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Abstract
Background  Breast cancer survivors face long-term sequelae compared to the general population, suggesting 
altered metabolic profiles after breast cancer. We used metabolomics approaches to investigate the metabolic 
differences between breast cancer patients and women in the general population, aiming to elaborate metabolic 
changes among breast cancer patients and identify potential targets for clinical interventions to mitigate long-term 
sequelae.

Methods  Serum samples were retrieved from 125 breast cancer cases recruited from the Chicago Multiethnic 
Epidemiologic Breast Cancer Cohort (ChiMEC), and 125 healthy controls selected from Chicago Multiethnic 
Prevention and Surveillance Study (COMPASS). We used liquid chromatography-high resolution mass spectrometry 
to obtain untargeted metabolic profiles and partial least squares discriminant analysis (PLS-DA) combined with 
fold change to select metabolic features associated with breast cancer. Pathway analyses were conducted using 
Mummichog to identify differentially enriched metabolic pathways among cancer patients. As potential confounders 
we included age, marital status, tobacco smoking, alcohol drinking, type 2 diabetes, and area deprivation index in our 
model. Random effects of residence for intercept was also included in the model. We further conducted subgroup 
analysis by treatment timing (chemotherapy/radiotherapy/surgery), lymph node status, and cancer stages.

Results  The entire study participants were African American. The average ages were 57.1 for cases and 58.0 for 
controls. We extracted 15,829 features in total, among which 507 features were eventually selected by our criteria. 
Pathway enrichment analysis of these 507 features identified three differentially enriched metabolic pathways related 
to prostaglandin, leukotriene, and glycerophospholipid. The three pathways demonstrated inconsistent patterns. 
Metabolic features in the prostaglandin and leukotriene pathways exhibited increased abundances among cancer 
patients. In contrast, metabolic intensity in the glycerolphospholipid pathway was deregulated among cancer 
patients. Subgroup analysis yielded consistent results. However, changes in these pathways were strengthened when 
only using cases with positive lymph nodes, and attenuated when only using cases with stage I disease.

A metabolome-wide case-control study 
of african american breast cancer patients
Jiajun Luo1,2,3, Muhammad G. Kibriya1,2, Hui Chen4, Karen Kim2,3,5, Habibul Ahsan1,2,3, Olufunmilayo I. Olopade5, 
Christopher S. Olopade5, Briseis Aschebrook-Kilfoy1,2,3* and Dezheng Huo1,2,3,5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-10656-1&domain=pdf&date_stamp=2023-2-22


Page 2 of 11Luo et al. BMC Cancer          (2023) 23:183 

Introduction
Breast cancer survivorship has been improved since 
1990s due to advances in early detection and cancer 
therapy [1]. Over 90% of all female breast cancer patients 
survived 5 years after their initial diagnosis [2]. Currently, 
more than 3.8 million women in the US are estimated to 
have a history of breast cancer, comprising the largest 
group of cancer survivors [1]. Meanwhile, breast cancer 
patients generally report poorer health compared to the 
general population even after successful treatment [3, 
4]. Higher risks for cardiovascular disease (CVD) [5–7], 
pulmonary disease [8], fatigue [9], chronic pain [10], and 
cognitive decline [11] are documented among breast can-
cer survivors. Studies have suggested that CVD is the 
largest single cause of death among breast cancer survi-
vors, exceeding cancer-related causes [12].

The long-term sequelae of breast cancer are usually 
attributed to the side effects of cancer therapies, because 
radiotherapy, chemotherapy, and trastuzumab therapy 
are able to induce cardiotoxicity and have been linked 
to higher risks for cardiovascular and pulmonary dis-
eases [13–23]. However, not all sequelae can be explained 
by cancer therapies. Genetic susceptibility [24, 25] and 
shared risk factors including age, obesity, and physical 
inactivity [26–30], also contribute to the development of 
long-term sequelae after breast cancer diagnosis. Among 
all potential risk factors, biological changes induced by 
breast cancer among survivors should not be overlooked.

Given that these long-term sequelae appear to manifest 
nearly 5 years after initial diagnosis of breast cancer [5, 7], 
there exists a potential window period for interventions 
mitigating disease burdens. Meanwhile, minority groups 
such as African American face a disproportionately large 
burden of both breast cancer and chronic diseases [31]. 
Therefore, understanding the cause and etiology of these 
sequelae among breast cancer patients will be crucial for 
the development of such medical interventions, espe-
cially among minority groups.

As disturbances in metabolic activities underlie 
most diseases, the study of the metabolome can pro-
vide important insight into the etiology of breast can-
cer sequelae as well as offer the potential to identify 
metabolic pathways for clinical interventions [32]. More 
recently, metabolomics technologies give us the ability to 
measure thousands of metabolites in biological samples, 
assisting researchers in the investigation of metabolic 
changes. Metabolomics has demonstrated an emerging 

and promising role in the diagnosis and prognosis of 
chronic diseases and clinical interventions [33].

