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Abstract
Background  This study aimed to get a deeper insight into new osteosarcoma (OS) signature based on bone 
morphogenetic proteins (BMPs)-related genes and to confirm the prognostic pattern to speculate on the overall 
survival among OS patients.

Methods  Firstly, pathway analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were managed to search for possible prognostic mechanisms attached to the OS-specific differentially 
expressed BMPs-related genes (DEBRGs). Secondly, univariate and multivariate Cox analysis was executed to filter 
the prognostic DEBRGs and establish the polygenic model for risk prediction in OS patients with the least absolute 
shrinkage and selection operator (LASSO) regression analysis. The receiver operating characteristic (ROC) curve 
weighed the model’s accuracy. Thirdly, the GEO database (GSE21257) was operated for independent validation. The 
nomogram was initiated using multivariable Cox regression. Immune infiltration of the OS sample was calculated. 
Finally, the three discovered hallmark genes’ mRNA and protein expressions were verified.

Results  A total of 46 DEBRGs were found in the OS and control samples, and three prognostic DEBRGs (DLX2, TERT, 
and EVX1) were screened under the LASSO regression analyses. Multivariate and univariate Cox regression analysis 
were devised to forge the OS risk model. Both the TARGET training and validation sets indicated that the prognostic 
biomarker-based risk score model performed well based on ROC curves. In high- and low-risk groups, immune cells, 
including memory B, activated mast, resting mast, plasma, and activated memory CD4 + T cells, and the immune, 
stromal, and ESTIMATE scores showed significant differences. The nomogram that predicts survival was established 
with good performance according to clinical features of OS patients and risk scores. Finally, the expression of three 
crucial BMP-related genes in OS cell lines was investigated using quantitative real-time polymerase chain reaction 
(qRT-PCR) and western blotting (WB).

Conclusion  The new BMP-related prognostic signature linked to OS can be a new tool to identify biomarkers to 
detect the disease early and a potential candidate to better treat OS in the future.
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Background
A high degree of osteosarcoma (OS) malignancy is asso-
ciated with high mortality. Although innovative treat-
ments for OS have been proposed, standard treatments 
are still limited to traditional surgery and chemotherapy 
[1]. The clinical outcome of OS patients, especially those 
with pulmonary metastases, has not been considerably 
improved [2]. Furthermore, the underlying molecular 
mechanisms and potential therapeutic targets behind 
disease progression have not been fully elucidated. 
Therefore, identifying both prognostic and predictive 
markers for OS is significant for diagnosing and treating 
OS precisely.

Bone morphogenetic proteins (BMPs) are a subgroup 
of the transforming growth factor-beta (TGF-β) family. 
BMPs participate in various biological processes (BP), 
including cell proliferation, differentiation, apoptosis, 
angiogenesis, migration, and extracellular matrix remod-
eling [3]. BMP expression is lower at non-union sites 
and absent at extracellular matrix locations, and no dif-
ferences between atrophic and hypertrophic non-union 
tissues were observed [4]. The past two decades have wit-
nessed rapid growth in the amount of clinical application 
of BMPs due to their ability to induce bone regeneration, 
especially the recombinant human (rh)BMP-2, which was 
initially authorized by the FDA in 2002 for single-level 
anterior lumbar interbody fusion [5]. Given the concerns 
about cancer and other adverse effects, the utilization 
of BMP-2, especially in off-label applications, requires 
robust evidence to ascertain the safety and efficacy of 
rh BMPs through multicenter, randomized, and double-
blind clinical trials [6]. The BMP-signaling pathways 
can be novel therapeutics for treating chronic diseases 
that affect the elderly, including osteoporosis and can-
cer, and are one of the most potent research challenges 
in medicine [7]. Furthermore, BMP signaling is crucial 
for regulating osteoclast in osteoporosis treatment from 
the standpoint of bone homeostasis [8]. Similarly, con-
sidering the increased burden of the microscopic residual 
tumor, BMP-2 is not recommended after limb-salvage 
surgery in individuals with OS [9]. Most investigations 
have concentrated on determining the relationship 
between BMPs as protein factors involving the TGF-β/
SMAD signaling pathway and the phenotypic changes of 
OS [10]. In addition, there has been previous research on 
the association of different subtypes of BMPs expression 
and prognosis in different subtypes of OS patients. Sub-
types of OS can be identified based on stromal differen-
tiation (osteoblastic, fibroblastic, chondroblastic OS) and 
tumor features [11]. Based on the immunohistochemistry 
approach study, the expression of bone morphogenetic 
proteins, such as BMP-7/8, and their receptors in OS 
are abnormal and have prognostic significance [12]. OS 
susceptibility and prognoses in our population may be 

