 9 (10.23) 1 (2.33) 2 (5.56%) 0 (0.00%)

RadScore (mean ± SD) -2.84 (0.49) -1.67 (0.46) l  < 0.001 -2.48 (0.72) -2.42 (0.75)

https://imagej.nih.gov/ij/
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Table 2  Clinicopathologic characteristics between breast cancer patients with/without bone metastasis

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

Age (mean ± SD, years) 46.8 (9.75) 47.1 (12.3) 1 (0.964–1.05) 0.847 49.6 (9.27) 45.6 (7.82)

Family history of BC

  Yes 5 (5.75) 0 (0.00)  < 0.001 (0-Inf ) 0.997 1 (2.70%) 1 (10.00%)

  No 82 (94.25) 23 (100.00) 36 (97.30%) 9 (90.00%)

Breast-feeding histories

  Yes 76 (87.36) 18 (78,326) 0.579 (0.215–1.56) 0.279 32 (86.49%) 8 (80.00%)

  No 11 (12.64) 5 (21.74) 5 (13.51%) 2 (20.00%)

Abortion

  Yes 52 (59.77) 11 (47.83) 0.622 (0.274–1.41) 0.255 24 (64.86%) 6 (60.00%)

  No 35 (40.23) 12 (52.17) 13 (35.14%) 4 (40.00%)

Reproductive history

  Yes 83 (95.40) 19 (82.61) 0.314 (0.107–0.926) 0.036 35 (94.59%) 9 (90.00%)

  No 4 (4.60) 4 (17.39) 2 (5.41%) 1 (10.00%)

Menstrual status

  Menstruate 57 (65.52) 15 (65.22) 1.05 (0.446–2.48) 0.908 21 (56.76%) 7 (70.00%)

  Menopause 30 (34.48) 8 (34.78) 16 (43.24%) 3 (30.00%)

Age of menarche 14.1 (1.73) 14.6 (1.73) 1.04 (0.82–1.32) 0.741 14.7 (1.73) 14.2 (2.66)

Lymph node metastasis

  Have 19 (21.84) 14 (60.87) 4.76 (2.06–11)  < 0.001 11 (29.73%) 7 (70.00%)

  None 68 (78.16) 9 (39.13) 26 (70.27%) 3 (30.00%)

molecular subtyping

  1 9 (10.34) 4 (17.39) 0.738 (0.419–1.3) 0.293 4 (10.81%) 0 (0.00%)

  2 61 (70.11) 16 (69.57) 24 (64.86%) 7 (70.00%)

  3 4 (4.60) 1 (4.35) 2 (5.41%) 1 (10.00%)

  4 13 (14.94) 2 (8.70) 7 (18.92%) 2 (20.00%)

ER

  Positive 70 (80.46) 19 (82.61) 1.2 (0.407–3.52) 0.743 28 (75.68%) 7 (70.00%)

  Negative 17 (19.54) 4 (17.39) 9 (24.32%) 3 (30.00%)

PR

  Positive 68 (78.16) 20 (86.96) 1.8 (0.535–6.06) 0.343 27 (72.97%) 4 (40.00%)

  Negative 19 (21.84) 3 (13.04) 10 (27.03%) 6 (60.00%)

HER2 status

  Positive 57 15 0.931 (0.528–1.64) 0.805 27 6

  Negative 30 8 10 4

Ki-67

  Positive 76 (87.36) 20 (86.96) 1 (0.983–1.02) 0.985 33 (89.19%) 9 (90.00%)

  Negative 11 (12.64) 3 (13.04) 4 (10.81%) 1 (10.00%)

TPSA

  Positive 9 (10.34) 5 (21.74) 2.13 (0.788–5.73) 0.136 4 (10.81%) 1 (10.00%)

  Negative 78 (89.66) 18 (78.26) 33 (89.19%) 9 (90.00%)

CA153

  Positive 1 (1.15) 7 (30.43) 13.4 (5.27–33.8)  < 0.001 0 (0.00%) 1 (10.00%)

  Negative 86 (98.85) 16 (69.57) 37 (100.00%) 9 (90.00%)

CEA

  Positive 0 (0.00) 4 (17.) 39.9 (10.7–149)  < 0.001 1 (2.70%) 2 (20.00%)

  Negative 87 (100.00) 19 (82.61) 36 (97.30%) 8 (80.00%)
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prognostic combination of features was selected by using 
the minor absolute contraction and Selection operator 
(LASSO) regression method. By calculating the radial 
score (radscore), the linear combination of each patient’s 
selected features weighted by their respective coefficients 
was calculated to establish the prediction model [11]. A 
fixed 70%/30% training/rest set split was used, and ten-
fold cross-validation was performed to assess the true 
diagnostic potential of the model.