Within this context, we aim to investigate the meta-
bolic profile of breast cancer patients soon after diagnosis 
and identify potential biological pathways using the state-
of-the-art metabolomics technologies among a case-con-
trol study with 125 breast cancer cases and 125 controls 
that were frequency-matched by age. All the participants 
were African American women residing in Chicago, 
offering the opportunity to mitigate the larger burdens of 
both breast cancer and chronic disease in this group [31].

Method
Study population
The Chicago Multiethnic Epidemiologic Breast Can-
cer Cohort (ChiMEC) was initiated as a hospital-based 
case-control study to facilitate research on the effects of 
high-penetrance susceptibility genes, common genetic 
variants, and environmental risk factors for breast can-
cer [34–37]. Breast cancer cases were followed for sur-
vival, disease recurrence, and other outcomes to form 
the ChiMEC cohort, with a current sample size of 5097 
patients [38]. Patients diagnosed or treated at the Univer-
sity of Chicago Hospitals were ascertained through the 
cancer risk clinic and breast center. Clinical, pathological, 
and treatment data were collected via electronic medical 
records. Epidemiological risk factor data were collected 
via a questionnaire. A biobank was established, collect-
ing blood and tumor samples. This analysis randomly 
selected female African American patients who were ≥ 18 
years of age at diagnosis, lived in Chicago, enrolled in the 
ChiMEC study between 2012 and 2018, had histologi-
cally diagnosed non-metastatic invasive breast cancer, 
and had serum samples available. Stage IV distant meta-
static patients were excluded as these patients might have 
tumor cells in circulation and experience dramatic meta-
bolic changes.

The healthy controls were selected from the Chicago 
Multiethnic Prevention and Surveillance Study (COM-
PASS), a large scale, longitudinal cohort study with a cur-
rent sample size of 7728 participants from 72 of the 77 
Chicago community areas [39]. Residents of the greater 
Chicago area were eligible for COMPASS if they were: (1) 
18 or older at the time of enrollment; (2) able to give con-
sent and provide survey data in English or Spanish; (3) 
willing to provide blood, urine, saliva samples, and access 
to medical records. Recruitment strategies to increase 
minority enrollment have included a predominantly 

Conclusion  Breast cancer in African American women is associated with increase in serum metabolites involved in 
prostaglandin and leukotriene pathways, but with decrease in serum metabolites in glycerolphospholipid pathway. 
Positive lymph nodes and advanced cancer stage may strengthen changes in these pathways.
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minority interviewer team and focus on recruitment in 
census tracts with minority and diverse populations as 
the primary sampling unit. Enrollment entails the com-
pletion of a 1-hour long survey, consenting for past and 
future medical records from all sources, the collection of 
clinical and physical measurement data and the on-site 
collection of biological samples including blood, urine 
and saliva. On collection, all biological samples are pro-
cessed and liquated within 24  h before long-term stor-
age and subsequent analysis. Participants completed an 
extensive survey providing information on medical his-
tory, socioeconomic status, psychosocial variables, life-
style behaviors, social environment, immune status, use 
of medical services, medication use, among other covari-
ates. Blood collection occurred at the same time as con-
sent and the in-person interview.

Informed consent  has been obtained from all ChiMEC 
and COMPASS participants. For the current analysis, 125 
African American participants were randomly selected 
from ChiMEC and COMPASS, respectively, frequency-
matched by age. In addition to data collection through 
questionnaire interview and electronic medical records, 
we also conducted geocoding analysis based on residence 
addresses of participants in both studies to collect neigh-
borhood-level characteristics, and we calculated area 
deprivation index (ADI) [40].

High-resolution metabolomics
The precipitation of proteins were performed using 
the Ostro 96-well plate by following the manufactur-
er’s protocol for each serum sample. In brief, 100uL 
of serum were placed in the well with 100uL of surro-
gate standard Loratadine. Then 200uL of cold solvent 
(acetonitrile:formic acid 99:1) were added, followed by 
gentle mixing before the filtration by manifold proces-
sor. The procedure was repeated with 400ul cold solvent 
(acetonitrile/water/formic acid 3:1:1%). The resulting 
solution were dried by nitrogen flow and reconstituted 
in 200uL solvent (acetonitrile/water 1:1) with spiked-in 
internal standards (Celecobix and 4-Aminobiphenyl).

For testing the serum extraction procedure, a quality 
control sample was prepared by mixing same volumes of 
all serum samples. The same extraction protocol was per-
formed on these quality control samples randomly placed 
in the well plate. The quality control extracts together 
with the extraction blanks were injected during the sam-
ple analysis.

