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Abstract 

Background  Late detection of hepatocellular carcinoma (HCC) results in an overall 5-year survival rate of less than 
16%. Liquid biopsy (LB) assays based on detecting circulating tumor DNA (ctDNA) might provide an opportunity to 
detect HCC early noninvasively. Increasing evidence indicates that ctDNA detection using mutation-based assays is 
significantly challenged by the abundance of white blood cell-derived mutations, non-tumor tissue-derived somatic 
mutations in plasma, and the mutational tumor heterogeneity.

Methods  Here, we employed concurrent analysis of cancer-related mutations, and their fragment length profiles to 
differentiate mutations from different sources. To distinguish persons with HCC (PwHCC) from healthy participants, we 
built a classification model using three fragmentomic features of ctDNA through deep sequencing of thirteen genes 
associated with HCC.

Results  Our model achieved an area under the curve (AUC) of 0.88, a sensitivity of 89%, and a specificity of 82% in 
the discovery cohort consisting of 55 PwHCC and 55 healthy participants. In an independent validation cohort of 54 
PwHCC and 53 healthy participants, the established model achieved comparable classification performance with an 
AUC of 0.86 and yielded a sensitivity and specificity of 81%.

Conclusions  Our study provides a rationale for subsequent clinical evaluation of our assay performance in a large-
scale prospective study.
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Introduction
Primary liver cancer was the sixth most diagnosed can-
cer and the third leading cause of cancer death world-
wide in 2020, with approximately 906,000 new cases 
and 830,000 deaths. Incidence rates are the highest in 
transitioning countries, with the disease being the most 
common cancer in 11 geographically diverse countries 
[1]. More than 60% of patients are diagnosed with late-
stage disease after metastasis has occurred, resulting in 
an overall 5-year survival rate of < 16% [2]. Hepatocellu-
lar carcinoma (HCC) encompasses 75%-85% of primary 
liver cancers. Early-stage HCC is potentially responsive 
to curative treatment, ranging from local ablation to liver 
transplantation [3]. Early detection improves patients’ 
survival rates: patients diagnosed with early-stage disease 
have a relatively good prognosis, with a 5-year survival 
rate of > 70% [4]. Specifically, in patients diagnosed with 
early-stage HCC, such as Barcelona Clinic Liver Cancer 
stage 0 and A, the 5-year survival rate with the surgical 
intervention was > 93% [4]. The improvement of early 
detection is vital for low-resource settings where HCC 
often develops early without pre-existing cirrhosis, thus 
removing the early sign of a risk factor [3].

Current diagnostic tests based on serum protein bio-
markers give high false-positive results, and despite 
improvements, early cancer detection continues to face 
challenges [5, 6]. Liquid biopsy (LB) assays based on 
the detection of circulating tumor DNA (ctDNA) have 
recently emerged as noninvasive and accessible tools 
for the early detection of multiple cancer types [7–10]. 
ctDNA accounts for a small proportion of circulat-
ing cell-free DNA (cfDNA) in the blood and can be 
distinguished from benign cfDNA by specific markers 
such as mutations in genes known to be cancer-related 
[7, 11, 12]. There are several cancer-related mutations 
that allow ctDNA to be distinguished from cfDNA. 
CancerSEEK, a multi-analyte blood test, was used 
to survey 1,005 participants with clinically detected 
non-metastatic forms of one of eight common cancer 
types (breast, colorectal, esophageal, liver, lung, ovar-
ian, pancreatic, and stomach). Evaluating levels of eight 
proteins and the presence of mutations in 1933 distinct 
genomic positions, a positive CancerSEEK test was 
classified as the presence of a mutation in an assayed 
gene or an elevated level of any of the proteins. The 
tests had a median sensitivity of 70% (ranging from 69 
to 98%) for detecting these eight cancer types [7]. How-
ever, there are several characteristics of cfDNA that 

hamper its use as a diagnostic tool. First, the extremely 
low concentration of tumor-derived cfDNA found 
in a blood draw reduces the ability to detect early-
stage tumors [6]. Additionally, some patients have low 
ctDNA even during late-stage disease [8]. This low 
proportion, coupled with the low variant allele fre-
quency (VAF) found in somatic mutations in tumor-
derived cfDNA, causes problems for traditional single 
nucleotide variant (SNV) callers [9]. Second, because 
cfDNA contains multiple sources of DNA, hematopoie-
sis mutations formed from the clonal proliferation of 
blood cells can lead to false-positive findings and con-
found LB interpretation [13, 14]. This high contribution 
of cfDNA with a wide range of somatic mutations cre-
ates a bias [14]. Third, somatic mosaicism, or normal 
cells carrying benign somatic mutations, is common in 
healthy people across many organs and tissues. Somati-
cally mutated DNA enters the blood-lymph system and 
contributes to the circulating cfDNA [15].

In addition to mutations, features of the cfDNA frag-
ments, like size, single-stranded jagged ends, and end-
point locations, have also been exploited to develop 
noninvasive screening and diagnostic assays [16]. An 
early study of plasma cfDNA found varying fragment 
sizes between benign adnexal masses and malignant 
gynecological neoplasms [17]. While cfDNA of partici-
pants with hepatitis B virus (HBV) infection, cirrhosis, 
and HCC contained fragments sized at an average of 
about 166 bp, the plasma DNA of cancer patients had 
both shorter and longer fragment distribution [18]. In 
contrast to cfDNA from healthy people, cancer patients 
had numerous distinct genomic differences, includ-
ing longer and shorter fragments at different regions 
[19]. Several studies have shown that cfDNA frag-
ments harboring mutant alleles were often shorter than 
those with wild-type alleles [20–22]. Size selecting for 
shorter cfDNA fragments increases the proportion of 
ctDNA within a sample [21]. For example, the cfDNA 
of a group of lung cancer patients was more fragmented 
than that of healthy controls, with an average length of 
134 to 144 bp. Thus, tracking the mutational landscape 
and fragmentation of plasma cfDNA might have prom-
ising diagnostic potential [20].

This study addressed the challenges of using cancer-
associated mutations to detect ctDNA in a discov-
ery cohort of 55 patients with early-stage HCC and 
55 healthy individuals. To overcome these challenges, 
we developed an assay based on the aggregation of 
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fragment length profiles of mutations in the 13 most 
frequently mutated genes associated with HCC. We 
evaluated the performance of our assay in both the dis-
covery cohort and an independent validation cohort of 
54 PwHCC and 53 healthy participants from a different 
hospital.

Materials and methods
Study design and patient enrollment
In the discovery cohort, a total of 55 patients with HCC 
confirmed by imaging diagnosis and histopathological 
analysis and 55 healthy participants from the National 
Cancer Hospital, Hanoi, Vietnam, were recruited to this 
study from March 2019 to December 2021 (Fig. S1). The 
recruitment criteria for HCC patients were early stage 
(stage I, II) or with non-metastatic disease (stage IIIA) 
and naive to treatment. Healthy participants had no diag-
nosis of cancer or previous history of cancer.