affected by variations in BMP-2, which is a critical gene 
for bone formation and maintenance [13]. The Notch sig-
naling plays a key role in OS growth induced by BMP-9 
[14]. However, the molecular mechanism by which BMP-
related genes are involved in OS pathogenesis remains 
unclear.

A gene expression profile of OS in public databases 
was examined to identify differentially expressed BMP-
related genes (DEBRGs). Further pathway enrichment 
analysis was conducted, and the related network of pro-
tein–protein interactions (PPIs) was built. Subsequently, 
combining univariate, multivariate cox regression, and 
least absolute shrinkage and selection operator (LASSO) 
regression analysis, an OS prediction signature was gen-
erated, and three genes (EVX1, TERT, and DLX2) asso-
ciated with OS prognosis were found. Furthermore, 
according to the expression of specific genes and the 
high- and low-risk scores, Kaplan-Meier (KM) survival 
analyses were conducted on patients. The results were 
validated in the additional data sets GSE21257. Addition-
ally, the fraction of 22 tumor-infiltrating immune cells 
(TIICs) was explored by the CIBERSORT method. Even-
tually, three hub genes were validated in human OS cell 
lines using quantitative real-time polymerase chain reac-
tion (qRT-PCR) and western blotting (WB). In this study, 
a DEBRGs-based prognostic model was formulated, and 
its prediction accuracy was evaluated in OS patients.

Methods and materials
Data collection
The TARGET database (https://ocg.cancer.gov/pro-
grams/target) was employed to gather the OS transcrip-
tome data and clinical information of 88 OS patients [15]. 
The GTEx database was used to acquire gene expression 
data from 396 healthy human musculoskeletal samples 
[16]. GSE21257, which contains 53 OS samples from the 
femur in humans, were used as validation sets [17]. Gene 
expression profiles for GSE21257 were acquired from the 
GEO database (GPL10295 platform, Illumina human-6 
v2.0 expression beadchip). The GeneCards database 
(https://www.genecards.org/) yielded 2757 BMP-related 
genes when the term “bone morphogenetic protein” was 
searched [18]. All of the genes with a relevance score 
higher than 0.5 are selected based on “Protein Coding”.

Identification of DEBRGs
The microarray data were evaluated after normalization 
in R using the Limma package [19]. The batch effect was 
removed using the R package “sva”. The “DESeq2” R pack-
age was applied to single out DEBRG clusters between 
OS and control samples with∣log2Fold change(FC) | >1 
and adj.P-value < 0.05 as the thresholds [19]. The volcano 
plot and the heatmap were constructed using “ggplot2” 
and “pheatmap” packages, respectively.

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.genecards.org/
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Functional annotation and pathway enrichment analysis
To reveal the functions of DEBRGs, Gene Ontology 
(GO) annotation [20] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment investigations were 
carried out with the package “clusterProfiler” [21]. The 
GO terms fall into three levels: BP, cellular components 
(CC), and molecular functions (MF). The KEGG pathway 
enrichment analysis is useful for describing gene function 
at the genomic and molecular levels and identifying asso-
ciated genes. Data with an adjusted P-value of 0.05 are 
subjected to statistical analysis.

Additionally, the PPI network of DEBRGs was launched 
employing the STRING database [22]. The visualized PPI 
network of DEBRGs was performed by the Cytoscape 
plugin-CytoNCA (version 3.7.2) [23]. Cytoscape plugin-
CytoNCA [24] was used to screen the TOP10 degree 
DEBRGs.