Liquid chromatography mass spectrometry (LC-MS) 
analysis of the metabolite extracts was performed using 
an Agilent 6545 Q-TOF and 1290UPLC system con-
trolled by the Agilent Mass Hunter acquisition software. 
The mass spectrometer was operated in 2 GHz extended 
dynamic range mode employing precursor ion analysis 

for relative quantification experiments in positive/nega-
tive ion modes. Internal references were used for cali-
bration. Mobile phase A was 0.1% formic acid in H2O 
and B was 0.1% formic acid in acetonitrile. The samples 
were loaded onto a 2.1 × 100 mm Agilent Poroshell C18, 
1.9  μm column (Agilent Technologies Inc., Santa Clara, 
CA, USA) and separation performed using an Agilent 
1290 Ultra Performance Liquid Chromatography sys-
tem at a flow rate of 300 µL/ min. The gradient started 
with 2%B and was increased to 65% in 11  min, then to 
95%B in 2 min. The gradient was held at 95%B for 4 min. 
A post column equilibration time of 4 min was used for 
all runs. The post time was set to 3 min to re-equilibrate 
after each run. Source parameters were as follows: gas 
temp (300 °C), drying gas (11 L/min), nebulizer (35 psi), 
sheath gas temp (350  °C), sheath gas flow (12  L/min ), 
VCap (3000  V), and fragmentor (145  V). The column 
compartment was held at 35  °C. Data was collected for 
relative quantification using a scan speed of 3 MS spectra 
per second. Pooled quality control samples were injected 
across every 10 sample injections. Each extract was sepa-
rated and quantitated only once.

The surrogate standard was used to track the recov-
ery after extraction and reconstitution. Each sample was 
used within ± 15% recovery. This protocols were widely 
used in metabolomics studies [41–43]. As suggested by 
the literature, the protocols used in this study offered the 
greatest extraction performance, though the survivability 
of certain metabolites cannot be evaluated [41].

Statistical analysis
Metabolic features that were present in at least 80% of 
one group and > 50% of all samples were filtered and 
maintained in following analyses. After filtering, missing 
values in these features were imputed by one-half of the 
lowest signal detected for that feature across all samples 
as suggested by prior studies [44]. Log2-transformed 
feature intensities were used for analyses. To control for 
confounding from different aspects, we used residuals of 
intensities derived from linear mixed effects regression 
models against potential confounders including age, mar-
ital status, tobacco smoking, alcohol drinking, type 2 dia-
betes, and area deprivation index of residential address 
[40]. To further eliminate potential confounding arising 
from spatial variations, we included residential zipcode 
as random intercepts in the mixed effects models.

Partial least squares discriminative analysis (PLS-DA) 
was employed to identify differential features between 
cases and controls. PLS-DA is a supervised multivari-
ate analytical approach for dimensionality reduction that 
maximizes covariance between cancer status and feature 
intensities [45]. A Variable Importance in Projection 
(VIP) score is generated for each feature in the PLS-DA 
model. The VIP score estimates the importance of each 
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feature in the model and is commonly used for feature 
selection. Features with a VIP score > 2 in PLS-DA and 
fold change (FC) > 2 were considered clinically impor-
tance. Moreover, to evaluate the performance of selected 
features, we conducted 10-fold cross-validation tests 
utilizing the support vector machine and calculated the 
classification accuracy of the selected features. All feature 
selection approaches were implemented with the R pack-
age mixOmics v6.3.1.

Pathway analysis
The enriched metabolic pathways differential between 
controls and cases were identified using Mummichog (v. 
1.0.10) [46]. All features were included in the pathway 
enrichment analysis, while the selected features were 
denoted as significant. Mummichog is a novel and reli-
able algorithm for pathway enrichment analysis designed 
specifically for high-resolution LC-MS. This algorithm 
has been proven to be valid and reflect real biological 
activity [47–50]. To reduce false positive match rate, the 
Mummichog algorithm requires all annotated metabo-
lites to present in at least their primary adduct (M + H or 
M-H for positive and negative mode, respectively). We 
used a P value of 0.05 as the threshold. Only enriched 
pathways with at least 3 overlapping metabolites were 
kept for further interpretation.

Subgroup analysis
Clinical characteristics related to breast cancer had the 
potential to modify metabolic activities among patients. 
To evaluate the influence of these variables, we con-
ducted subgroup analysis based on selected clinic char-
acteristics. Specifically, we repeated aforementioned 
metabolomics analysis using cases stratified by treat-
ment, lymph node, and cancer stage. To eliminate the 
influence of cancer treatment on metabolomics in breast 
cancer cases, we included only cases without any treat-
ment before serum collection in the analysis. To exam-
ine the impact of cancer extent on metabolomics, we also 
conducted subgroup analysis based on cancer stage and 
lymph node. In summary, we have a total of seven sce-
narios in the analysis of this study: (1) all breast cancer 
cases as described above; (2) cases without any cancer 
treatment (chemotherapy, radiotherapy, and surgery) 
before serum collection; (3) cases with one of treatment 
modalities (chemotherapy, radiotherapy, and surgery) 
before serum collection; (4) cases with negative lymph 
nodes; (5) cases with positive lymph nodes; (6) cases with 
stage I cancer; and (7) cases with stages II or III cancer.

Study protocols of both studies (ChiMEC and COM-
PASS) were approved by the Institutional Review Board 
at the University of Chicago. All participant recruitment, 
human sample experiment, and data analysis in this study 

were carried out in accordance with Helsinki Declaration 
guidelines.

