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Abstract 

Background  Using texture features derived from contrast-enhanced computed tomography (CT) combined with 
general imaging features as well as clinical information to predict treatment response and survival in patients with 
hepatocellular carcinoma (HCC) who received transarterial chemoembolization (TACE) treatment.

Methods  From January 2014 to November 2022, 289 patients with HCC who underwent TACE were retrospectively 
reviewed. Their clinical information was documented. Their treatment-naïve contrast-enhanced CTs were retrieved 
and reviewed by two independent radiologists. Four general imaging features were evaluated. Texture features were 
extracted based on the regions of interest (ROIs) drawn on the slice with the largest axial diameter of all lesions using 
Pyradiomics v3.0.1. After excluding features with low reproducibility and low predictive value, the remaining features 
were selected for further analyses. The data were randomly divided in a ratio of 8:2 for model training and testing. 
Random forest classifiers were built to predict  patient response to TACE treatment. Random survival forest models 
were constructed to predict overall survival (OS) and progress-free survival (PFS).

Results  We retrospectively evaluated 289 patients (55.4 ± 12.4 years old) with HCC treated with TACE. Twenty fea-
tures, including 2 clinical features (ALT and AFP levels), 1 general imaging feature (presence or absence of portal vein 
thrombus) and 17 texture features, were included in model construction. The random forest classifier achieved an 
area under the curve (AUC) of 0.947 with an accuracy of 89.5% for predicting treatment response. The random survival 
forest showed good predictive performance with out-of-bag error rate of 0.347 (0.374) and a continuous ranked prob-
ability score (CRPS) of 0.170 (0.067) for the prediction of OS (PFS).

Conclusions  Random forest algorithm based on texture features combined with general imaging features and clini-
cal information is a robust method for predicting prognosis in patients with HCC treated with TACE, which may help 
avoid additional examinations and assist in treatment planning.
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Background
Hepatocellular carcinoma (HCC) is a malignant disease 
with high mortality. Many risk factors have been well 
established that impact the outcomes of HCC, including 
age, gender, staging, ascites, tumour thrombus and liver 
function [1]. Curative surgery will increase the long-term 
survival rate. However, not all HCCs can be treated with 
surgical resection due to the high disease burden, insuffi-
cient residual liver volume, severe cirrhosis, disseminated 
metastatic lesions within the liver, presence of portal vein 
tumour thrombus and other cancer-related symptoms 
[2].

The Barcelona Clinic Liver Cancer (BCLC) staging sys-
tem supported transarterial chemoembolization (TACE) 
as the first treatment choice in patients with unresectable 
HCC, such as those with large or multinodular HCC. The 
same recommendation is also made in the Chinese Uni-
versity Prognostic Index (CUPI) [3] and the Hong Kong 
Liver Cancer (HKLC) staging system [4]. The long-term 
survival was prolonged in patients with unresectable 
HCC when treated with TACE compared to the best sup-
portive care [5]. However, in the clinical setting, the ther-
apeutic outcome of TACE is not always satisfying when it 
comes to individual cases because the biological behav-
iour of tumour cells is highly heterogeneous.

Modified Response Evaluation Criteria In Solid Tumors 
(mRECIST) is a criterion relying on the change of tumour 
burden before and after treatment in HCC [6]. Several 
studies have demonstrated that  the objective response 
assessed by mRECIST is independently prognostic for 
survival and can be considered a valid endpoint in HCC 
clinical trials [7–9].

Currently, the assessment mainly depends on imag-
ing methods, such as computed tomography (CT) and 
magnetic resonance imaging (MRI). Though many image 
characteristics have been suggested as having prognos-
tic value, substantial subtle features were omitted during 
traditional imaging assessment, which is highly depend-
ent on individual experience and limited by human eye 
resolution. CT texture analysis is a post-processing algo-
rithm that further defines tumour characteristics beyond 
the perception of human eyes. By conducting texture 
analysis, large amounts of texture features are extracted 
from the pre-treatment images, which can reflect tumour 
heterogeneity, showing both morphological and cellular 
diversity [10]. It has been widely applied in many cancer 
types to predict patient outcome [11–14].