In the validation cohort, our study included 54 patients 
with non-metastatic HCC plus 53 healthy individuals 
from the Medic Medical Center, Ho Chi Minh City, Viet-
nam, recruited from July 2019 to December 2021 to vali-
date the performance of our assay (Fig. S1). HCC patients 
in the validation cohort visited the Medic Medical Center 
for diagnostic imaging examinations but went to other 
hospitals for treatment. Therefore, their tumor tissue 
samples were not available for histopathological analysis.

Written informed consent was obtained from all 
patients for tumor and whole blood samples. Written 
consent was obtained from all healthy controls. Clinical 
data (demographics, cancer stages, and pathology data) 
was collected from medical records at the National Can-
cer Hospital. Comprehensive details of patients’ clinical 
factors are summarized in Tables S1A and B.

This study was approved by the Ethics Committee of 
the National Cancer Hospital and Medic Medical Center.

Whole blood and tumor sample processing
Liquid biopsy, and white blood cell samples were taken 
from all 55 PwHCC in the discovery cohort. Of those 
patients, 44 had available tissue biopsies. Only blood 
samples were collected from 54 PwHCC in the validation 
cohort. Additionally, blood samples were collected from 
all 108 healthy participants, including 55 in the discovery 
cohort and 53 in the validation cohort.

Ultra-deep targeted sequencing was used to determine 
the sequence of the 13 genes most frequently associ-
ated with HCC according to the COSMIC database [23]. 
Peripheral blood samples were collected in 10-ml Streck 
tubes (Cell-free DNA BCT, Streck) and stored at room 
temperature for a maximum of 8  h before undergoing 
plasma isolation. Whole blood was separated into plasma 
and buffy coat via centrifugation (2000 × g for 10 min and 

16,000 × g for 10  min) and stored at -80º C and -20º C, 
respectively. cfDNA was extracted from 1  ml of plasma 
using the MagMAX cell-free DNA Isolation Kit (Thermo 
Fisher, USA) following the manufacturer’s instruction.

From patients with HCC, formalin-fixed, paraffin-
embedded (FFPE)-tumor samples and plasma with 
matched white blood cell (WBC) DNA from the periph-
eral blood were collected. Tumor DNA and WBC DNA 
from matching buffy coat were isolated using the QIA-
GEN FFPE DNA Mini Kit (QIAGEN, USA) and the 
MagMAX DNA Multi-Sample Ultra 2.0 Kit with King-
Fisher Flex automated instrument (Thermo Fisher, USA), 
respectively. Genomic DNA (gDNA) was fragmented 
with NEBNext dsDNA Fragmentase (New England Bio-
labs, USA) at 37º C for 15 min. The reaction was stopped 
immediately with 0.5  M EDTA. Sheared gDNA was 
selected by size (100–1000 base pairs) using KAPA Pure 
Beads (Roche, Switzerland). DNA concentration was 
measured using the QuantiFluor dsDNA system (Pro-
mega, USA).

Library preparation, target enrichment, and sequencing
Sheared gDNA (30  ng) and plasma cfDNA (≥ 1.5  ng) 
were used for NGS library construction with the Thru-
PLEX Tag-seq Kit (Takara Bio, USA). The stem-loop 
adapters provide 16 million unique molecular tags 
(UMT) to reduce the technical assay error rates and 
ensure the correct base call throughout data analysis.

DNA sequencing was performed using the MGI DNB-
SEQ Sequencing Technology (BGI, China) with 100 
paired-end read lengths for a total of 222 cycles per the 
manufacturer’s guidelines. Quantified libraries were 
enriched with a self-built panel for targeted genes. The 
panel comprised 12 genes with high mutation frequen-
cies in HCC and a TERT-promoter region that cor-
related with an increased risk of HCC (Table S2) [24]. 
Up to 1500 ng of cfDNA and gDNA libraries were used 
for hybridization capture with IDT xGen Lockdown 
Reagents (IDT, USA). We designed a xGen Lockdown 
probe panel spanning the entire coding regions of the 12 
selected genes and the promoter region of TERT (Table 
S2). Thus, multiple mutations within these regions were 
called and summarized in Table S3. Hybridization per-
formance was analyzed by target rate and percentage of 
reads mapped.

Data analysis and variant calling pipeline
Variant calling pipeline
The data analysis and variant calling pipeline began with 
trimming the raw sequencing reads in demultiplexed 
FASTQ from 100 to 75 bp by Trimmomatic v.0.39 from 
the 3’ end [25]. For quality control of FASTQ files, we 
ran fastqc v.0.11.8. We implemented a custom pipeline 
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to process the Unique Molecular Identifier (UMI) fol-
lowing the trimming process. We extracted and assigned 
UMI to all reads starting with an alignment process 
(BWA-MEM v.0.7.17) of raw reads to the human refer-
ence genome (hg38) [26]. Reads were then grouped by 
their UMI, followed by calling consensus sequences from 
reads with the same UMI. These processes are performed 
with the help of fgbio package v.1.4.0 [27, 28]. Finally, 
we performed variant calling with Vardict-Java v.1.5.1 
after aligning all consensus reads to the human reference 
genome (hg38) [29]. Note that we only used the single-
sample mode of Vardict; our custom framework filtered 
called variants. Variant annotations were queried by VEP 
v.99 from COSMIC (v.94)23 and Clinvar [30]. For process-
ing aligned reads in SAM/BAM format, we use samtools 
v.1.14 [31], bedtools v.2.30 [32], and picard v.2.18.7 [33]. 
All variants were examined but only those with VAF less 
than 0.1 were included in the construction of fragmen-
tomic features. We also developed our in-house Python 
scripts for the analysis, including the following packages: 
pandas, numpy, scipy, matplotlib, seaborn, scikit-learn, 
xgboost, pyoncoprint [34].

Fragment length analysis
For fragment length (Flen) distributions, we implemented 
an in-house python script to convert the bsalign files into 
BAM files. All read pairs from the BAM file with frag-
ment length ranging from 100 to 250 bp were collected. 
In the range of 100 to 250  bp, there were 151 possible 
fragment lengths, starting from length of 100  bp, with 
1 bp increment, up to 250 bp. With each length, the fre-
quency of fragment (%) was calculated by getting the per-
centage of reads with each length to the total read count 
in the range of 100 to 250 bp. This calculation resulted in 
a feature vector of 151 dimensions. We plotted fragment 
length (bp) against frequency of fragment (%) to obtain a 
Flen distribution curve.