Establishment of a prognostic model
A univariate Cox regression analysis was conducted on 
the DEBRGs. Genes with P-values less than 0.05 were 
linked with OS prognosis. Then, the risk model was 
then constructed using multivariate Cox analysis. An 
R package GLMNET (https://CRAN.R-project.org/
package=glmnet) and the LASSO method for variable 
selection and shrinkage were used to design a model 
for predicting prognosis [25]. Before running the main 
method with the n-fold value of 10, cross-validation was 
performed with the cv.glmnet routine to find the penalty 
regularization parameter. Lambda.min was used to final-
ize the value, which is the minimum mean error across 
cross-validations given by lambda [26].

Validation of the prognostic model
Patients were labeled as high or low-risk based on the 
median risk score. The survival and the receiver operat-
ing characteristic (ROC) curve was created with the R 
packages “survival” and “pROC”, respectively, to judge the 
prediction performance of the risk signature. An external 
validation set was conducted to test the risk model. The 
predictive model’s performance was evaluated by analyz-
ing areas under the ROC curves (AUC). Based on prior 
work, low, medium, and high diagnostic performance 
was defined as an AUC value of less than 0.7, between 0.7 
and 0.9, or more than 0.9, respectively [27]. A multivari-
ate Cox regression analysis was implemented to uncover 
independent OS patient prognostic markers. Then, the 
calibration curve was managed to determine the effec-
tiveness of OS survival nomograms for 1, 3, and 5 years.

Comparison of the clinical features of individuals at high 
and low risk
First, we researched the disparities in risk scores among 
OS patients with distinct clinical characteristics. We used 

CIBERSORT databases [28] to screen the differential 
immune cells amid high- and low-risk groups. Further-
more, the ESTIMATE score and tumor purity were com-
pared between high and low-risk groups.

Cell culture and reagents
Human OS cells U-2OS, HOS, Saos-2, and 143B, as well 
as human osteoblast cells hFOB1.19, were supplied by 
the American Type Culture Collection (ATCC, USA). 
Human osteoblast hFOB1.19 cells, human OS HOS, 
and U-2OS were nurtured at 37  °C in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Gibco, USA) accompa-
nied by 1% penicillin/streptomycin, and 10% fetal bovine 
serum (FBS, ExCell, China). Saos-2 cells were kept in 
McCoy’s 5  A medium (Gibco, USA) enriched with 10% 
FBS and 1% penicillin/streptomycin at 37 °C. Then, 10% 
FBS (ExCell, China) and RPMI-1640 medium (Gibco, 
USA) were exploited to culture 143B cells in an incubator 
humidified with 5% CO2.

qRT-PCR analysis
The transcription level was determined by qRT-PCR. 
RNA was reverse-transcribed into cDNA using the Go 
Taq® qPCR Master Mix (A6002) from Promega. The 
2−∆∆Ct technique was harnessed to determine relative 
levels of RNA expression. The response condition is pre-
sented as follows: the cycle was performed at 95  °C for 
120 s, followed by 45 cycles at 95  °C and 60  °C for 30 s 
each. The relative expression of DLX2, EVX1, and TERT 
were detected. All experiments were conducted in tripli-
cate. Supplementary material Table S1 shows that prim-
ers are used in the experiments.

WB analysis
Cells collected from OS and hFOB1.19 were centrifuged 
and washed in PBS. Proteins were quantified with Brad-
ford assays (Bio-Rad Laboratories) upon lysis of the cells 
with ice-cold RIPA buffer (Servicebio G2002). The pro-
teins (30 ug) were extracted using a 10% sodium dodecyl 
sulfate-polyacrylamide gel (SDS-PAGE). The polyvinyli-
dene fluoride (PVDF) membrane (Servicebio G6015-
0.45) was then used to transfer the samples. At room 
temperature, 5% skim milk (Servicebio G5002) was added 
to block the membrane for 1 h. After overnight incuba-
tion at 4 °C, the specific antibody was washed with TBST 
(1 × TBS with Tween, Servicebio WGT8220) three times. 
After incubation for 30  min at room temperature, the 
secondary antibody was added. We washed the mem-
brane with TBST three times after incubation with the 
secondary antibody. The protein bands were spotted with 
the aid of an ECL kit (Servicebio G2014). To semiquantify 
the relative band intensities, ImagePro Plus 6.0 (Media 
Cybernetics, Inc.) was employed. Normalization was per-
formed using GAPDH as an internal reference gene.