The clinicopathology and the clinicomics‑based 
nomograms
Univariate analysis was used to evaluate the clinicopatho-
logical factors in the training set. Variables with P < 0.05 
of univariate analysis was included in the Cox propor-
tional hazards regression model, and the clinicopatholog-
ical nomogram was established to predict DM risk in BC. 
We evaluated clinicomics-based nomogram to determine 
whether the model has the best performance in predict-
ing DM risk in BC.

Statistical analysis
Continuous variables are expressed as the 
mean ± standard deviation (normally distributed) or 
median with interquartile range (abnormally distrib-
uted), while categorical variables are expressed as 

numbers and percentages. The predictive accuracy 
of nomogram was evaluated by the area under the 
receiver operating characteristic (ROC) curve and Har-
rell’s concordance index (C-index), while the calibra-
tion ability was evaluated by calibration curves. The 
difference in the area under the curve (AUC) between 
the training and validation datasets was tested by the 
P-value of Delong’s test. The integrated discrimination 
improvement (IDI) values were assessed to quantify the 
incremental prognostic improvement in the radiomic 
signature. The statistical analyses were conducted using 
R software (version 6.1, R Foundation for Statistical 
Computing, Vienna, Austria). A two-tailed difference 
with P < 0.05 was considered significant. The packages 
used in the current study included glmnet, time ROC, 
rms, survival, Hmisc and rmda.

Results
Characteristics of distant metastasis
The clinicopathological characteristics of the train-
ing (n = 131) and test (n = 55) sets are summarized in 
Table  1. The median incubation time of BC patients 
with DM was 14 months (range, 1–58 months). visceral 
(N = 42) was the most frequent metastasis site, followed 
by bone (N = 33) and brain (N = 10) sites.

Abbreviations: ER Expression of the oestrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2, TPSA Total prostate-specific 
antigen, CA125 Carbohydrate antigen 125, CEA Carcinoembryonic antigen, CA153 Carbohydrate antigen 125

Table 2  (continued)

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

CA125

  Positive 3 (3.45) 4 (17.39) 4.37 (1.48–12.9) 0.008 5 (13.51%) 2 (20.00%)

  Negative 84 (96.55) 19 (82.61) 32 (86.49%) 8 (80.00%)

Operation

  No surgery 0 (0.00) 3 (13.04) 0.597 (0.282–1.26) 0.178 0 (0.00%) 3 (30.00%)

  Conserving 39 (44.83) 8 (34.78) 16 (43.24%) 2 (20.00%)

  Radical 48 (55.17) 12 (52.17) 21 (56.76%) 5 (50.00%)

Endocrinotherapy

  Yes 10 (11.49) 0 (0.00) 1.28e-08 (0-Inf ) 0.997 2 (5.41%) 0 (0.00%)

  No 77 (88.51) 23 (100.00) 35 (94.59%) 10 (100.00%

Radiotherapy

  Yes 12 (13.79) 6 (26.09) 0.105 0.159 5 (13.51%) 5 (50.00%)

  No 75 (86.21) 17 (73.91) 32 (86.49%) 5 (50.00%)

Chemotherapy

  Yes 80 (91.95) 23 (100.00) 1.91 (0.754–4.86) 0.172 33 (89.19%) 10 (100.00%)

  No 7 (8.05) 0 (0.00) 4 (10.81%) 0 (0.00%)

RadScore (mean ± SD) -2.77 (0.56) -1.72 (0.43) 15.9 (6.43–39.5)  < 0.001 -2.60 (0.67) -2.40 (0.71)
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Table 3  Clinicopathologic characteristics between breast cancer patients with/without visceral metastasis

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

Age (mean ± SD, years) 47.1 (9.75) 46.3 (10.0) 0.984 (0.949–1.02) 0.395 48.9 (9.46) 48.3 (14.8)

Family history of BC

  Yes 4 (4.60%) 1 (3.33%) 0.985 (0.235–4.13) 0.983 2 (5.41%) 1 (8.33%)

  No 83 (95.40%) 29 (96.67%) 35 (94.59%) 11 (91.67%)