For ratio of short fragment to long fragments, the 
whole genome was segmented into non-overlapping bins 
of 5  Mb (5 million bases). Bins from chromosomes X 
and Y were excluded in this analysis. Reads which were 
shorter than 100 or longer than 250 bp were removed. In 
each bin, short reads, whose read lengths were from 100 
to 150 bp, and long read, whose read lengths were from 
151 to 250 bp were collected. The ratio of the number of 
short reads to the number of long reads in each bin was 
calculated. This finally resulted in a feature vector of 588 
dimensions corresponding to 588 bins of 5 Mb.

Fragmentomic features
We followed an approach inspired by Chabon et al. [35] 
to build a classification model using fragmentomic fea-
tures. First, we employed a statistical model to eliminate 

potential WBC variants that could also exist in LB sam-
ples. Variants from a cohort of 55 WBC samples of can-
cer patients and 55 WBC samples of healthy-control 
individuals were pooled together. We adopted the con-
struction of a WBC Bayesian background model [35] 
for this purpose: We modeled a background distribution 
and a zero-inflated beta distribution for the WBC vari-
ants coming from these 110 samples based on their VAF, 
allele depth (AD), and total read depth (DP). For a given 
variant found in a LB sample and the WBC cohort, we 
measured the difference between the variant and the 
background distribution. A p-value emphasizing the sig-
nificance of the difference was calculated. Only variants 
having p-value less than 0.05 were kept and denoted by 
LB unique. It is expected that, by this method, variants 
whose profiles demonstrate a similar pattern in VAF to 
WBC variants were excluded. Finally, we constructed the 
following features using these selected variants:

Feature 1: Fraction of short-to-long Alternate (ALT)-
fragments

For each mutation in the LB-unique set, we fetched all 
reads overlapping its genomic coordinates and calculated 
their fragment lengths. Fragments having the mutation of 
interest were denoted ALT-fragments, and the remaining 
fragments were labeled REF (reference)-fragments.

We constructed the first fragmentomic feature as the 
fraction of short ALT-fragments (ALT-fragments shorter 
than 150  bp) to long ALT-fragments (ALT-fragments 
longer than 150 bp) with all mutations (Fig. S5A). Since 
tumor-derived fragments would be more likely to be 
shorter than normal fragments [36], this feature could be 
considered as a measure for abundance of tumor-origi-
nated fragments in cancer patients.

Feature 2: Size selection enrichment test

Fragment length distribution of all fragments overlap-
ping LB-unique mutations in cancer patients differs from 
that of the healthy individuals (Fig. S5B). However, these 
differences are only significant in some specific ranges 
regarding the number of ALT and REF-fragments (Fig. 
S5B). A Fisher’s exact test for the following contingency 
table succinctly describes this observation.

110 ≤ s ≤ 135 s < 110 
or 
s > 135

Number of REF-fragments A B

Number of ALT-fragments C D

The Phil’s read editor (PHRED)-scaled p-value obtained 
from this test will be the second feature in our machine 
learning model.
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Feature 3: The probability of observing a fragment of 
size s in ALT-fragments and REF-fragments

Roughly speaking, we computed the probability of observ-
ing an ALT-fragment of size s , for s ∈ {100, 101, ..., 250} in 
all ALT fragments by proportions (Fig. S5C)

Similarly,

We then calculate

The third feature will be the sum of �(s) over a sliding 
and non-overlapping window of 10 consecutive values of 
s , s ∈ {100, 101, ..., 250} , which yields a 15-dimensional 
feature vector.

Machine learning model and training procedure
Machine learning model
We trained a gradient-boosting tree-based algorithm to 
classify cancer patients versus healthy individuals. The 
set of features used in this model combined all three fea-
tures described previously, generating a data matrix in 
RN×17 , where N  denotes the number of samples. Param-
eter tuning was performed using a grid-search strategy.

Leave‑one‑out cross validation
We split the dataset into a discovery and validation 
cohort. The discovery cohort has 55 PwHCC and 55 
healthy participants. We trained the model with the 
leave-one-out cross-validation procedure to examine the 
model’s performance. The overall results, sensitivity and 
specificity, and the optimal threshold for the base score 
of predicted probability were determined by the Receiver 
Operating Characteristic (ROC) analysis and Youden’s 
index [37].

The external validation comprised of 54 blood samples 
taken from PwHCC from a different hospital than the 
discovery cohort’s, along with 53 healthy participants. 
This cohort served as an independent validation set for 
our trained machine learning model (Fig. S1).

Statistical analysis
The Wilcoxon signed rank test was used to compare the 
median age and differences in fragmentomic features of 
HCC patients and healthy subjects. Chi-squared (χ2) test 

Prob(f = s|f ∈ ALT fragments) =
#{number of ALT fragments of size s}

#{total number of ALT fragments}

Prob(f = s|f ∈ REF fragments) =
#{number of REF fragments of size s}

#{total number of REF fragments}

�(s) :=
Prob(f = s|f ∈ ALT fragments)

Prob(f = s|f ∈ REF fragments)

was performed to compare gender ratios between HCC 
and healthy controls. Pearson’s correlation coefficient test 
was used to assess correlations between WBC-derived 
mutational VAFs in LB and WBC samples. All statistical 
analyses were carried out using Python (v3.7) with some 
common data analysis packages: numpy, scipy, pandas.

Results
Clinical characteristics of HCC patients and healthy 
participants in discovery and validation cohorts
For the discovery cohort, we collected blood and tumor 
samples from 55 patients with stage I, II, and IIIA HCC 
and blood samples from 55 healthy participants from 
the National Cancer Hospital in Hanoi (Table  1, Fig. 
S1). Most of the patients were men (85.5%), and the vast 
majority of the patients had hepatitis B infection (78.2%). 
Patients with stages I and II account for most patients 
(Stage I: 16.4%; stage II: 52.7%). To validate our assay, we 
additionally recruited 54 HCC patients and 53 healthy 
individuals from another hospital, the Medic Medical 
Center in Ho Chi Minh City (Table 1, Fig. S1). For those 
patients, only blood samples were collected thus histo-
logical analysis is not available. All cancer patients in the 
discovery cohort were confirmed to have non-metastatic 
cancer by imaging diagnosis and histological analysis. All 
cancer patients in the validation cohort were confirmed 
to have non-metastatic cancer by imaging diagnosis. 
The median age and gender ratio of cancer patients and 
healthy individuals in this cohort are comparable to those 
of the discovery cohort (Table 1). In both the discovery 
and validation cohort, HCC patients had significantly 
higher median age and male to female ratios than healthy 
controls.