Results
The average age was 57.1 years for controls and 58.0 
years for cases (Table  1). There were more current 
tobacco smokers (40.8% vs. 13.6%) and alcohol drink-
ers (61.6% vs. 44.8%) among controls compared to cases. 

Table 1  Distribution of selected characteristics among 
participants

Controls 
(n = 125)

Cases 
(n = 125)

Characteristics
Age at enrollment, mean ± SD 57.1 ± 13.8 58.0 ± 13.9

Marital status, n (%)

Single 63 (50.4) 61 (48.8)

Married or partnered 18 (14.4) 34 (27.2)

Divorced or widowed 44 (35.2) 30 (24.0)

Current tobacco smoker, n (%)

No 74 (59.2) 108 (86.4)

Yes 51 (40.8) 17 (13.6)

Current alcohol drinker, n (%)

No 48 (38.4) 69 (55.2)

Yes 77 (61.6) 56 (44.8)

Type 2 diabetes, n (%)

No 108 (86.4) 111 (88.8)

Yes 17 (13.6) 14 (11.2)

Area Deprivation Index national rank,
Median (interquartile range)

71 (57–85) 66 
(49–80)

Cancer-related characteristics
Cancer stage group

I 49 (39.2)

II 58 (46.4)

III 18 (14.4)

Lymph node involvement

Negative 72 (57.6)

1–3 node positive 45 (36.0)

4 + node positive 7 (4.8)

Missing 1 (0.8)

Surgery, n (%)

No 3 (2.4)

Yes, after serum collection 97 (77.6)

Yes, before serum collection 25 (20.0)

Chemotherapy, n (%)

No 47 (37.6)

Yes, after serum collection 32 (25.6)

Yes, before serum collection 46 (36.8)

Radiotherapy, n (%)

No 43 (34.4)

Yes, after serum collection 73 (58.4)

Yes, before serum collection 9 (7.2)

Any treatment before serum collection, n (%)

No 68 (54.4)

Yes 57 (45.6)
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The prevalence of type 2 diabetes were comparable 
between these two groups (13.6% vs. 11.2%). Both cases 
and controls lived in similar communities, as indicated 
by zip codes, in south side of Chicago. The areas that 
cases and controls lived had similar ranks of area depri-
vation index (median value: 71 vs. 66). Compared to all 
ChiMEC population [38], the breast cancer cases in this 
study demonstrated consistent distributions of demo-
graphic characteristics because of the random selec-
tion process, as among the original ChiMEC African 
American patients the average age was 59.6 years and 
15.8% reported current smoking. Similarly, the demo-
graphic characteristics of healthy controls in this study 
also exhibited no substantial difference from the origi-
nal COMPASS cohort, as the average age was 53.7 years, 
47.8% reported current smoking, and 10.1% had type 2 
diabetes in the original population.

Among breast cancer patients in this study, the median 
time from diagnosis to serum collection was 72 days. 
There were 49, 58, and 18 patients having breast stage 
I, II, and III breast cancer, respectively. More than half 
cancer patients had lymph node tumor negative dis-
ease (57.6%). Almost all patients received breast surgery 
(mastectomy or lumpectomy), and 25 of them received 
surgery before serum collection (median 98 days). Most 
patients (62.4%) received chemotherapy, and 46 of them 
received chemotherapy before serum collection (median 
158 days after initiation of chemotherapy). There were 
65.6% receiving radiotherapy, and only 9 of them before 

serum collection. There were 57 (45.6%) patients receiv-
ing any treatment (chemotherapy, radiotherapy, and sur-
gery) before serum collection, while the rest 68 patients 
had sera collected after date of diagnosis and before any 
cancer treatment.

In total, we detected 15,829 features, among which 
12,023 remained after filtering for missing values. When 
we compared controls with all cases, 518 unique meta-
bolic features were selected using PLS-DA after adjusting 
for aforementioned confounders, while setting the VIP 
scores > 2 (Table 2; Fig. 1, Scenario 1). The classification 
error rate obtained from the 10-fold cross-validation was 
4.8%, suggesting the set of discriminatory features effec-
tively separate the cases and controls. Among the 518 
features, 507 (97.9%) features had FC > 2 and were even-
tually used for enriched pathway. In our subgroup analy-
sis, the classification error rates ranged from 2.9 to 8.4%, 
and the final numbers of selected metabolic features from 
478 to 612. The scenario where breast cancer cases had 
positive lymph node had the lowest classification error 
rate and the largest number of selected metabolic fea-
tures. In contrast, the scenario where cases with stage 
I cancer had the smallest number of selected metabolic 
features. See supplemental Table S1 for VIP scores and 
FC of each feature in each scenario in this study.