Breast-feeding histories

  Yes 75 (86.21%) 26 (86.67%) 0.505 (0.216–1.18) 0.113 33 (89.19%) 8 (66.67%)

  No 12 (13.79%) 4 (13.33%) 4 (10.81%) 4 (33.33%)

Abortion

  Yes 52 (59.77%) 18 (60.00%) 0.623 (0.303–1.28) 0.200 24 (64.86%) 3 (25.00%)

  No 35 (40.23%) 12 (40.00%) 13 (35.14%) 9 (75.00%)

Reproductive history

  Yes 84 (96.55%) 28 (93.33%) 0.463 (0.162–1.33) 0.152 34 (91.89%) 9 (75.00%)

  No 3 (3.45%) 2 (6.67%) 3 (8.11%) 3 (25.00%)

Menstrual status

  Menstruate 56 (64.37%) 20 (66.67%) 0.845 (0.396–1.81) 0.665 22 (59.46%) 6 (50.00%)

  Menopause 31 (35.63%) 10 (33.33%) 15 (40.54%) 6 (50.00%)

Age of menarche 14.4 (1.69) 14.2 (1.69) 0.802 (0.635–1.01) 0.063 14.9 (1.79) 14.3 (2.38)

Lymph node metastasis

  Have 26 (29.89%) 19 (63.33%) 4.9 (2.29–10.5)  < 0.001 4 (10.81%) 7 (58.33%)

  None 61 (70.11%) 11 (36.67%) 33 (89.19%) 5 (41.67%)

molecular subtyping

  1 9 (10.34%) 3 (10.00%) 1.08 (0.706–1.66) 0.718 4 (10.81%) 0 (0.00%)

  2 61 (70.11%) 14 (46.67%) 24 (64.86%) 7 (58.33%)

  3 4 (4.60%) 6 (20.00%) 2 (5.41%) 2 (16.67%)

  4 13 (14.94%) 7 (23.33%) 7 (18.92%) 3 (25.00%)

ER

  Positive 70 (80.46%) 14 (46.67%) 0.456 (0.221–0.939) 0.033 28 (75.68%) 7 (58.33%)

  Negative 17 (19.54%) 16 (53.33%) 9 (24.32%) 5 (41.67%)

PR

  Positive 69 (79.31%) 13 (43.33%) 0.482 (0.234–0.993) 0.048 26 (70.27%) 7 (58.33%)

  Negative 18 (20.69%) 17 (56.67%) 11 (29.73%) 5 (41.67%)

HER2 status

  Positive 57 16 1.6 (1.02–2.5) 0.041 27 7

  Negative 30 14 10 5

Ki-67

  Positive 77 (88.51%) 26 (86.67%) 0.996 (0.981–1.01) 0.603 32 (86.49%) 11 (91.67%)

  Negative 10 (11.49%) 4 (13.33%) 5 (13.51%) 1 (8.33%)

TPSA

  Positive 8 (9.20%) 4 (13.33%) 0.596 (0.142–2.5) 0.479 5 (13.51%) 2 (16.67%)

  Negative 79 (90.80%) 26 (86.67%) 32 (86.49%) 10 (83.33%)

CA153

  Positive 0 (0.00%) 5 (16.67%) 5.49 (2.09–14.4)  < 0.001 1 (2.70%) 3 (25.00%)

  Negative 87 (100.00%) 25 (83.33%) 36 (97.30%) 9 (75.00%)

CEA

  Positive 1 (1.15%) 4 (13.33%) 5.52 (2.1–14.5) 0.004 0 (0.00%) 3 (25.00%)

  Negative 86 (98.85%) 26 (86.67%) 37 (100.00%) 9 (75.00%)