Plasma samples of HCC patients (PwHCC) contains 
an abundance of WBC‑derived mutations
Our previous study and others have shown that plasma 
cfDNA and tumor tissues contain mutations from non-
cancerous blood cells and cancer cells [14, 38]. Thus, 
one major challenge to using tumor-derived mutations 
(TDM) as biomarkers for detecting ctDNA in plasma is 
that many characteristics overlap with WDM. To address 
this challenge in PwHCC, we sequenced plasma cfDNA 
and paired white blood cell (WBC) genomic DNA from 
all 55 PwHCC in the discovery cohort.

Our sequencing assay examined the 12 most fre-
quently mutated genes in HCC and promoter region of 
TERT according to the COSMIC database (Table S2). 
We also employed UMI technology to suppress sequenc-
ing errors. DNA sequencing data were obtained from all 
PwHCC with on target rates > 50%, and comparable UMI 
consensus read coverage ≥ 500X, for plasma cfDNA and 
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WBC gDNA (Figs. S2A and B). By using at least 1.5 ng of 
cfDNA (ie. ≥ 1.5 ng, IQR: 3.74-7.15, Fig. S2C) for library 
preparation, we achieved sequencing depth coverages 
consistent with a previous study which used 1.7 to 10 ng 
of cfDNA and achieved mean coverage of the targeted 
bases of 462.6X by performing target capture for a gene 
panel with comparable size [39].

Consistent with previous findings, many of the muta-
tions found in cfDNA fragments from the plasma of 
PwHCC were also found in the buffy coat portion of the 
plasma (LB-share-WBC), indicating that these muta-
tions originated in the WBC (Fig.  1A). LB-share-WBC 
mutations accounted for about 41.3% of the mutations in 
plasma cfDNA, ranging from 4.5% to 57.8% of mutations 
(Fig. 1A, Table 2).

Moreover, the VAFs of LB-share-WBC mutations 
in plasma highly correlated with their VAFs in WBCs 
(r = 0.95, 95% CI 0.94–0.97, p < 0.0001, Fig. 1B). This find-
ing further confirmed that WDMs are the major con-
stituents of PwHCC’s LB. LB-share-WBC mutations with 
VAF > 0.2 are likely germline mutations, while those with 
VAF < 0.2 might arise from clonal hematopoiesis. After 
excluding LB-share-WBC mutations, the remaining non-
overlapping mutations denoted as LB-unique mutations 
(LB-unique) might be of tumor origin (median: 58.7%, 
range: 42.2%–95.5%, Fig. 1A, Table 2).

Of the 138 detected WDMs, 62 (44.9%) overlapped with 
LB-unique detected across individual patients (Fig.  1C), 
indicating that the spectra of WDMs and LB-unique 
mutations are not distinct, or that a LB-share-WBC 

Table 1  Characteristics of Discovery and Validation cohorts

a  Chi-square values of ratio of female to male: Discovery cohort, p = 5.146e-06; Validation cohort, p = 0.015
b  Wilcoxon signed rank test for ages: Discovery cohort, p = 2.444e−06; Validation cohort, p = 4.223e−10

Discovery cohort Validation cohort

PwHCC (N = 55) Healthy
participants (N = 55)

PwHCC (N = 54) Healthy
participants 
(N = 55)

N (%) N (%) N (%) N (%)

Gendera

  Female 8 (14.5) 32 (58.2) 16 (29.6) 29 (54.7)

  Male 47 (85.5) 23 (41.8) 38 (70.4) 24 (45.3)

Ageb

  Median 58 42 60 40

  Min 24 25 33 26

  Max 87 81 77 67

Stage
  I 9 (16.4) NA All patients were confirmed to have non-

metastatic HCC
NA

  II 29 (52.7) NA NA

  III 3 (5.5) NA NA

  NA 14 (25.5) NA NA

Risk factor
  HBV 43 (78.2) NA 32 NA

  HCV 3 (5.5) NA 10

  HBV/HCV 1 (1.8) NA 1

  No 6 (10.9) NA 7

  Not detected 2 (3.6) NA 3

Fig. 1  Identification of white blood cells (WBCs) derived mutations in liquid biopsies of HCC patients. A Detection rates of mutations shared 
between liquid biopsies and paired WBCs (LB-share-WBC) and mutations uniquely found in liquid biopsy (LB) samples (LB-unique) (n = 55). B 
Correlation of the mean VAFs of LB-share-WBC mutations in WBCs and LBs. p‐values and correlation coefficients (r) were calculated using Pearson’s 
correlation test. C Venn diagram showing overlapping LB-share-WBC and LB-unique spectra. (yellow) LB and WBC shared. (pink) LB-unique.
(green) WBC unique. D The concordance rates of WBC-derived mutations detected by parallel sequencing of paired WBC gDNA and plasma cfDNA 
with in-house model

(See figure on next page.)



Page 7 of 17Nguyen et al. BMC Cancer          (2023) 23:233 	

Fig. 1  (See legend on previous page.)
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mutation in a particular person could be an LB-unique 
mutation in another. This lack of distinction suggests 
that parallel sequencing of cfDNA and matched WBC 
gDNA at equal depth is required to identify LB-share-
WBC mutations in the plasma of each patient to avoid 
misinterpretation with mutations that are potentially 
of tumor origin. Since this approach is cost-prohibitive, 
we developed an in-house probabilistic model to distin-
guish LB-share-WBC mutations from LB-unique muta-
tions in plasma by modeling the distributions of VAFs, 
occurrences, and allele read depth of the two mutation 
groups. Compared to the parallel sequencing approach, 
the model achieved a high concordance rate of 91.7% in 
identifying LB-share-WBC mutations in 55 HCC samples 
(Fig. 1D). Our findings showed that WBC-derived muta-
tions are abundantly present in the plasma of PwHCC 
and could be accurately determined by using a probabil-
istic model.

Heterogeneity and overlap of tumor‑derived mutations 
with mutations detected in healthy individuals
We performed sequencing on patient-paired tumor tis-
sues to identify possible tumor origins of LB-unique 
fragments. Of the 55 HCC patients, only 41 underwent 
tissue biopsy and had available tumor tissue samples. 
WBC derived mutations (WDMs) were also detected in 
the paired tumor tissues of those patients (FFPE-share-
WBC) at lower rates than LB samples, with a median of 
about 9.9% of the mutations (range 1.6%-26.0%, Fig. 2A, 
Table 3).

These could be germline mutations or be derived 
from tumor-infiltrating lymphocytes. After excluding 
such mutations, only a small proportion of mutations 
in tumor tissues overlapped with LB-unique muta-
tions (FFPE-share-LB-unique, median: 0.2%, range 
0–3.1%, Fig. 2A, Table 3); these were denoted as tumor-
derived mutations (TDMs). Thus, not all mutations 

detected in tumor tissues were shed into the circulation 
and the remaining mutations uniquely detected in tumor 
tissues (FFPE-unique) constituted the majority (median: 
90.1%, range 70.8%- 97.8%). LB-unique mutations that 
were not confirmed in paired tissues were defined as 
variants of unknown source (VUS). Such VUS could be 
derived either from tumor clones that were lost during 
tissue sampling or from unknown sources, as previously 
described [14].