We evaluated whether metabolic features selected in 
this study were enriched in specific metabolic pathways 
using Mummichog (Table 3). When using all breast can-
cer cases (Scenario 1), enriched pathway analysis indi-
cated that three metabolic pathways were differentially 
enriched between cases and controls with a P-value < 0.05 
and had at least 3 overlapped metabolites when we com-
pared breast cancer cases with healthy controls. The 
three metabolic pathways were prostaglandin formation 
from arachidonate (8 overlap metabolites), leukotriene 
metabolism (8 overlap metabolites), and glycerophospho-
lipid metabolism (6 overlap metabolites). The first two 
pathways, prostaglandin formation from arachidonate 
and leukotriene metabolism, indicate an inflammatory 
response. The last pathways is lipid-related metabolic 
pathway, which is closely related to essential biological 
structures and functions. Tentative annotation results of 
metabolites in each differentially enriched pathways and 
FCs of these features are present in Table 4. Notably, the 
three pathways demonstrated different patterns. In pros-
taglandin and leukotriene pathways, FCs of all significant 
metabolic features were positive, meaning that these fea-
tures in the two pathways exhibited increased abundance 
among breast cancer patients. In contrast, in the glycero-
phospholipid pathway, all significant metabolic features 
had negative FC and thus showed a decreased intensity 
among breast cancer patients.

The association directions of features in the three path-
ways were all consistent across all scenarios (Table 4). In 

Table 2  Model performance for feature selection
Overall and subgroup 
analysis (number of 
cancer cases)*

Number of 
features with 
VIP score > 2 in 
PLS-DA

Classifica-
tion error 
rate of 
PLS-DA

Final 
number of 
features 
with FC > 2

Scenario 1: All cases 
(n = 125)

518 4.8% 507

Scenario 2: Cases without 
any treatment before 
serum collection (n = 68)

477 5.2% 457

Scenario 3: Cases with 
some treatment before 
serum collection (n = 57)

602 8.4% 573

Scenario 4: Cases with 
negative lymph nodes 
(n = 72)

506 8.4% 485

Scenario 5: Cases with 
positive lymph nodes 
(n = 52)

644 2.9% 612

Scenario 6: Cases with 
stage I cancer (n = 49)

512 7.2% 478

Scenario 7: Cases with 
stage II or III cancer 
(n = 76)

584 5.6% 560

FC, fold change; PLS-DA, partial least square discriminatory analysis; VIP, 
variable importance in projection

*The same 125 healthy controls were compared with
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the subgroup analysis using data from cases with sera 
collected after breast diagnosis and before any cancer 
treatment, we found that the three pathways were still 
significant or marginal significant (Table  3, Scenario 2). 
The directions and FC magnitudes were also consistent 
in overall and the subgroup analysis (Table 4, Scenarios 
1 and 2). Interestingly, we found slightly larger number 
of overlap metabolic features (Table  3) and generally 
larger effect sizes (Table 4) in prostaglandin and leukot-
riene pathways when comparing the subgroup analysis of 
lymph node positive cases (Scenarios 5) to the subgroup 
analysis of lymph node negative cases (Scenarios 4), while 
there were similar effect sizes in the glycerophospholipid 
pathway between the two scenarios. Similarly results 
were found when comparing the subgroup analysis of 
stage II/III cancer cases (Tables  3 and 4, Scenario 7) to 
the subgroup analysis of stage I cancer cases (Scenarios 
6). Except for the aforementioned three metabolic path-
ways, no other significant pathways were observed in the 
subgroup analyses.

Discussion
In this study, we used untargeted high-resolution metab-
olomics approach to investigate the metabolic changes 
soon after diagnosis among breast cancer patients com-
pared with healthy controls. With more than 15,000 met-
abolic features detected from serum of the study samples, 

we found that metabolic pathways related to inflamma-
tory reactions and lipid metabolism were differentially 
enriched among breast cancer patients, providing clues 
for the long-term sequelae manifested after breast can-
cer diagnosis. Specifically, two inflammatory reactions 
pathways, prostaglandin formation from arachidonate 
and leukotriene metabolism, were differentially enriched 
between controls and cases. Metabolic features in these 
two pathways showed an increased abundance among 
breast cancer patients. The changes in these pathways 
were strengthened when only considering breast cancer 
cases with positive lymph nodes or stage II/III cancer. By 
contrast, in the enriched lipid-related pathway, glycero-
phospholipid metabolism, the intensity of metabolic fea-
ture were mainly downregulated among cancer patients.

Glycerophospholipids are the most abundant lipids 
in virtually all mammalian membranes. Dysfunction 
in glycerophospholipid metabolism is among the most 
prominent metabolic alterations in cancer [51], as can-
cer cells need to continually regulate glycerophospho-
lipids for membrane production, energy acquisition, and 
molecular signaling [52]. Therefore, it is likely that the 
observed changes in glycerophospholipid metabolism in 
this study are the direct consequence of breast cancer and 
thus suggest disruptions among breast cancer patients. 
The altered lipid metabolism further disrupts choles-
terol homeostasis [53, 54], which has been linked to the 

Fig. 1  Identification of metabolic features associated with breast cancer. The positive fold change (log2) indicates higher feature intensity among cases. 
(1) Scenario 1, all breast cancer cases (n = 125); (2) Scenario 2, cases without any treatments (chemotherapy, radiotherapy, and surgery) before serum col-
lection (n = 68); (3) Scenario 3, cases with any treatments (chemotherapy, radiotherapy, and surgery) before serum collection (n = 57); (4) Scenario 4, cases 
with negative lymph nodes (n = 72); (5) Scenario 5, cases with positive lymph nodes (n = 52); (6) Scenario 6, cases with stage I cancer (n = 49); (7) Scenario 
7, cases with stage II/III cancer (n = 76)
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progression of various chronic disease [55–58]. Given the 
crucial role of glycerophospholipid in cell membranes 
and surfactant, it is natural and intuitive that dysfunction 
of glycerophospholipid metabolism results in a series of 
chronic diseases [59]. However, the long-term impact 
of the disruptions in glycerophospholipid metabolism is 
under-investigated, warranting more studies.