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet
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Statistical analysis
KM analysis and log-rank testing were utilized to weigh 
the disparities in OS between patients at low and high 
risk with R software (3.6.3) and GraphPad (8.0), respec-
tively. Additionally, the independent prognostic variables 
were identified using univariate and multivariate Cox 
regressions. We evaluated the risk model’s prediction 
performance using ROC curves. An analysis of signifi-
cance was conducted with P < 0.05.

Results
The identification of DEBRGs and exploration of functional 
enrichment
This study’s flow chart is shown in Fig.  1. A total of 46 
DEBRGs were identified (19 down-regulated genes 
and 27 up-regulated genes) after the standardization 
of the microarray results from TARGET-OS. A list of 
46 DEBRGs was provided as in Table  1. The heatmap 
(Fig. 2A) and volcano map (Fig. 2B) display the results.

A PPI network was cultivated to understand the inter-
play among the 46 DEBRGs using the STRING online 
server. Cytoscape plugin CytoNCA was used to screen 
the TOP10 degree DEBRGs, i.e., INS, IL10, LEP, IL1A, 
ADCYAP1, MMP13, CRP, GRP, MYOG, and MYF5 
(Fig.  2C). Furthermore, the KEGG analysis shows that 
these genes were important for neuroactive ligand-recep-
tor interaction and ovarian steroidogenesis (Fig. 2D). GO 
analysis shows that these genes are primarily associated 
with peptide secretion, endosome lumen, and hormone 
activity (Fig.  2E). An analysis of the TOP eight KEGG 
pathway enrichment for DEBRG differential expression is 
presented in Table 2.

Construction and verification of a prognostic model
Firstly, a univariate cox regression analysis was executed 
on the 46 DEBRGs, and six genes with P < 0.05 were dis-
covered to be significantly correlated to OS survival 
(Fig. 3A). The three DEBRGs were applied to generate a 
risk model (Fig.  3B) after a multivariate Cox regression 
analysis. Furthermore, the LASSO regression analy-
sis was performed using the R package “glmnet” on the 
candidate genes identified through the univariate Cox 
regression analysis. A 10-fold cross-validation was per-
formed to obtain the final regression for three DEBRGs 
(DEBRGs with higher survival in OS patients) whose 
coefficients were not penalized. Fig. 3 C and 3E show that 
DLX2, TERT, and EVX1 are the three DEBRGs. These 
three gene coefficients seized by the LASSO regression 
model are shown in Supplement Table  2. In order to 
identify the risk score, the utilized formula is as follows: 
The risk score = 0.4837165×DLX2 + 0.8324820×TERT + 0.
8523485×EVX1. The samples were divided into high- and 
low-risk groups according to their median risk score. As 
shown in Fig.  3G, the three genes are shown from low 

risk to high risk in the risk heat map. Fig. 3D and 3F show 
that increasing risk scores are associated with an increase 
in deaths. Furthermore, the 1-, 3-, and 5-year survival 
rates were forecasted using the ROC curve analysis. The 
ROC curve showed that the risk score had a good perfor-
mance in predicting patients’ survival status. In the TAR-
GET database, the 1-, 3-, and 5-year survival rates were 
0.630, 0.694, and 0.694, respectively (Fig. 3I). High- and 
low-risk individuals differed significantly in their out-
comes (P < 0.05) using KM analysis (Fig. 3H).