Of the 41 LB samples from patients with available 
paired tumor tissues, 22 (53.6%) had at least one TDM 
(Fig.  2B). TDMs were detected in all stages of HCC 
(Fig. 2B). Of 30 identified TDMs, two mapping to TP53 
(chr17: 7,674,216-C > A) and TERT promoter (chr5: 
1,295,143-G > A) were shared by 5 and 4 patients, respec-
tively. The majority (25/30, 83.3%) of TDMs were not 
shared among PwHCC, thus highlighting the inter-indi-
vidual heterogeneity of TDMs (Fig. 2B). In addition, we 
found that 3/30 (10%) TMDs were found in 10/55 (18.2%) 
of the blood samples of healthy control participants (Fig. 
S3A). These shared mutations are most likely benign 
somatic mutations, leading to the false-positive detection 
of cancer patients. These findings presented the hetero-
geneity of TMDs detected in plasma samples of PwHCC 
and their overlapping profiles with benign somatic muta-
tions in LB samples of healthy individuals, highlighting 
the importance of using the presence of the HCC-asso-
ciated mutations as markers to distinguish PwHCC from 
healthy individuals.

TDM fragments and LB‑unique fragments from PwHCC 
display size distribution profiles distinct from the reference 
sequences with an increased proportion 
of short fragments
It has been well established that cfDNA shed by can-
cer cells (ctDNA) tend to be shorter than cfDNA shed 
by other normal cells [19, 21]. Consistent with a pre-
vious study by Jiang et  al. [18], we found that short 
DNA fragments (< 150  bp) appeared more frequently 
in the plasma of HCC patients compared to healthy 
individuals (Fig. S4A). Moreover, liver cancer patients 
had markedly higher ratios of short (< 150  bp) to long 
(> 150  bp) cfDNA fragments across the entire genome 
than healthy individuals (Fig. S4B). These data provide 
a rationale for exploiting these signatures in combina-
tion with cancer mutations to detect HCC.

We decided to examine whether the fragment length 
of mutant reads could be exploited to differentiate 
sources of mutations. We found that the reads bearing 
LB-share-WBC mutations in both PwHCC and healthy 
individuals overlapped in fragment length density with 
their corresponding reference reads (Fig.  3A and B). 
Interestingly, the fragment length distribution of the 

Table 2  Descriptive statistics of the proportion of LB-unique and 
LB-share-WBC or the discovery cohort

#_total #_LB-unique #_
LB-share-
WBC

%_LB-unique %_
LB-share-
WBC

count 55.0 55.0 55.0 55.0 55.0

mean 114.6 83.7 31.0 62.0 38.1

std 114.9 114.7 4.31 14.0 14.0

min 52.0 22.0 20.0 42.2 4.5

25% 64.5 32.0 28.5 52.0 32.8

50% 73.0 43.0 32.0 59.0 41.3

75% 96.0 60.5 34.0 67.2 47.9

max 663.0 633.0 41.0 95.5 57.8
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TDM-bearing reads in PwHCC was different from LB-
share-WBC mutations (Fig. 3C). Specifically, the profile 
of the TDM reads in 55 PwHCC skewed to the left and 
peaked at 150  bp, indicating a preponderance of frag-
ments shorter than 150 bp (Fig. 3C), which is consist-
ent with previous studies [40, 41] showing that ctDNA 

fragments tended to be shorter than other cfDNA frag-
ments. By contrast, the fragment length distribution of 
reads containing mutations detected in healthy individ-
uals and shared with TDM in PwHCC (TDM in healthy 
control) overlapped with their reference reads, resem-
bling the profiles of background WDM (Fig.  3D). This 

Fig. 2  Tumor-derived mutations in plasma samples of PwHCC displayed heterogeneity. A Proportion of different mutation groups in tumor tissues 
from 55 PwHCC, including mutations overlapping WBC-mutations (FFPE-share-WBC), with mutations detected in paired plasma samples (TDMs 
or FFPE-share-LB unique) or those uniquely detected in tumor tissues (FFPE-unique). B Oncoprint plots of distributions of TDMs in 49 PwHCC with 
paired plasma and tumor tissues. Rows and columns represent TDMs and patients, respectively. Mutations are labeled on the right side. The left-side 
bar plot shows the occurrences of each mutation, among all patients, while the top most bar plot represents the mutational loads of each patient. 
HCC Patients are grouped according to their tumor stages
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suggested that DNA fragments carrying TDMs could 
be distinguished from non-tumor cfDNA fragments 
despite harboring overlapping mutations. Although the 
peak at 150 bp was less obvious, VUS fragments which 
may consist of not yet confirmed TDMs also displayed 
left-skewed profiles like that of TDMs (Fig.  3E). The 
unique signatures of TDM and VUS bearing fragments 
prompted us to examine whether aggregation of frag-
ment length of all LB-unique mutations detected in 
plasma after excluding background WDM mutations 
could distinguish PwHCC from healthy individuals.

Like TMDs and VUS, LB-unique mutations of 55 
PwHCC displayed a left skewness in their fragment 
length distribution compared to their reference reads 
(Fig.  3F, Fig. S5A). By contrast, the distribution of frag-
ment length of LB-unique mutations of 55 healthy par-
ticipants overlapped with their reference reads, which 
was similar to the fragment patterns of WDMs (Fig. 3G, 
Fig. S5B). Thus, these results suggested that cfDNA frag-
ments containing LB-unique mutations in PwHCC had 
length distributions distinct from that of healthy partici-
pants, which could serve as potential markers for detec-
tion of ctDNA.

Machine learning model built from fragment length 
profiles of LB‑unique mutations could distinguish HCC 
patients from healthy participants
To further highlight the differences in fragment length 
profiles between PwHCC and healthy participants, we 

first compared the ratios of short reads (< = 150  bp) to 
long reads (> 150  bp) that contained LB-unique muta-
tions between the two groups (feature 1, Fig. S6A). We 
observed a significant increase (Fig.  4A, p = 0.00115) in 
the fraction of short reads bearing LB-unique mutation 
in PwHCC compared to healthy participants. By focusing 
on fragments in a specific length range between 110 and 
135 bp (feature 2, Fig. S6B), we observed that the prob-
ability of finding such fragments in LB from PwHCC is 
significantly higher than from healthy participants (Fig. 
S5B and Fig. 4B, p < 0.001). The third fragmentomic fea-
ture (feature 3, Fig. S6C) is the probability of detecting 
reads containing cancer mutations at a particular size s 
(s ranges from 100 to 250 bp). For this feature, we gen-
erated a 15-dimensional vector containing 15 values cor-
responding to 15 windows of 10  bp as described in the 
Materials and methods section. The principal component 
analysis showed that samples taken from PwHCC tended 
to cluster together while data revealed that samples taken 
from healthy participants did not form a clear cluster 
(Fig.  4C). To evaluate the classification performance of 
these individual feature types and their combinations, 
we used a gradient-boosting tree-based algorithm and 
performed leave-one-out cross-validation strategy for all 
the samples in the discovery cohort. We found that the 
model built from feature 3 provided the greatest classi-
fication power with AUC of 0.82, followed by feature 1 
and feature 2 with AUC of 0.81 and 0.77, respectively 
(Fig. 4D). The combination of all three features achieved 