Thus, the primary aim of this study was to create a 
robust model incorporating texture features derived from 
contrast-enhanced CT combined with general imaging 
features as well as clinical information to predict treat-
ment response. Secondary analyses aimed to determine 
the features that predicted the overall survival (OS) and 

progress-free survival (PFS) in patients with HCC who 
received TACE.

Methods
Patients
This study was approved by the Sun Yat-sen University 
Cancer Centre Institutional Review Board (No. B2021-
214–01) with a waiver of written informed consent. All 
methods were carried out in accordance with relevant 
guidelines and regulations. From January 2014 to Novem-
ber 2022, data on patients with histological diagnoses of 
HCC were retrieved from our centre’s database. Inclu-
sion criteria were patients (1) with contrast-enhanced 
CT of the abdomen performed before the initiation of 
treatment; (2) who received TACE treatment, and (3) 
who had 1st follow-up CT within 4–6 weeks after TACE. 
Exclusion criteria included patients (1) with a single 
lesion with a maximal diameter of less than 1 cm or not 
detectable on baseline CT; (2) having disseminated dis-
ease within the liver precluding the placement of regions 
of interest (ROIs); (3) received other treatments before 
or after TACE, including surgery, radiofrequency treat-
ment or liver transplantation; (4) with no corresponding 
laboratory test results, and (5) with other malignancies. 
Patient demographics were recorded, including age, gen-
der, BCLC stage, Child − Pugh class, Eastern Cooperative 
Oncology Group (ECOG) performance status and com-
plications (diabetes or hypertension). Laboratory test 
results, including platelet (PLT) count, alanine transami-
nase (ALT), aspartate aminotransferase (AST), total 
bilirubin (TBIL), international normalized ratio (INR), 
alkaline phosphatase (ALP), albumin (ALB), C-reactive 
protein (CRP), alpha-fetoprotein (AFP), hepatitis B virus 
(HBV) and hepatitis C virus (HCV) were collected.

CT acquisition
CT examinations were performed using 2 scanners with 
intravenous contrast media. The volume of the contrast 
media was determined by multiplying the body weight 
(in kilograms) by 2 to a maximum of 100 mL. The con-
centration of the iodinated contrast media was 350 mg/
mL with an injection rate of 2 mL/s. The scanning param-
eters of the 2 scanners were as follows: (1) The 128-chan-
nel CT scanner (Discovery CT750, GE Healthcare, US): 
field of view, 25 cm; matrix, 512 × 512; tube voltage, 120 
kVp; tube current, 200–400 mA; reconstructed thickness, 
5 mm; (2) The 128-channel CT scanners (Somatom Defi-
nition or Definition AS + , Siemens Healthcare, US): field 
of view, 35  cm; matrix, 512 × 512; tube voltage, 80–120 
kVp; tube current, 248–578 mA; reconstructed thickness, 
5 mm. Finally, the arterial phase images of the CT exami-
nation were anonymized and assigned a research code 
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for the assessment of general imaging features and the 
extraction of texture features.

General imaging features assessment
All data were reviewed by 2 board-certified radiologists 
on a dedicated software (ITK-SNAP, v 3.8.0). The senior 
radiologist (R1) had more than 10 years of cross-sectional 
imaging experience, while the junior radiologist (R2) had 
5  years of cross-sectional imaging experience. This was 
designed to test for inter-observer agreement. Only the 
data from the senior radiologist was used for subsequent 
feature extraction and model construction.

To begin with, they identified all lesions for each 
patient in consensus and marked the slice of the largest 
axial diameter of each lesion. Then, they evaluated gen-
eral imaging features and drew ROIs separately. Four 
general imaging features were assessed, including (1) 
largest tumour diameter, (2) number of lesions, (3) pres-
ence or absence of portal vein thrombus, and (4) pres-
ence or absence of ascites. Univariate and multivariate 
logistic regression was conducted to select clinical fea-
tures that had independent prognostic value.