Page 8 of 16Zhang et al. BMC Cancer          (2023) 23:239 

Patient clinical characteristics and development 
of the clinical factor DM model
Among clinicopathologic characteristics, lymph node 
metastasis (P < 0.001), higher levels of CA153 (P < 0.001), 
carcinoma embryonic antigen (CEA) (P < 0.001) and 
CA125 (P = 0.003) were significantly associated with DM 
risk among BC patients in the training set (Table 1), and 
these factors were used to establish the clinicopathologi-
cal model (Supplementary Figure S1). Subgroup analy-
sis of age (younger than 50  years / older than 50  years) 
to predict DM was showed in Supplementary Table S2. 
Reproductive history (P = 0.036), lymph node metas-
tasis (P < 0.001), and higher levels of CA153 (P < 0.001), 
CEA (P < 0.001) and CA125 (P = 0.015) were associ-
ated with bone metastasis risk (Table  2). Lymph node 
metastasis (P = 0.001), oestrogen receptor (ER)-positive 
status (P < 0.001), progesterone receptor (PR)-positive 
status (P < 0.001), higher levels of CA153 (P < 0.001), CEA 
(P = 0.004) and endocrinotherapy (P = 0.041) were asso-
ciated with viscera metastasis risk (Table 3). ER positivity 
(P = 0.005) and higher levels of CA153 (P < 0.001), CEA 
(P < 0.001) and CA125 (P = 0.009) were associated with 
brain metastasis risk (Table 4).

Development and testing of the radiomics model
Four different feature sets were selected from the T2WI, 
DCE-MRI, US, and the combination of the imaging 

models. Through feature selection, 6, 4 and 1 features 
were selected from the T2WI, DCE-MRI, and US images, 
respectively. A total of 8 features were selected from the 
feature sets, including 6 features from T2WI and 2 fea-
tures from DCE-MRI. These 8 features were used to build 
the optimal radiomics model based on the imaging mod-
els (Supplemental Materials and Methods).

The T2WI model yielded AUCs of 0.838 (95% CI: 
0.753–0.923), 0.917 (95% CI: 0.859–0.975), 0.925 (95% 
CI: 0.869–0.981) in the training set and 0.792 (95% CI: 
0.638–0.946), 0.794 (95% CI: 0.667–0.922), and 0.874 
(95% CI: 0.777–0.972) in the validation set for 1-, 3-, 
and 5-year risk, respectively. The AUCs of the DCE-MRI 
model were 0.888 (95% CI: 0.816–0.960), 0.916 (95% CI: 
0.870–0.961), 0.920 (95% CI: 0.876–0.964) in the train-
ing set and 0.729 (95% CI: 0.450–0.100), 0.800 (95% CI: 
0.641–0.959), and 0.765 (95% CI: 0.619–0.911) in the val-
idation set. The AUCs of the US model were 0.763 (95% 
CI: 0.655–0.871), 0.749 (95% CI: 0.662–0.835), 0.757 
(95% CI: 0.673–0.842) in the training set and 0.567 (95% 
CI: 0.162–0.972), 0.538 (95% CI: 0.330–0.747), and 0.512 
(95% CI: 0.328–0.696) in the validation set for 1-, 3-, and 
5-year risk, respectively. The DeLong test showed that 
there was no significant difference between the AUCs of 
the training set and validation set  in the four radiomics 
signature models  (all P > 0.05). The comparative analysis 
among different models was  shown in Supplementary 

Abbreviations: ER Expression of the oestrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2, TPSA Total prostate-specific 
antigen, CA125 Carbohydrate antigen 125, CEA Carcinoembryonic antigen, CA153 Carbohydrate antigen 125

Table 3  (continued)

Character Training set Validation set

Distant metastasis HR
(95% CI)

P-value Distant metastasis

no yes no yes

CA125

  Positive 7 (8.05%) 4 (13.33%) 1.77 (0.616–5.07) 0.290 1 (2.70%) 2 (16.67%)

  Negative 80 (91.95%) 26 (86.67%) 36 (97.30%) 10 (83.33%)

Operation

  No surgery 0 (0.00%) 3 (10.00%) 1.02 (0.503–2.05) 0.965 0 (0.00%) 2 (16.67%)

  Conserving 40 (45.98%) 6 (20.00%) 15 (40.54%) 3 (25.00%)

  Radical 47 (54.02%) 21 (70.00%) 22 (59.46%) 7 (58.33%)

Endocrinotherapy

  Yes 11 (12.64%) 0 (0.00%) 1.31e-08 (0-Inf ) 0.997 1 (2.70%) 0 (0.00%)

  No 76 (87.36%) 30 (100.00%) 36 (97.30%) 12 (100.00%)

Radiotherapy

  Yes 14 (16.09%) 8 (26.67%) 2.42 (1.08–5.45) 0.033 3 (8.11%) 3 (25.00%)

  No 73 (83.91%) 22 (73.33%) 34 (91.89%) 9 (75.00%)

Chemotherapy

  Yes 78 (89.66%) 30 (100.00%) 3.02 (0.411–22.2) 0.277 35 (94.59%) 11 (91.67%)