A median risk score was chosen to classify the 
GSE21257 dataset into low- and high-risk categories. The 
number of deaths increased with the increase of the risk 
score (Fig. 4A-B), and the three genes were expressed in 
the risk heat map (Fig.  4C) among the two risk groups 
identified in the validation set of GSE21257, The AUC of 
the risk score in OS differed significantly between high- 
and low-risk groups. AUC values were 0.857, 0.737, and 
0.730 using ROC curves to forecast the survival rate over 
1, 3, and 5 years (Fig. 4E). The KM analysis showed that 
the overall survival rate differed dramatically between 
high- and low-risk groups (P < 0.05) (Fig.  4D). The risk 
score is an independent predictor of OS in multivariate 
Cox regression analysis (Fig. 4G). A nomogram was cre-
ated to predict OS patient survival over 1, 3, and 5 years 
using clinical features and risk scores (Fig. 4F).

Clinical features analysis and immune analysis across the 
high- and low-risk groups
In order to investigate the association between a tumor’s 
prognostic signature and its clinical characteristics, vari-
ous clinicopathological stratifications were analyzed 
to determine the distribution of risk scores. The results 
demonstrated that patients with higher stages had 
higher risk scores. A statistically significant difference 
was found between stages I/II and stage III/IV (P < 0.05) 
(Fig. 5A-D). A comparison was made between the infil-
tration of 22 immune cells in high- and low-risk groups 
using CIBERSORT. Five different immune cells (memory 
B, activated mast, resting mast, plasma, and activated 
memory CD4 + T cells) were obtained (Fig.  5E). The 
results showed that the low-risk group scored higher on 
immune, stromal, and ESTIMATE tests (Fig. 5F) and had 
lower tumor purity than the high-risk group (P < 0.05) 
(Fig. 5G).

Representative qRT-PCR and WB of expression of three hub 
signature genes in OS cells
A qRT-PCR was performed to investigate the RNA 
expression levels of EVX1, TERT, and DLX2 genes in 
human OS cells (143B and HOS) and normal human 
osteoblasts (hFOB1.19). β-actin was taken as the con-
trol. The results showed that TERT was up-regulated 
in the OS cells (143B and HOS), and the EVX1 gene 
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expression in the OS HOS cell line was higher than that 
in the hFOB1.19 cells (Fig.  6A-B). A WB analysis was 
conducted to measure the levels of protein expression of 
EVX1, DLX2, and TERT in human OS cells. We quanti-
fied the protein blots with the ImageJ software and dis-
covered that the expression levels of EVX1, DLX2, and 

TERT in 143B and HOS OS cells were higher than those 
in the hFOB1.19 cell line (Fig.  6C-F). These data indi-
cated that EVX1, DLX2, and TERT were up-regulated in 
human OS cells compared with normal cells (hFOB1.19) 
(no statistical significance is indicated by ns; *P < 0.05; 

Fig. 1  The flow chart of the study
AUC = areas under the ROC curves; BMPs = bone morphogenetic proteins; DEBRGs = differentially expressed BMPs-related genes; GO = Gene Ontology; 
KEGG = Kyoto Encyclopedia of Genes and Genomes; KM = the Kaplan-Meier; LASSO = least absolute shrinkage and selection operator; PPI = protein-pro-
tein interaction; WB = western blotting
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**P < 0.01; ***P < 0.001). Each experiment was repeated 
three times.

Discussion
The OS is one of the highly aggressive cancers charac-
terized by rapid tumor development, recurrence, and 
metastasis. It is estimated that less than 20% of patients 
with recurrences or distant metastases will survive 5 
years [29]. In the bone microenvironment (BME), BMP2 
derived from related cell types functions as potential OS 
initiating cells to acquire the OS dysregulated pheno-
types rather than reduce their tumorigenic potential [30]. 
Similarly, Gremlin-1 (GREM1), a member of the family of 
BMP antagonists, is down-regulated in OS cells [31]. The 
overexpression of GREM1 will impair OS cells’ prolifera-
tion, invasiveness, and angiogenesis abilities in vitro and 
in vivo [32]. Previous studies [33, 34] mainly focused on 
the BMP-SMAD signaling pathway as a receptor, which 
was crucial for target gene regulation. Few studies have 
investigated the association of BMP-related genes in the 
genesis of OS.