Table 3  Number and proportion of different types of mutations detected in FFPE samples

#_total #_FFPE-unique #_FFPE-
share-WBC

#_FFPE-
share-LB

#_FFPE-share-LB-
unique (TDM)

%_FFPE-unique %_FFPE-
share-WBC

%_FFPE-share-
LB-unique 
(TDM)

count 41 41 41 41 41 41.0 41.0 41.0

mean 424 392 31 31 2 89.0 10.5 0.4

std 302 302 4 4 2 6.4 6.2 0.6

min 96 68 21 23 0 70.8 1.6 0.0

25% 225 193 28 28 0 84.8 5.8 0.0

50% 338 303 31 31 1 90.1 9.9 0.2

75% 539 508 33 34 2 94.0 14.2 0.6

max 1720 1682 39 41 10 97.8 26.0 3.1

Fig. 3  Distinct fragment length patterns of different sources of plasma mutations in PwHCC and healthy individuals. A and B Distribution of 
fragment length of sequencing reads carrying WBC-derived mutations (ALT) in PwHCC (A) and healthy individuals (B), as compared to their 
corresponding reference reads (REF). C and D Distribution of fragment lengths of sequencing reads carrying TDMs in PwHCC (C) and TDM shared 
mutations (D) detected in healthy participants, as compared to their corresponding reference reads (REF). E Distribution of fragment length of 
sequencing reads carrying variants of unknown sources (VUS) detected in plasma samples of HCC patients. F and G Distribution of fragment 
lengths of sequencing reads carrying LB-unique mutations in PwHCC (F) and healthy individuals (G), as compared to their corresponding reference 
reads (REF)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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the best performance with AUC of 0.88 (Fig. 4D), sensi-
tivity of 89%, and specificity of 82% (Table 4). There were 
no significant differences in the cancer prediction scores 
between patients with stage I HCC and those with stage 
II HCC (Fig. 4E). Patients with stage III HCC tended to 
have lower prediction scores, however, more samples are 
required to draw a firm conclusion (Fig. 4E).

To comprehensively evaluate the predictive power of 
the features’ abilities to preferentially detect the presence 
of HCC TDM in LB of PwHCC compared to healthy par-
ticipants, we tested the combination model on the vali-
dation cohort of 54 PwHCC and 53 healthy participants 
recruited from another hospital (Fig. S1). The model 
exhibited comparable classification performance with an 
AUC of 0.86 (Fig. 4F) and yielded a sensitivity and speci-
ficity of 81% (Table 4).

Taken together, our results showed that the machine 
learning model based on fragment length signatures of 
plasma mutation bearing reads could overcome the chal-
lenges of using cancer-specific mutations to discriminate 
blood samples of patients with early-stage HCC from 
healthy individuals.

Discussion
Like many cancers, early detection improves prognosis 
and survival rates of PwHCC. But current detection meth-
ods primarily rely upon imaging and a blood test for a non-
specific tumor marker, alpha-fetoprotein, which showed 
inefficacy in detecting tumors smaller than one centimeter. 
In the present study, we presented the major challenges 
of LB assays based on cancer-specific variants and pro-
posed a novel approach combining variant status and their 

Fig. 4  Fragment length profiles of LB-unique mutations could distinguish liquid biopsy samples of patients with early-stage HCC from healthy 
individuals. A Comparison of ratios of short (< 150 bp) to long (> 150 bp) reads bearing LB-unique mutations (feature 1) between PwHCC and 
healthy individuals in the discovery cohort. Box plots include the median line, p-value estimated by the one-tailed Mann–Whitney U test. B 
Comparison of PHRED-scaled p-values obtained from enrichment analysis of fragment length distribution in specific ranges (feature 2, Materials 
and methods sections) of all fragments bearing LB-unique mutations from PwHCC with that of healthy individuals. Box plots include the median 
line, p-value was using the one-tailed Mann–Whitney U test. C Principal component analysis of �(s) over a sliding and non-overlapping window 
of 10 consecutive values of s , s ∈ {100, 101, ..., 250} , which yields a 15-dimensional feature vector (feature 3) in PwHCC and healthy individuals. D 
ROC curves showing the classification power of individual features and their combinations. E Box plot comparing the cancer prediction scores 
of patients with different tumor stages including stage I (n = 9), stage II (n-29) and stage III HCC (n = 3). F ROC curve showing the performance of 
models built by combining the three signatures of fragment length of LB-unique mutations in an independent validation cohort. bp: base pair
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fragment size to overcome challenges and enhance speci-
ficity and sensitivity for early detection of HCC.

Consistent with previous studies, we observed that 
many of the WBC can confound the clear interpretation 
of TDM in plasma cfDNA [42]. To identify such muta-
tions, we built an in-house probabilistic model using the 
frequency of altered alleles and total coverage of cfDNA 
and WBC sequences (see Materials and methods). 
We observed large proportions of background muta-
tions originated from WBC cells (Fig.  1A). However, 
after implementing our statistical model, we were able 
to reduce the proportion of WBC derived mutations, 
which contributed to the high false positives (Fig. S3B). 
Thus, our zero-inflated Beta distribution model based 
on modelling different characteristics of WBC derived 
mutations including VAF, allele depth (AD) and total 
read depth (DP) enabled the removal of false positive LB-
unique mutations. Consistently, other studies using simi-
lar methodology demonstrated better than the traditional 
mutation selection methods that relies on a pre-defined 
set of somatic mutations, e.g. COSMIC [43, 44]. The 
model achieved high concordance rates with the more 
expensive approach of sequencing both plasma cfDNA 
and paired WBC gDNA at high depth (Fig. 1D). In addi-
tion to a small number of driver mutations, each cancer 
contains several passenger mutations and the classifica-
tion of driver from passenger mutations is a challenging 
task in the field [45]. A study by Salvadores et  al. [46] 
showed that passenger mutations could serve as markers 
to classify a tumor to a tissue-of-origin, which is clinically 
important for a multicancer detection blood test.