ROI delineation and Texture feature extraction
ROIs were drawn by strictly delineating around the mar-
gin of the mass with careful inclusion of both solid and 
cystic components but exclusion of adjacent normal 
structures (Suppl 1). If there were multiple lesions, all 
would be given an ROI delineation.

Texture feature extraction was performed on an 
open-source Python-based radiomics software (PyRa-
diomics, v 2.2.0). First, all images are normalized and 
scaled before textual computation. Then, 5 filters were 
applied, including Laplacian of Gaussian, wavelet, 
square, square root, logarithm, and exponential filters 
[15]. Wavelet transformation was applied with a single-
level directional discrete wavelet transform of high-pass 
and low-pass filters [16]. Eight wavelet-decomposition 
images were created, including HHH, HHL, HLH, 
HLL, LHH, LHL, LLH, and LLL (H: high-pass filter; 

L: low-pass filter). Finally, 1618 texture features were 
extracted, including (1) first-order statistics, (2) shape-
based features, (3) gray-level co-occurrence matrix 
(GLCM), (4) gray-level-dependent matrix (GLDM), (5) 
neighboring gray tone difference matrix (NGTDM), (6) 
gray-level size zone matrix (GLSZM), and (7) gray-level 
run length matrix (GLRLM). More details about these 
features were tabulated in Table 1 [17].

Feature reduction and selection
First, all texture features were tested by the  intraclass 
correlation coefficient (ICC). Features with low inter-
rater reproducibility (ICC < 0.8) were excluded. Next, 
the least absolute shrinkage and selection operator 
(LASSO) algorithm was employed for further feature 
reduction. The tuning parameter (λ) was selected using 
10-fold cross-validation and minimum criteria. A plot 
of the partial likelihood deviance was made against 
log (λ). The minimum (lambda.min) and 1-SE criteria 
(lambda.1se) were used to draw the dotted vertical lines 
at the optimal values. The whole analytical procedure 
was shown in Fig. 1.

TACE procedures
Patients were given TACE using cytotoxic drugs as deter-
mined by a  local multi-disciplinary team in accordance 
with the recommendations of the European/American 
Association for Liver Disease guidelines [18, 19].

Conventional TACE was performed through femo-
ral access under moderate sedation using the Seldinger 
technique [20]. To cause embolization of the tumour 
microcirculation, cytotoxic drugs or chemotherapeutic 
agents suspended in lipiodol were administrated into 
the tumour-feeding artery with a dose ranging from 5 
to 30  mL depending on the location, the size, and the 
number of lesions. If necessary, gelatin sponge particles 
(150–350  μm) were injected to block the blood until 
the flow was static.

Table 1  Description of texture feature groups

Texture feature group Description

(1) First-order statistics Distribution of grey-level intensities

(2) Shape-based features Description of two- and three- dimensional shape and size

(3) Gray-level co-occurrence matrix (GLCM) The spatial relationship of pixel intensities

(4) Gray-level-dependent matrix (GLDM) Gray level dependencies independent from angles

(5) Neighboring gray tone difference matrix (NGTDM) Difference between gray-level and the average within certain distances

(6) Gray-level size zone matrix (GLSZM) Description of the size of homogeneous zones for each grey-level in 3 dimensions

(7) Gray-level run length matrix (GLRLM) The number of pairs of gray level value and its length of runs
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Assessment of treatment response and follow‑up
All patients had 1st follow-up CT within 4–6 weeks after 
TACE. Their treatment response was evaluated by mRE-
CIST. Patients were dichotomized into the progress-free 
cohort, including those who achieved complete response 
(CR), partial response (PR), stable disease (SD), and 
the progress cohort, including those who exhibited pro-
gressive disease (PD) during follow-up. CR was defined 
as no intratumorally arterial enhancement in all tar-
get lesions. PR was defined as at least a 30% decrease in 
the sum of diameters of viable (enhancement of arterial 
phase) target lesions taking as reference the baseline sum 
of the diameters of target lesions. SD was defined as nei-
ther PR nor PD. PD was defined as an over 20% increase 
in the sum of the diameters of viable arterial-enhancing 
target lesions or new nodule formation.