  No 9 (10.34%) 0 (0.00%) 2 (5.41%) 1 (8.33%)

RadScore (mean ± SD) -2.77 (0.56) -1.66 (0.44) 20 (8.27–48.2)  < 0.001 -2.60 (0.74) -2.23 (0.60)
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Table 4  Clinicopathologic characteristics between breast cancer patients with/without brain metastasis

Character All

Distant metastasis HR
(95% CI)

P-value

no yes

Age (mean ± SD, years) 47.6 (9.66) 42.5 (6.22) 0.94 (0.874–1.01) 0.099

Family history of BC

  Yes 6 (4.84%) 0 (0.00%) 3.84e-08 (0-Inf ) 0.998

  No 118 (95.16%) 10 (100.00%)

Breast-feeding histories

  Yes 108 (87.10%) 7 (70.00%) 0.375 (0.097–1.45) 0.156

  No 16 (12.90%) 3 (30.00%)

Marital status

  Married 122 (98.39%) 9 (90.00%) 0.214 (0.0271–1.69) 0.143

  Never married 2 (1.61%) 1 (10.00%)

Abortion

  Yes 76 (61.29%) 4 (40.00%) 0.44 (0.124–1.56) 0.203

  No 48 (38.71%) 6 (60.00%)

Reproductive history

  Yes 118 (95.16%) 9 (90.00%) 0.515 (0.0652–4.06) 0.528

  No 6 (4.84%) 1 (10.00%)

Menstrual status

  Menstruate 78 (62.90%) 8 (80.00%) 0.434 (0.0922–2.05) 0.292

  Menopause 46 (37.10%) 2 (20.00%)

Age of menarche 14.5 (1.73) 13.6 (1.51) 0.71 (0.465–1.08) 0.113

Lymph node metastasis

  Have 30 (24.19%) 5 (50.00%) 2.99 (0.866–10.3) 0.083

  None 94 (75.81%) 5 (50.00%)

molecular subtyping

  1 13 (10.48%) 0 (0.00%) 1.59 (0.856–2.97) 0.141

  2 85 (68.55%) 6 (60.00%)

  3 6 (4.84%) 1 (10.00%)

  4 20 (16.13%) 3 (30.00%)

ER

  Positive 98 (79.03%) 4 (40.00%) 0.197 (0.0557–0.7) 0.012

  Negative 26 (20.97%) 6 (60.00%)

PR

  Positive 95 (76.61%) 5 (50.00%) 0.33 (0.0956–1.14) 0.080

  Negative 29 (23.39%) 5 (50.00%)

HER2 status

  Positive 84 (67.74%) 6 (60.00%) 1.27 (0.559–2.9) 0.565

  Negative 40 (32.26%) 4 (40.00%)

Ki-67

  Positive 109 (87.90%) 10 (100.00%) 1.01 (0.983–1.03) 0.523

  Negative 15 (12.10%) 0 (0.00%)

TPSA

  Positive 13 (10.48%) 2 (20.00%) 2.12 (0.451–10) 0.341

  Negative 111 (89.52%) 8 (80.00%)

CA153

  Positive 1 (0.81%) 4 (40.00%) 35.7 (9.63–132)  < 0.001

  Negative 123 (99.19%) 6 (60.00%)
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Figure S2. There was no statistical significance between 
the combined model and the DCE-MRI model (all 
P > 0.05), although the AUC of the combined model was 
higher than that of the DCE-MRI model.

When T2WI, DCE-MRI, and US images were com-
bined, the radiomics signature model with 8 features 
exhibited the highest AUC and obtained the best diag-
nostic accuracy. The AUCs were 0.868 (95% CI: 0.795–
0.942), 0.945 (95% CI: 0.900–0.989), and 0.950 (95% 
CI: 0.907–0.993) in the training set and 0.850 (95% CI: 
0.720–0.980), 0.798 (95% CI: 0.673–0.922), and 0.867 
(95% CI: 0.772–0.962) in the validation set. The sensi-
tivity, specificity, and AUC of each radiomics model are 
shown in Fig. 2 and Supplementary Table S3.