An important drawback of employing mutations as 
markers for the development of ctDNA screening tests 
is the overlap of TDM with non-tumor benign somatic 
mutations. Indeed, a previous study discovered that 
cfDNA TP53-mutated fragments in 11% of 225 non-
cancer controls suggests that circulating mutated frag-
ments among individuals without any diagnosed cancer 

is common [47]. In agreement with their conclusion, we 
found 10/55 healthy individuals in the discovery cohort 
(Fig. S3) carrying mutations overlapping with mutations 
identified as TDMs, resulting in high detection rates of 
false-positive mutations. Interestingly, we showed that 
different sources of mutations could be differentiated 
by profiling their fragment length patterns (Fig.  3). We 
observed remarkable differences in the fragment length 
patterns of tumor-derived mutations (TDM, Fig. 3C) or 
LB-unique mutations (Fig.  3F) between HCC patients 
and healthy individuals (Fig.  3D and G). Specifically, 
the fragment length distribution of TDM or LB-unique 
mutations in HCC patients represented a nearly bi-modal 
distribution with a smaller peak at approximately 145–
155 bp, while that pattern was not observed for TDM and 
LB-unique mutations in healthy individuals. Thus, our 
data demonstrated a unique fragment length signature 
of mutations detected in plasma of HCC patients which 
were in line with previous studies reporting that tumor 
cfDNA fragments tend to be shorter than non-tumor 
cfDNA fragments [16, 19, 21, 41]. These studies showed 
that the fragmentation pattern of cfDNA is a non-random 
event mediated by apoptotic dependent caspases. It has 
been shown that fragment size distribution of non-tumor 
cfDNA shows a prominent size of 167 bp corresponding 
to DNA wrapped around histone (~ 147  bp) plus linker 
region (~ 10  bp). By contrast, ctDNA fragments have 
been shown to be around 145  bp [16, 19, 21, 41]. Such 
size differences are attributed to the differences in nucle-
osomal organization and chromatin accessibility between 
non-tumor cfDNA and ctDNA [16]. In support of this 
notion, ctDNA has been shown to have more accessible 
chromatin than non-tumor DNA, which may be linked 
to the highly active transcriptional state of these regions 
[48]. A recent and remarkable study by Cristiano et  al. 
[19] reported that enrichment for fragments shorter than 
150  bp improves the detection of ctDNA. Consistently, 
we showed that the analysis of fragment length signatures 

Table 4  Sensitivity and Specificity of individual features and combination of features. Feature 1, Fraction of short (< 150 bp) to long 
(< 150  bp) fragments; Feature 2, Size selection enrichment of fragment size distribution at specific ranges; Feature 3, Probability of 
observing a fragment of a particular size s

Marker Cut-off Specificity (Discovery) Sensitivity (Discovery) Specificity (Validation) Sensitivity 
(Validation)

Feature 1 0.36 84% 75% 83% 96%

Feature 1 & 2 0.60 75% 62% 77% 85%

Feature 1 & 2 & 3 0.37 82% 89% 81% 81%

Feature 1 & 3 0.45 82% 89% 77% 78%

Feature 2 3.36 82% 67% 92% 54%

Feature 2 & 3 0.29 80% 87% 72% 70%

Feature 3 0.47 84% 80% 79% 54%
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of cancer-specific mutations could be exploited to distin-
guish HCC patients and healthy controls.

Our combination model interrogating three distinct 
length signatures of cancer mutation bearing fragments. 
We examined models built from single feature 1, 2, or 
3; combination of two features 1 + 2, 1 + 3, or 2 + 3; and 
combination of all three. Our data (Fig. 4D and Table 3) 
showed that the combination of all three features yielded 
the best performance, suggesting that these features were 
not redundant. Based on these observations, we fur-
ther demonstrated that the analysis of three fragment 
length signatures of aggregated LB-unique mutations in 
13 HCC-associated genes could overcome confounding 
effects of mutation markers and achieved a good AUC of 
0.87 for determining the presence of HCC.

The heterogeneity of cancer mutations poses a chal-
lenge for using these mutations as markers for the early 
detection of HCC [49]. Tumor heterogeneity has been 
reported in HCC at three distinct levels, including inter-
patient heterogeneity, inter-tumor heterogeneity and 
intra-tumor heterogeneity [50]. In this study, we showed 
the interpatient heterogeneity of tumor-derived muta-
tions among 55 HCC patients (Fig. 2) and that by using 
fragment length signatures of reads bearing plasma 
mutation rather than mutations themselves, the impact 
of patient-to-patient variation in their mutational pro-
file could be minimized. However, the other two levels 
of heterogeneity that represent the differences in muta-
tion profiles between tumor nodules of the patients or 
between different regions within the same nodule have 
not been addressed in this study by using a single region 
sampling strategy. To characterize these aspects of tumor 
heterogeneity, a multi-region sampling approach has 
been suggested by several studies [51]. However, the fea-
sibility of this approach is low due to its invasiveness and 
limited access to tissue samples. Instead, we speculated 
that our approach based on the integration of fragment 
length profiles could overcome the intratumor and inter-
tumor heterogeneity of tumor mutations due to its unbi-
ased sampling of ctDNA in the bloodstream and thus 
might provide a more comprehensive landscape of muta-
tions in HCC patients.

The performance of our assay was comparable to pre-
vious studies that developed diagnostic models for early 
detection of HCC. Jiang et  al. showed that quantita-
tive assessment of cfDNA preferred end coordinates 
and somatic variants allowed researchers to distinguish 
PwHCC from healthy study participants [18]. Like ours, 
their assay achieved an area under the ROC of 0.88. How-
ever, they evaluated the performance of their model using 
a fixed cut-off value and have not reported validation 
using an independent cohort. More recently, HCCseek, 
another blood-based assay, achieved 75.0% sensitivity at 

98.0% specificity [52]. This assay requires shallow whole-
genome sequencing of cfDNA to detect copy number 
variations (CNV) and short fragment lengths, plus the 
detection of plasma α-fetoprotein. By simultaneous anal-
ysis of 5-Hydroxymethylcytosine, end motif, fragment 
size, and nucleosome footprint profiles of cfDNA, Chan 
and colleagues could achieve a sensitivity of 95.79% and 
a specificity of 95.00% for differentiating PwHCC from 
healthy participants [53]. These studies showed that the 
performance of LB assays are currently varied across 
studies and that combining multiple signatures of ctDNA 
could improve the sensitivity and specificity for early 
detection of HCC. We assert that combination with other 
ctDNA biomarkers such as methylated DNA and altered 
chromosomal copy numbers could increase the accuracy 
of liquid biopsies and warrant more in-depth study [54]. 
Thus, future studies are required to test if this multi-
modal ctDNA analysis would improve our current speci-
ficity of 81%, which is an important criterion for an early 
cancer screening test.