A better understanding of molecular processes under-
pinning OS occurrence and development has been 
achieved using bioinformatics analyses [35], which is an 
emerging field to detect potential diagnostic biomark-
ers. However, a high false-positive rate and small sample 
size have been observed when analyzing a single dataset. 
Therefore, it is necessary to pinpoint novel biomarkers 

with high specificity, sensitivity, and efficiency for 
OS diagnosis and prognosis prediction. In this study, 
DEBRGs were identified, a prognostic model was devel-
oped to predict OS patients’ outcomes, and the model 
was further validated using the GSE21257 dataset.

A total of 46 DEBRGs were identified based on mul-
tiple data sets obtained from the GTEx, TARGET, and 
GeneCards databases. Among the DEBRGs, 27 (58%) 
were up-regulated and 19 (42%) were down-regulated. 
Furthermore, we further built a novel risk score model 
consisting of three DEBRGs calculated by LASSO regres-
sion to enhance the predictive performance of the prog-
nostic signature on independent data. Overall survival 
was better among low-risk patients in the independent 
test and validation dataset (P < 0.05) than that in the high-
risk group. Further studies are being conducted on the 
complex tumor microenvironment (TME), and immu-
notherapy and tumor modulation may have a clinically 
significant benefit to OS [36]. Compared with low-risk 
groups, infiltration of tumor immune cells, including 
memory B, activated mast, resting mast, plasma, and 
activated memory CD4 + T cells in high-risk groups was 
significantly different. These findings are partially con-
sistent with and enrich previous studies [37]. The prog-
nostic risk score model can accurately predict patient 
survival.

In the present study, the prognostic model consists 
of three DEBRGs (TERT, EVX1, and DLX2). The three 

Table 1  19 down-regulated genes and 27 up-regulated DEBRGs
Gene log2FC pvalue padj change Gene log2FC pvalue padj change
BMP2KL 1.255526313 0.000488 0.021924 UP MFRP -1.64140874 1.74E-06 0.000296 DOWN