All patients were followed up by telephone or clinical 
visits once every 2 months during the first year and once 
every 3 months after that until death or the last follow-up 
day (30th November 2022). OS was defined as the time 
from baseline CT to death or censoring date. PFS was 
defined as the time from TACE to disease progression 
based on mRECIST, death, or censoring date.

Statistics
Data were described as mean and standard deviation 
or median and range tested by the Shapiro–Wilk test. 
Fisher’s exact test and Welch’s T-test were used to verify 
differences among features. The Dice coefficient was cal-
culated between the ROIs drawn by the two radiologists. 
Univariate and multivariate logistic regression was used 
to select clinical and general imaging features. ICC and 
LASSO regression was used to select texture features.

The data were randomly divided in a ratio of 8:2 for 
model training and testing. To test the added value of 
texture features to the predictive model, two random 
forest classifiers (Model 1 including selected clinical 

information, general imaging features and texture fea-
tures; Model 2 including selected clinical information 
and general imaging features) were created to differen-
tiate the progress-free cohort from the progress cohort. 
Random survival forest models (Model 1 including 
selected clinical information, general imaging features 
and texture features; Model 2 including clinical informa-
tion and general imaging features) were used to evaluate 
OS and PFS in patients with HCC treated with TACE. 
Statistical analysis was conducted using R version 3.5.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 
The "randomForest” and “randomForestSRC” packages 
were implemented. A p < 0.05 was considered statistically 
significant.

Results
Demographics
A total of 289 patients with HCC who received TACE 
treatment were retrospectively included in this study, 
with an average age of 55.4 ± 12.4  years. Most of them 
(N = 261, 90.3%) were male. The median time interval 
from baseline CT examination to TACE treatment was 
4.5  days (range: 1–14  days) and from TACE treatment 
to 1st follow-up CT examination was 35  days (range: 
28–42 days). Patients were randomly allocated into train-
ing and testing sets in the ratio of 8:2 for analytical pur-
poses. Detailed patient characteristics were reported in 
Table 2.

Clinical and general imaging features selection
All clinical features (age, gender, ECOG performance 
status, Complications, Hepatitis, ALB, ALT, AST, TBIL, 
PT, INR, PLT, Child–Pugh class, CRP, BCLC stage, AFP) 
and general imaging features (diameter of the largest 
lesion, number of lesions, presence or absence of portal 
vein thrombosis, and presence or absence of ascites) were 
included in univariate logistic analysis. Detailed results 

Fig. 1  A flowchart depicting the analytical procedures. HCC = hepatocellular carcinoma; ICC = intraclass correlation coefficient; LASSO = least 
absolute shrinkage and selection operator; OS = overall survival; PFS = progress-free survival; TACE = transarterial chemoembolization
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of the assessment of general imaging features were tabu-
lated in Suppl 2. Those significant features were included 
in multivariate logistic analysis (Table 3). Finally, 2 clini-
cal features (ALT, AFP levels) and 1 general imaging fea-
ture (presence or absence of portal vein thrombus) were 
selected for further model construction.

Texture features reduction and selection
The mean Dice similarity coefficient of the ROIs between 
two radiologists was 0.90 ± 0.08. A total of 1618 texture 
features were extracted for each patient. First, the fea-
tures with low inter-rater reproducibility (ICC < 0.8) were 
excluded, thus reducing the number of texture  features 
to 1480. Next, the  LASSO algorithm was conducted to 
select features that had prognostic value. The minimum 
(lambda.min) and 1-SE criteria (lambda.1se) were 0.019 
and 0.070, respectively (Suppl 3). Finally, 17 texture fea-
tures were included in further model construction.