In addition to serving as key structural components 
of membranes, glycerophospholipids can also provide 
arachidonic acid, the precursor of prostaglandins and 
leukotrienes [60]. As a key inflammatory intermediate, 
arachidonic acid is released from cell membranes con-
trolled by glycerophospholipids and then converted to 
eicosanoids through pathways including: the lipoxygen-
ase (LOX) pathway, where arachidonic acids is dioxy-
genated to produce hydroperoxyeicosatetraenoic acid 
(HPETE) and then further converted to leukotrienes; and 
the cyclooxygenase (COX) pathway that produces pros-
taglandin [61]. Prostaglandins and leukotrienes are two 
major pro-inflammatory mediators, and their metabolic 
pathways were observed to be differentially enriched 
among breast cancer patients in this study.

The most common type of prostaglandins is prosta-
glandin E2 (PGE2) whose link to CVD has been exten-
sively documented in the literature [62]. PGE2 is involved 
in a variety of biological functions in the cardiovascu-
lar system, including vascular tone regulation, cardiac 
remodeling, and cardiac inflammation [62]. While clini-
cal studies are still lacking, evidence from animal experi-
ments reveals that PGE2 is associated with higher risks 
of heart failure, reperfusion injury, arrhythmias, hyper-
tension, hypertensive heart disease, and atherosclerosis 
[62]. In this study, we observed that PGE2 was increased 
among breast cancer patients.

Leukotrienes have been linked to increased risks for 
CVD and other diseases by prior studies [63]. The over-
production of leukotrienes is a major cause of inflamma-
tion [64]. Leukotriene D4 (LTD4) is one of leukotrienes 
that retains biological activity. In our study, we observed 
that LTD4 was increased intensity among breast cancer 
patients, revealing another potential mechanistic path-
way of the ling-term sequelae after breast cancer diagno-
sis. Recently, given the close relationship between CVD 
and leukotrienes, there is an emerging interest develop 
cardiovascular drugs based on leukotriene modifiers, 
which are expected to mitigate stroke, myocardial infarc-
tion, and atherosclerosis [65].

In the subgroup analysis, though consistent with our 
main findings, the changes in these differentially enriched 
pathways were somewhat strengthened in the scenario 
where cases had positive lymph nodes or stage II/III can-
cer, while attenuated in scenarios where cases had nega-
tive lymph nodes or stage I cancer. The observation of 
more extent of cancer with stronger associations with the Ta

bl
e 

3 
En

ric
he

d 
m

et
ab

ol
ic

 p
at

hw
ay

s 
as

so
ci

at
ed

 w
ith

 b
re

as
t c

an
ce

r s
ta

tu
s

Pa
th

w
ay

Pa
th

-
w

ay
 

si
ze

a

Sc
en

ar
io

 1
b

Sc
en

ar
io

 2
b

Sc
en

ar
io

 3
b

Sc
en

ar
io

 4
b

Sc
en

ar
io

 5
b

Sc
en

ar
io

 6
b

Sc
en

ar
io

 7
b

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P 
va

lu
ed

O
ve

r-
la

p 
si

ze
c

P va
lu

ed

Pr
os

ta
gl

an
di

n 
fo

rm
at

io
n 

fro
m

 a
ra

ch
id

on
at

e
58

8
0.

01
8

7
0.

02
5

9
0.

00
8

7
0.

03
0

10
0.

00
3

6
0.

04
6

9
0.

01
0

Le
uk

ot
rie

ne
 m

et
ab

ol
is

m
56

8
0.

02
0

6
0.

07
6

9
0.

01
1

7
0.

03
7

9
0.

01
0

5
0.

12
2

9
0.