PAX5 -1.62253701 6.62E-09 3.67E-06 DOWN TERT 1.773159318 2.41E-06 0.000333 UP

MMP13 2.266090148 3.07E-05 0.002835 UP INS -3.27191889 2.71E-18 5.85E-15 DOWN

MYOG -1.77926415 2.52E-08 9.31E-06 DOWN CR2 -1.01372993 6.54E-05 0.004465 DOWN

MEPE 1.48051386 0.000133 0.007755 UP GH1 -1.23793209 3.58E-05 0.003076 DOWN

MYF5 -1.90650989 1.97E-08 8.72E-06 DOWN SERPINB5 1.05906509 1.39E-05 0.001469 UP

IL10 1.031964057 3.61E-05 0.003076 UP GRP 2.357903167 1.07E-07 2.67E-05 UP

DLX2 1.26019405 0.0002 0.010707 UP PRDM14 2.1488153 1.09E-07 2.67E-05 UP

MIXL1 1.316476512 6.35E-06 0.000782 UP ABCC12 -1.44081741 2.02E-06 0.000302 DOWN

CHAT 1.375320907 0.00096 0.036662 UP KLF17 1.720210737 2.05E-06 0.000302 UP

MMP10 1.183810768 0.000552 0.023514 UP SCGB1D2 -1.02282589 0.000622 0.025994 DOWN

HOXB1 1.404083494 1.08E-06 0.000199 UP IL1A 1.719261961 4.89E-05 0.003821 UP

LEP -1.32512567 2.17E-07 4.37E-05 DOWN OLIG1 -1.68292219 7.86E-11 5.80E-08 DOWN

SFRP5 -1.12169367 0.00033 0.015901 DOWN CABP2 1.248132368 0.000479 0.021924 UP

DLK1 -1.78484486 4.61E-08 1.46E-05 DOWN OMP 1.414668811 0.00025 0.012561 UP

CRHR1 -1.01926965 5.18E-05 0.003821 DOWN MYH2 -1.33368096 0.000203 0.010707 DOWN

CRP -1.52754551 9.17E-06 0.001068 DOWN FSHR 1.665802843 4.13E-05 0.003383 UP

TBX20 1.593261403 2.28E-05 0.002199 UP NR0B2 -1.19161691 2.76E-06 0.000359 DOWN

PRKACG 1.30779911 0.000685 0.028096 UP OPRM1 1.585800601 0.001342 0.047147 UP

CACNG5 2.239150891 0.000106 0.006727 UP IL1RAPL2 1.631794914 1.98E-05 0.001992 UP

SFTPC -2.78453279 5.29E-18 5.85E-15 DOWN CCL25 1.482475754 0.000241 0.01241 UP

PBOV1 2.115087089 6.09E-05 0.004348 UP TLX2 1.11780015 6.80E-05 0.004465 UP

EVX1 1.087442919 0.001006 0.037735 UP ADCYAP1 -1.39311579 2.17E-07 4.37E-05 DOWN
DEBRGs = differentially expressed BMPs-related genes; FC = fold change
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Fig. 2  Identification of DEBRGs and functional enrichment analysis. A total of 46 DEBRGs were detected in the (A) heat map and (B) volcano map (the 
red dots represent up-regulated DEBRGs, the blue dots represent down-regulated DEBRGs, and the cut-off criteria were set as∣log2FC | >1 and adj.P. 
value < 0.05). (C) Building PPIs and identifying key modules among the 46 DEBRGs (D) KEGG enrichment analysis of DEBRG and (E) GO enrichment 
analysis
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DEBRGs are linked to tumor genesis, progression, and 
prognosis. The TERT (Telomerase Reverse Transcrip-
tase), a protein-coding gene, can encode the catalytic 
subunit of telomerase. TERT expression is modulated in 
tumors by various epigenetic and genetic modifications, 
and it can influence telomerase activity [38]. Telomerase 
activity is crucial for most human cancers, mainly due to 
mutations in its promoter [39]. In OS cells, the silencing 
of human TERT (hTERT) by shRNA decreases prolifera-
tion and increases apoptosis. However, there is a lack of 
animal studies on hTERT deficiency, and the underlying 
biological mechanisms remain unclear [40]. EVX1 (Even-
Skipped Homeobox 1) can encode a member of the even-
skipped homeobox family and is predominantly found in 
the nucleus and possesses DNA-binding transcription 
factor activity [41]. Homeobox genes can encode a sub-
set of transcription factors of embryonic development to 
regulate axial regional specification and can be conveyed 
erroneously in various solid tumors [42]. Changes in the 
mRNA expression of EVX1 are associated with clinico-
pathological features in esophageal squamous cell carci-
noma (ESCC). However, the pathogenesis of lymphatic 
metastasis and tumor invasion still needs further study 
[43]. In this paper, we have validated the expression of 
EVX1 in OS based on bioinformatics and cell biology. 
DLX2 (Distal-less Homeobox 2) can encode a transcrip-
tion factor that belongs to a member of the Distal-less 
homeobox transcription factor family. It acts either as an 
oncogene under abnormal regulation [44] or as a tran-
scription factor that may be engaged in the TGF-β signal-
ing pathway [45].

This is the first study to examine the predictive signa-
ture in OS based on DEBRGs. This study, however, still 
has several limitations. Foremost, our training and vali-
dation cohort sample sizes are insufficient to assess the 
prognostic model’s prediction accuracy fully. Further-
more, the stratification analysis and interaction between 
the risk factors (for example, clinical prognostic factors 
and tumor stage) cannot be well represented in the prog-
nostic model. Therefore, more studies with a large sample 
size are needed to obtain the statistical power to achieve 
clinically predictive power in clinical applications. How 
the three hub genes affect OS progression requires 

experimental validation at molecular, cellular, and organ-
ismal levels. Our risk-prediction approach will take lon-
ger to implement in the clinic.