Treatment response
During the follow-up, a small proportion of patients 
(22.5%) achieved progressive outcomes (PD N = 65), 
while the rest (77.5%) had progress-free disease (CR 
N = 1, PR N = 139 and SD N = 84). The patients were 
dichotomized into progress-free and progress cohorts for 
analytic purposes.

There was no significant difference between train-
ing and testing sets for all selected features (p > 0.05). 
Our random forest Model 1 based on the selected 2 
clinical features (AFP and ALT levels), 1 general imag-
ing feature (presence or absence of portal vein throm-
bus) and 17 texture features resulted in an AUC of 0.947 
with a 95% confidence interval (CI) of 0.889–1.000 for 
predicting treatment response after TACE. The accu-
racy was 89.5% (95% CI: 78.5%-96.0%). The top 3 fea-
tures for predicting mRECIST were AFP level, texture 
features wavelet.LHL_ngtdm_Contrast, and wavelet.

Table 2  Patient demographics

ECOG 0 = fully active; 1 = restricted in physically strenuous activity

Complications 0 = without any complications; 1 = with complications (diabetes or hypertension)

Hepatitis 0 = without hepatitis; 1 = with hepatitis B or with hepatitis C

Child–Pugh score A = liver is functioning well; B = mild or moderate cirrhosis

BCLC staging A = early stage, a single tumour of any size, or up to 3 tumours all less than 3 cm; B = multiple tumours in the liver; C = metastasis to the blood vessels, 
lymph nodes or other body organs
*  Non-normal distribution summarised as median and range

Whole cohort Progress-free cohort Progress cohort p

N 289 224 65

Age (years) 55.4 ± 12.4 54.6 ± 12.5 58.3 ± 11.6 0.038
Gender Male 261 204 (78.2%) 57 (21.8%) 0.417

Female 28 20 (71.4%) 8 (28.6%)

ECOG performance status 0 286 223 (78.0%) 63 (22.0%) 0.128

1 3 1 (33.3%) 2 (66.7%)

Complications 0 244 190 (77.9%) 54 (22.1%) 0.733

1 45 34 (75.6%) 11 (24.4%)

Hepatitis 0 48 40 (83.3%) 8 (16.7%) 0.290

1 241 184 (76.3%) 57 (23.7%)

ALB (g/L) 39.1 ± 4.7 39.1 ± 4.6 39.1 ± 5.0 0.998

ALT (u/L)* 46.0 (9.7–1053.7) 39.2 (15.8–140.9) 49.8 (9.7–1053.7) 0.025
AST (u/L)* 64.7 (12.6–2680.0) 51.8 (17.7–323.7) 68.2 (12.6–2680.0) 0.085

TBIL (μmol/L) 17.2 ± 9.2 16.0 ± 8.4 17.6 ± 10.7 0.273

PT (s) 12.2 ± 1.1 12.1 ± 1.1 12.3 ± 1.2 0.337

INR 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.216

PLT (× 109/L) 222.9 ± 107.8 206.4 ± 110.9 227.7 ± 102.2 0.147

Child–Pugh class A 272 209 (76.8%) 63 (23.2%) 0.220

B 17 15 (88.2%) 2 (11.8%)

CRP (mg/L) 23.8 ± 34.4 22.2 ± 31.1 27.6 ± 41.2 0.330

BCLC stage A 135 115 (85.2%) 20 (14.8%) 0.013
B 92 66 (71.7%) 26 (28.3%)

C 62 43 (69.4%) 19 (30.6%)

AFP (μg/L)* 700.3 (1.1–865,569.0) 83.4 (1.1–121,000.0) 972.8 (1.62–865,569.0) 0.012
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LLL_firstorder_RobustMeanAbsoluteDeviation. Further 
model performance was tabulated in Table 4 and Suppl 4. 
The Gini importance was plotted in Fig. 2.