Differences in the prediction performance 
between the clinicopathological‑feature model 
and the clinicomics‑based model for distant metastasis
As shown in Fig.  3, the clinicomics-based model pro-
vided a better performance in the training set (clinical: 
C-index = 0.725; clinicomics-based model: C-index = 0.882) 
and the validation set (clinical: C-index = 0.659; clini-
comics-based model: C-index = 0.812). The areas under 
the curve (AUCs) at different follow-up times (1, 2, and 

3  years) also confirmed that the clinicomics-based model 
had good prognostic accuracy in the training and valida-
tion sets. The calibration curves for the clinicomics-based 
model at 1 year, 2 years, and 3 years showed good agree-
ment between the actual and predicted risk in the training 
and validation sets (Fig.  3). The clinicomics-based model 
showed a relatively better performance than the clinical 
model (IDI = 0.302, 95% CI: 0.174–0.431, P < 0.001).

The decision curve analysis revealed that the clinicom-
ics-based nomogram had relatively good clinical per-
formance compared with other models. These results 
suggested that the radiomic signature provided addi-
tional value for personalized DM prediction (Fig. 3F).

Construction and validation of the predictive bone 
metastasis nomogram
A predictive bone metastasis nomogram was con-
structed, which included reproductive history, lymph 
node metastasis, CA153, CEA, CA125, and radiomics 
data (Fig. 4). The model showed good performance in 
both the primary (C index, 0.931; 95% CI: 0.868, 0.975) 
and validation cohorts (C index, 0.956; 95% CI: 0.926, 
0.986). The ROC and calibration curves are shown in 
Fig. 4.

Abbreviations: ER Expression of the oestrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2, TPSA Total prostate-specific 
antigen, CA125 Carbohydrate antigen 125, CEA Carcinoembryonic antigen, CA153 Carbohydrate antigen 125

Table 4  (continued)

Character All

Distant metastasis HR
(95% CI)

P-value

no yes

CEA

  Positive 1 (0.81%) 2 (20.00%) 18.2 (3.81–86.9)  < 0.001

  Negative 123 (99.19%) 8 (80.00%)

CA125

  Positive 8 (6.45%) 3 (30.00%) 5.5 (1.42–21.3) 0.013

  Negative 116 (93.55%) 7 (70.00%)

Operation

  No surgery 0 (0.00%) 2 (20.00%) 0.573 (0.177–1.86) 0.353

  Conserving 55 (44.35%) 2 (20.00%)

  Radical 69 (55.65%) 6 (60.00%)

Endocrinotherapy

  Yes 12 (9.68%) 0 (0.00%) 1.3e-08 (0-Inf ) 0.998

  No 112 (90.32%) 10 (100.00%)

Radiotherapy

  Yes 17 (13.71%) 3 (30.00%) 2.66 (0.687–10.3) 0.157

  No 107 (86.29%) 7 (70.00%)

Chemotherapy

  Yes 113 (91.13%) 10 (100.00%) 75,600,000 (0-Inf ) 0.998

  No 11 (8.87%) 0 (0.00%)

RadScore (mean ± SD) -2.82 (0.53) -1.72 (0.11) 0.356  < 0.001
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Construction and validation of the predictive visceral 
metastasis nomogram
A predictive visceral metastasis nomogram was con-
structed, which included lymph node metastasis, CA153, 
CA153, ER, PR, HER2 and radiomics data (Fig.  5). The 
model showed good performance in both the primary (C 
index, 0.895; 95% CI: 0.850–0.941) and validation cohorts 
(C index, 0.946; 95% CI: 0.918–0.975). The ROC and cali-
bration curves are shown in Fig. 5.

Discussion
Distant metastasis in breast cancer can be divided into 
two types based on DM diagnosis: synchronous DM 
at initial and metachronous DM that arises later in the 
disease course. There is sufficient evidence that the 
significant difference between synchronous DM and 
metachronous DM can be found, including clinicopatho-
logic characteristics, treatment responses and survival 
outcomes [12–14]. Compared with patients with syn-
chronous DM, patients with metachronous DM usually 
show better survival outcomes [15]. Two main poten-
tial explanations were summarized: 1. BC patients with 

synchronous DM usually visit the hospital later than 
patients with metachronous DM. 2. Treatment response 
is usually worse in BC patients with synchronous DM due 
to faster BC progression [16]. Few studies of metachro-
nous DM prediction in BC have been performed, and 
conducting such studies may guide individualized DM 
screening during the disease course.