Conclusion
A novel BMPs-associated gene risk signature based on 
three hub genes (TERT, EVX1, and DLX2) was built 
based on a combination of bioinformatics analyses. The 
training and validation sets produced accurate predic-
tions. The results indicate that the model performs well 
in prognostic studies. Our discoveries can have signifi-
cant ramifications for the development of new molecular 
targets for OS immunotherapy and elucidate the clinical 
prognostic consequences of OS patients in further detail.

Table 2  TOP eight KEGG pathway enrichment for DEBRG differential expression
ID Description pvalue p.adjust geneID Count
hsa04080 Neuroactive ligand-receptor interaction 4.12E-05 0.00564 3952/1394/2688/2922/2492/4988/116 7

hsa04060 Cytokine-cytokine receptor interaction 0.001492 0.068138 3586/3952/2688/3552/6370 5

hsa04024 cAMP signaling pathway 0.003618 0.099138 1394/5568/2492/116 4

hsa04010 MAPK signaling pathway 0.010197 0.151619 5568/27,091/3630/3552 4

hsa04913 Ovarian steroidogenesis 0.000434 0.029755 5568/3630/2492 3

hsa04911 Insulin secretion 0.001994 0.068304 5568/3630/116 3

hsa04932 Non-alcoholic fatty liver disease 0.010375 0.151619 3952/3630/3552 3

hsa04630 JAK-STAT signaling pathway 0.011696 0.151619 3586/3952/2688 3
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Fig. 3  Establishment and validation of the prognostic model. (A) Map of the forest for the univariate survival analysis. (B) Map of the forest for the multi-
variate survival analysis. (C and E) The construction of a risk model using the LASSO regression analysis. (D and F) The number of dead patients increases 
with the increase of the risk score. (G) The risk heat map shows the expression of the three genes from low risk to high risk in the TARGET–OS training set. 
(I) Analyzing ROC curves that predict survival over 1, 3, and 5 years (AUCs of 0.630, 0.694,0.694, respectively) for survival prediction of OS patients on the 
TARGET–OS training set. (H) A survival analysis based on KM methods is conducted on the TARGET–OS training set (P < 0.05)
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Fig. 4  The assessment of the predictive power of the model using the KM analysis and ROC curve in the GSE21257 validation set (A-B) The number of 
dead patients increased with the increase of the risk score. (C) The risk heat map shows the expression of the three genes from low risk to high risk in 
the GSE21257 validation set. (D) Survival analysis using KM methods in the GSE21257 validation set (P < 0.05). (E) An analysis of ROC curves that predict 
survival rates over 1, 3, and 5 years (AUCs of 0.857,0.737,0.730, respectively) in time-dependent scenarios for survival prediction of OS patients on the 
GSE21257 validation set. (F) Total points are obtained by incorporating the corresponding points of age, gender, site, and risk score on the point scale. (G) 
The multivariate cox regression analysis has identified that risk score is an independent prognostic factor in OS
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Fig. 5  Clinical features analysis and Immune analysis of the high- and low-risk groups. Among all clinical variables: (A) gender, (B) stage, (C) age, and (D) 
site, there is only a significant difference between groups concerning the clinical stage (P < 0.05). (E) The infiltration of 22 immune cells and 5 different 
immune cells (B cells memory, mast cells activated, mast cells resting, plasma cells, and T cells CD4 memory activated) is statistically significant between 
the high- and low-risk groups. (F) The immune scores, stromal scores, and ESTIMATE scores in the low-risk group are significantly higher than those in 
the high-risk group. (G) Compared with the low-risk group, the high-risk group has higher tumor purity (Statistical significance is indicated by ns, no 
significance; *P < 0.05; **P < 0.01; ***P < 0.001)
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Fig. 6  Validation of the critical DEBRGs in the signature. (A-B) qRT-PCR is performed to quantify the expression of TERT and EVX1 genes in OS cell lines 
(143B and HOS) and normal osteoblast cell lines (hFOB1.19). (C-F) Western blot is performed to quantify the expression of TERT, EVX1, and DLX2 genes in 
OS cell lines (143b and HOS), and GAPDH is utilized as the internal control (statistical significance is indicated by ns, no significance; *P < 0.05; **P < 0.01; 
***P < 0.001)
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