Our study did have a few limitations. The main limita-
tion of our study is the small sample size for each tumor 
stage group. We attribute this to the strict selection cri-
teria for early-stage and non-metastatic HCC, which is 
when cancer detection confers significant clinical ben-
efits. Thus, our current study might be considered as 
exploratory analyses and future studies with a larger 
cohort are required for robust validation of our assay 
performance.

Despite being confirmed to have nonmetastatic HCC, 
tumor-staging and histological records were not available 
for some HCC patients in the validation cohorts because 
those patients agreed to participate in the study but 
later chose to undergo treatment at other hospitals. The 
design did not include participants without cancer but 
with known risk factors for HCC, like cirrhosis or HBV.

Our study lacks clinical follow-up with information on 
the health and disease status of healthy subjects. This is 
important since a healthy individual may carry cancer-
related mutations and subsequently develop cancer. 
Hence, future case–control studies with larger data sets 
and follow-up assessments are required to validate the 
performance of our assay for detection of HCC patients 
at early stages and to understand the mechanism of tum-
origenesis. A recent large-scale pan-cancer analysis of the 
evolutionary history of tumors by Gerstung et. al [55] has 
revealed that cancer-causing mutations can occur dec-
ades before diagnosis. Thus, investigating the sequence 
and chronology of mutations leading to cancer will assist 
in understanding the mechanisms of tumorigenesis as 
well as offer the possibilities to identify a set of tumor-
derived mutations occurred in the precancerous stages 
for early diagnosis.
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Our PwHCC were older, and all our cohorts consisted 
of a preponderance of men which could be confounding 
factors of our assay. However, we did not observe any sig-
nificant association between age or genders with cfDNA 
fragment length patterns or mutation detection rates 
(data not shown). A recent study performing genome-
wide sequencing of cfDNA and showed elevated amounts 
of fragments with size smaller than 115  bp in systemic 
lupus erythematosus patients [56]. Hence the inflamma-
tory condition in such autoimmune diseases might intro-
duce the confounding factor to our analysis that focuses 
on fragment length patterns of cfDNA fragments. 
Lastly, although the performance of our model was vali-
dated in an independent cohort from a different hospi-
tal, the numbers of patients and controls in each cohort 
were relatively small, thus it would be helpful to test our 
model in a large prospective clinical study. Future studies 
could include high-risk patients who are diagnosed with 
chronic liver diseases such as hepatitis and cirrhosis, to 
evaluate the ability of our method to distinguish cancer-
derived mutations from benign somatic mutations found 
in those high-risk patients.

Conclusions
In conclusion, our study provides a novel approach for 
analyzing cancer-specific mutation status and fragment 
lengths concomitantly from cfDNA isolated from plasma. 
Our model includes a probabilistic model to distinguish 
WDM mutations from ctDNA sequences in plasma by 
modeling the distributions of VAF occurrences and allele 
read depth of the two mutation groups. Thus, our study 
reveals that by assaying the appropriate fragmentomic 
characteristics of cfDNA while removing the signatures 
of WBD mutations, it is possible to distinguish, from a 
blood sample, people with early-stage HCC from healthy 
people. This strategy of combining cell-free DNA frag-
ment length with multiple characteristics associated with 
tumor-derived DNA could overcome the limitations of 
using mutations as sole biomarkers for the detection of 
ctDNA and improve the accuracy of early screening of 
HCC.
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Additional file 1: Fig. S1. Study design chart. The discovery cohort con‑
sists of 55 patients with stage I, II and IIIA HCC and 55 healthy volunteers. 
Ultra-deep sequencing using a panel of the 13 genes found most often 
mutated among PwHCC were performed on WBC gDNA, FFPE-tumor 
tissue gDNA and plasma cell-free DNA to identify TDMs and the chal‑
lenges in classifying the two groups of patients. Mutation fragment length 
profiles were used as input features to build a machine learning model. 
The model’s performance was subsequently validated in an independent 
cohort of 55 HCC patients and 53 healthy individuals recruited from a dif‑
ferent site. Figure S2. Comparison of on target rate and depth coverage 
between cfDNA and paired WBC gDNA sequencing. (A) and (B) On target 
rate (A) and mean depth coverage (B) of paired liquid biopsy cfDNA and 
WBC gDNA samples from 55 HCC patients in the discovery cohort. (C) Bar 
graph showing the amount of cfDNA (ng per ml) of plasma from HCC and 
healthy control samples. ns: not significant, Mann–Whitney U test. Fig. S3. 
Tumor-derived mutations in plasma samples of PwHCC overlapped with 
mutations detected in plasma of healthy participants. (A) Oncoprint plots 
of distributions of TDMs in 55 healthy individuals. Each row represents 
a TDM with mutation labeled on the right side and left side shows the 
occurrences of each mutation. Each column represents a patient. (B) 
Percentages of mutations shared between liquid biopsies and paired 
WBCs (LB-share-WBC, blue) and mutations uniquely found in liquid biopsy 
(LB-unique-variants, orange) for each patient after implementing our sta‑
tistical model. Fig. S4. PwHCC patients displayed cfDNA fragment length 
profiles distinct from healthy individuals. (A) Length distribution of cfDNA 
fragments in plasma samples of 55 PwHCC and 55 healthy individuals. (B) 
The mean ratio of short (≤ 150 bp) to long (> 150bp) fragments across 22 
chromosomes at 5Mb resolution for 55 PwHCC and 55 healthy individuals. 
Fig. S5. Distribution of fragment length of sequencing reads carrying 
LB-unique mutations (ALT) in all 55 PwHCC (A) and 55 healthy individu‑
als (B), as compared to their corresponding reference reads (REF) in the 
discovery cohort. Fig. S6. Graphic explanation of three features generated 
from analyzing fragment length distribution of LB-unique mutations. (A) 
Feature 1: The fraction of short-to-long reads that carry LB-unique muta‑
tions compared to their corresponding reference reads (RF) in PwHCC 
(left) and healthy controls (right). (B) Feature 2: Analysis of fragment length 
distribution of all LB-unique fragments enriched in specific regions (e.g., 
110-135 bp). PHRED-scaled p-value obtained from Fisher’s exact test used 
to compare the distribution of ALT-fragments in selected regions. (C) Fea‑
ture 3: The probability of observing an ALT-fragment of size s (dot points) 
in all ALT fragments by proportions was calculated (λ) and the sum of λ(s) 
over a sliding and non-overlapping window of 10 consecutive values of s 
was computed to yield a 15-dimensional feature vector.

Additional file 2: Table S1A. Clinical characteristics of patients and 
healthy controls in the discovery cohort. Table S1B. Clinical characteristics 
of patients and healthy controls in the validation cohort. Table S2. Gene 
panel for targeted sequencing. Table S3. Frequencies of mutations of 
difference sources in 55 HCC patients.
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