This is the first study to investigate and validate DM 
risk prediction through cliniomics in BC patients. The 
concept of “omics” has been widely studied and applied, 
including genomics, proteomics, radiomics, and metabo-
lomics [17, 18]. “Omics” are developed based on patterns 
of changes in complex processes. Thus, this concept and 
approach can also be applied to patients in the clinic 
using the multidimensional features (complete his-
tory, epidemiological distribution, physical examina-
tion, laboratory test, imaging evaluation and histological 
examination) that are routinely investigated in a clinical 
evaluation of a patient. Before the development of AI 
techniques, clinicomics remained a hypothesis due to the 
difficulty of imaging/video data dimension reduction and 
integration.

Fig. 2  AUC of each radiomics model for 1-, 3-, and 5-year risk on training set (A-C) and validation set (D-F)
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Fig. 3  Construction of the clinicomics-based prediction model for non-distant metastasis (DM). A A nomogram was developed in the training data 
set with clinicopathological characteristics and RadScore. Calibration curves and ROC of the nomogram for the training set (B and D) and validation 
set (C and E). F Decision curve analysis derived from the validation cohort
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Breast US, with a proper balance of specificity and sen-
sitivity, is widely accepted as the first choice for breast 
lesion evaluation [19–21]. Compared with other imag-
ing evaluations, MRI has the highest sensitivity for inva-
sive lesion detection, and such sensitivity is not impaired 
by fibroglandular tissue, fibrous scarring, radiotherapy, 
breast implants, or other breast reconstruction [19, 22, 
23]. A recent study combined clinical features and MRI 
features and suggested that this method performs well 

for brain metastasis prediction before radiosurgery [24]. 
MRI features were suggested to be of significance for DM 
prediction in locally advanced rectal cancer [25]. Our 
previous study verified the significance of MRI for DM 
prediction in BC [26]. In the latest study, the combination 
of MRI and US showed satisfactory prediction ability for 
residual tumour size in early breast cancer [27]. A study 
evaluating the accuracy of various imaging methods in 
BC concluded that MRI had advantages for evaluating 

Fig. 4  Construction of the clinicomics-based prediction model for bone metastasis (BM). A A nomogram was developed in the training data set 
with clinicopathological characteristics and RadScore. Calibration curves and ROC of the nomogram for the training set (B and D) and validation set 
(C and E)
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Fig. 5  Construction of the clinicomics-based prediction model for visceral metastasis (VM). A A nomogram was developed in the training data set 
with clinicopathological characteristics and RadScore. Calibration curves and ROC of the nomogram for the training set (B and D) and validation set 
(C and E)
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suspicious breast lumps but had low specificity. US was 
able to compensate for MRI’s low specificity in image for-
mation [28]. Therefore, we combined the features from 
MRI and US to develop a clinicomics approach to DM 
prediction in BC patients.

The most important finding of the present study was 
that we created and validated DM prediction in BC 
through clinicomics. This approach can potentially be 
used in various clinical fields. The features extracted 
from the high-dimensional images can provide addi-
tional information. Factors including complete history, 
epidemiological distribution, physical examination, and 
laboratory tests can reflect each patient’s reaction to the 
specific tumour. Thus, a comprehensive judgement can 
be reached using AI-guided clinicomics analyses, and 
such analyses have potential applications.

Three prediction models were created to respectively 
predict DM risk, bone metastatic risk and visceral metas-
tasis risk. Each model showed a good ability to predict 
DM in BC, which could be used to stratify BC patients 
into different groups according to their risk for DM. 
Among the created models, the DM prediction model can 
be used for survival evaluation and general DM screen-
ing. A bone metastasis prediction model is of significance 
for the prevention and treatment of bone metastasis and 
potentially reduces adverse skeletal-related events. A vis-
ceral metastasis prediction model can guide DM screen-
ing of viscera through imaging examination and reduce 
unnecessary radiation exposure.

Our study has some limitations. First, the external vali-
dation with large population and various human ethnici-
ties will be needed. Second, further studies will be needed 
to analyse the effect of incorporating other imaging data 
into the predictive nomogram, such as mammography. 
Finally, several serological biomarkers indicating metas-
tasis potential of tumors such as EZH2 and PDGF were 
not analyzed in the study [29].

Conclusion
We validated the importance of clinicomics for predict-
ing the risk for DM and organ-specific DM in BC. Three 
AI-guided clinicomics prediction models in BC were cre-
ated: (1) the DM prediction model, (2) the bone metas-
tasis prediction model, and (3) the visceral metastasis 
prediction model. These models can potentially guide 
metachronous DM screening and the implementation 
of individualized therapy in BC. AI-guided clinicomics 
strategies possess the potential for wide application in 
the clinic.
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