01
4

G
ly

ce
ro

ph
os

ph
ol

ip
id

 m
et

ab
ol

is
m

48
6

0.
04

0
6

0.
02

5
7

0.
01

6
7

0.
00

9
7

0.
01

5
5

0.
05

2
7

0.
01

9
a  T

he
 p

at
hw

ay
 s

iz
e 

is
 th

e 
nu

m
be

r o
f d

et
ec

te
d 

em
pi

ric
al

 c
om

po
un

ds
 fo

r e
ac

h 
pa

th
w

ay
b  In

 s
ce

na
rio

s 
1 

to
 7

, t
he

 c
as

es
 u

se
d 

to
 c

om
pa

re
 h

ea
lth

y 
co

nt
ro

ls
 w

er
e:

 (1
) a

ll 
br

ea
st

 c
an

ce
r c

as
es

, (
2)

 c
as

es
 w

ith
ou

t a
ny

 tr
ea

tm
en

ts
 (c

he
m

ot
he

ra
py

, r
ad

io
th

er
ap

y,
 a

nd
 s

ur
ge

ry
) b

ef
or

e 
se

ru
m

 c
ol

le
ct

io
n,

 (3
) c

as
es

 w
ith

 s
om

e 
tr

ea
tm

en
ts

 (c
he

m
ot

he
ra

py
, r

ad
io

th
er

ap
y,

 a
nd

 s
ur

ge
ry

) b
ef

or
e 

se
ru

m
 c

ol
le

ct
io

n,
 (4

) c
as

es
 w

ith
 n

eg
at

iv
e 

ly
m

ph
 n

od
es

, (
5)

 c
as

es
 w

ith
 p

os
iti

ve
 ly

m
ph

 n
od

es
, (

6)
 c

as
es

 w
ith

 s
ta

ge
 I 

ca
nc

er
, a

nd
 (7

) c
as

es
 w

ith
 s

ta
ge

 II
/I

II 
br

ea
st

 
ca

nc
er

, r
es

pe
ct

iv
el

y
c  T

he
 o

ve
rla

p 
si

ze
 is

 th
e 

nu
m

be
r o

f s
ig

ni
fic

an
t e

m
pi

ric
al

 c
om

po
un

ds
d  P

 v
al

ue
s 

ca
lc

ul
at

ed
 b

y 
M

um
m

ic
ho

g 
w

er
e 

ga
m

m
a-

ad
ju

st
ed

 P
 v

al
ue

s 
ba

se
d 

on
 p

er
m

ut
at

io
n 

te
st

s 
by

 re
sa

m
pl

in
g 

fr
om

 th
e 

re
fe

re
nc

e 
lis

t



Page 8 of 11Luo et al. BMC Cancer          (2023) 23:183 

aforementioned three pathways is reasonable and antici-
pated, as ancillary lymph nodes are considered the most 
important route for breast cancer to spread to blood and 
then other organs.

The study has several strengths. First, to our knowl-
edge, this study is the first one that employ metabolo-
mics approaches to analyze the difference in metabolism 
between breast cancer cases and healthy controls. Find-
ings from this study identified potential metabolic target 
for clinical intervention that mitigates long-term sequelae 
among breast cancer patients. Second, substantial efforts 
have been made to ensure the homogeneity of the study 
population with an aim to preclude the influence from 
external factors. Specifically, the cases and controls were 
matched by age and all of them were African Americans, 
so that variations arising from genetics and age could be 

reduced. Moreover, all participants were recruited from 
similar communities in south side of Chicago and ran-
dom effects of spatial variations were further included in 
the regression model. Therefore, impacts of environmen-
tal factors, such as air pollution and neighborhood disad-
vantages, could be minimized. All these approaches were 
expected to increases the validity and biological reliabil-
ity of our results, though we cannot completely rule out 
external influences.

Our study also has some limitations that warrant cau-
tion in interpretation. First, the breast cancer samples are 
heterogeneous regarding time of serum collection and 
cancer stage. Chemotherapy and radiotherapy can have 
short and long-term influence on metabolic profile in cir-
culation, while breast surgery can have short-term impact 
on inflammatory markers. In the subgroup analysis using 

Table 4  Tentative match of the serum metabolic features associated with breast cancer to the metabolites within mummichog 
enriched pathways
Pathway m/z RT (s) Tentative match Fold change (log2)a

Scenario 
1b

Scenar-
io 2b

Sce-
nario 
3b

Sce-
nario 
4b

Sce-
nario 
5b

Scenar-
io 6b

Sce-
nar-
io 
7b

Prostaglandin 
formation from 
arachidonate

410.2634 12.13 12-hydroperoxyeicosatetraenoate 
glyceryl ester

3.18 2.94 3.47 3.03 3.37 2.94 3.34

424.2432 12.27 15-oxo-Prostaglandin E2 glyceryl ester 2.78 2.31c 3.35 2.43 3.29 2.33c 3.08

368.2161 10.16 20-dihydroxyleukotriene B4 2.33 2.12 2.57 2.13 2.61 2.27 2.36

368.2166 10.22 Prostaglandin G2 2.17 2.07 2.28 2.07 2.31 2.21 2.14

366.2008 10.24 11-dehydro-15-keto-TXB2 3.24 3.19 3.30 3.22 3.26 3.13 3.32

352.2236 10.93 Prostaglandin E2 2.19 1.99 2.42 1.94c 2.53 1.88c 2.39

424.2438 12.60 15-oxo-Prostaglandin E2 glyceryl ester 2.62 2.19 3.14 2.37 3.00 2.21 2.89

370.2706 11.99 Anandamide 4.18 3.66 4.79 3.88 4.56 3.78 4.43

366.2008 10.20 12-oxo-20-dihydroxy-leukotriene B4 3.24c 3.19c 3.30 3.22c 3.26 3.13c 3.32

368.2161 10.16 20-dihydroxyleukotriene B4 2.33c 2.12c 2.57c 2.13c 2.61 2.27c 2.36c

Leukotriene 
metabolism

364.1858 12.20 20-carboxy-leukotriene-B4 2.30 2.09 2.54 2.19 2.43 2.16 2.38

368.2161 10.16 20-dihydroxyleukotriene B4 2.33 2.12 2.57 2.13 2.61 2.27 2.36

496.2647 10.87 Leukotriene D4 2.06 1.92 2.23 2.09 1.99 2.06 2.06

382.1958 10.76 12-oxo-20-trihydroxy-leukotriene B4 3.27 2.89c 3.72 3.10 3.51 3.06c 3.40

366.2008 10.24 20-COOH-10,11-dihydro-LTB4 3.24 3.19 3.30 3.22 3.26 3.13c 3.32

370.1772 9.29 12,20-dioxo-leukotriene B4 3.20 2.94 3.51 2.91 3.59 2.89 3.40

352.2236 10.93 Prostaglandin E2 2.19 1.99c 2.42 1.94c 2.53 1.88c 2.39

366.2008 10.24 11-dihydro-LTB4 3.24 3.19 3.30 3.22 3.26 3.13 3.32

630.4014 13.93 Kurilensoside F 1.18c 0.97c 1.43 1.29c 1.05 1.21c 1.16

Glycerophos-
pholipid 
metabolism

299.2820 14.07 Sphingosine -1.14 -1.22 -1.05 -1.13 -1.16 -1.18 -1.12

687.4946 14.68 Diacylglycerol -1.91 -2.09 -1.69 -1.87 -1.96 -1.81 -1.96

278.2252 16.23 (6Z,9Z,12Z)-Octadecatrienoic acid -2.09 -2.26 -1.89 -2.17 -1.96 -2.18 -2.03

301.2975 11.47 Sphinganine -1.30 -1.38 -1.20 -1.34 -1.23 -1.32c -1.28

280.2400 15.23 Linoleic acid (all cis C18:2) n-6 -1.72 -1.92 -1.48 -1.75 -1.68 -1.74 -1.71

299.2822 11.17 3-dehydrosphinganine -2.26 -2.39 -2.09 -2.29 -2.19 -2.25 -2.26

417.2354 11.59 1-(1-Alkenyl)-sn-glycero-3-phosphate -1.67c -1.40c -2.00 -1.50 -1.91 -1.57c -1.74
a A fold change larger than 0 indicated higher intensity among breast cancer cases than controls
b In scenarios 1 to 7, the cases used to compare healthy controls were: (1) all breast cancer cases, (2) cases without any treatments (chemotherapy, radiotherapy, and 
surgery) before serum collection, (3) cases with some treatments (chemotherapy, radiotherapy, and surgery) before serum collection, (4) cases with negative lymph 
nodes, (5) cases with positive lymph nodes, (6) cases with stage I cancer, and (7) cases with stage II/III breast cancer, respectively
c The metabolite was not statistically significant in this pathway under the scenario
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samples collected after diagnosis and before any of these 
treatment, the main study findings remained, suggesting 
that the differentially regulated pathways identified in 
this study may be due to intrinsic cancer metabolism. The 
heterogeneity by cancer stage, as discussed above, sug-
gests that these differentially regulated pathways depend 
on extent of breast cancer. Second, without further 
metabolite identification using tandem MS, we could only 
tentatively annotate the extracted features and enriched 
pathways using computational approaches. This is an 
inherent challenge in untargeted metabolomics stud-
ies. We could not rule out false matches that influenced 
our interpretation. Observations from the current study 
only provide helpful, but not conclusive, suggestions for 
metabolic changes related to breast cancer. Future stud-
ies are warranted to improve the identification of metab-
olites using either tandem MS or internal standards. 
Third, the study population were all African Americans, 
therefore, generalizability to other populations might be 
weakened. Particularly, genetic variations across racial/
ethnic groups could prevent us generalizing conclusions 
from African Americans to other groups. However, given 
African American females face higher disease burdens of 
both breast cancer and chronic diseases, our results can 
also provide valuable insights regarding public health and 
clinical interventions.

In summary, we applied high-resolution metabolomics 
to identify perturbations in the serum metabolome asso-
ciated with breast cancer. We observed metabolic path-
ways consistent with inflammatory reactions and lipid 
metabolism that may contribute to long-term sequelae 
among breast cancer patients. Particularly, we observed 
differentially enriched metabolic pathways of prosta-
glandins and leukotrienes with increased abundances 
of metabolic features among cancer patients. Changes 
in these two pathways appear to be strengthened by 
positive lymph nodes, and weakened at negative lymph 
nodes.  We also observed decreased metabolic intensi-
ties in the pathway of glycerolphospholipid among breast 
cancer patients. The findings from this study may provide 
insights to identify clinical intervention targets that miti-
gate long-term sequelae among breast cancer patients.
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