Another random forest Model 2 based on the selected 
2 clinical features (ALT and AFP levels) and 1 gen-
eral imaging feature (presence or absence of portal vein 
thrombosis) resulted in an AUC of 0.867 with a 95% 
confidence interval (CI) of 0.765–0.968 for predicting 
treatment response after TACE. The accuracy was 73.7% 
(95% CI: 60.3%-84.5%), significantly inferior to Model 1 
(p < 0.001).

Survival analysis
The median follow-up period was 38  months. On the 
last follow-up day, 121 alive patients were documented 
as censored for the OS analysis. Sixty-five patients with-
out progressive disease were documented as censored 
for PFS analysis. The median OS and PFS and were 281 
(range: 47–2578) days and 54 (range: 5–1074) days, 
respectively.

The selected 20 features were included in the  ran-
dom survival forest to predict OS in patients with HCC 

treated with TACE. In Model 1, the random forest algo-
rithm, including 2 clinical features (AFP and ALT lev-
els), 1 general imaging feature (presence or absence of 
portal vein thrombus) and 17 texture features achieved 
OOB Error Rate of 0.347 to predict OS. The continuous 
ranked probability score (CRPS) was 0.170. The presence 
or absence of portal vein thrombus, AFP level and tex-
ture feature wavelet.LHL_ngtdm_Contrast were the top 
3 features of importance (Fig. 3). In addition, the plot of 
the time-dependent OOB Brier score and CRPS demon-
strated that the random survival forest model for the pre-
diction of OS performed particularly well in the first year, 
especially for the low-risk quartile sample set (0–25% 
line) and continued to perform well afterwards (Fig. 4). In 
Model 2, the random forest algorithm 2, including clini-
cal features (AFP and ALT levels) and 1 general imaging 
feature (presence or absence of portal vein thrombus) 
achieved OOB Error Rate of 0.576. The CRPS was 0.282, 
which is inferior to Model 1.

In Model 1, the random survival forest algorithm 
achieved OOB Error Rate of 0.374 to predict PFS. The 
CRPS was 0.067. AFP level, ALT level and presence 

Table 3  Univariate and multivariate logistic regression of clinical features and general imaging features in the classification of short-
term treatment response

Feature Univariate Multivariate

Odds ratio (95% confidence 
interval)

p Odds ratio (95% confidence 
interval)

p

Clinical features
  Age 0.976 (0.954–0.999) 0.038 0.991 (0.996–1.017) 0.482

  ALT 1.010 (1.002–1.019) 0.025 1.011 (1.003–1.020) 0.008
  BCLC stage 1.622 (1.146–2.295) 0.013 0.935 (0.576–1.519) 0.786

  AFP 1.047 (1.003–1.091) 0.012 1.066 (1.010–1.121) 0.030
General imaging features
  Presence of portal vein thrombus 3.615 (1.795–7.283)  < 0.001 3.305 (1.307–8.355) 0.012
  Presence of ascites 4.500 (1.043–19.423) 0.028 4.085 (0.912–18.306) 0.066

Table 4  Performance of random forest classifier of Model 1 incorporating selected clinical and general imaging features with texture 
features and Model 2 incorporating selected clinical and general imaging features without texture features (p < 0.001)

Model 1 Model 2

Training set (95% 
confidence interval)

Testing set (95% 
confidence interval)

Training set (95% 
confidence interval)

Testing set (95% 
confidence 
interval)

Sensitivity (%) 100.0 (97.3–100.0) 68.8 (41.5–87.9) 14.8 (7.1–27.7) 12.5 (2.2–39.6)

Specificity (%) 100.0 (92.0–100.0) 97.6 (85.6–99.9) 100.0 (97.4–100.0) 97.6 (85.6–99.9)

Positive predictive value (%) 100.0 (97.3–100.0) 91.7 (59.8–99.6) 100.0 (59.8–100.0) 66.7 (12.5–98.2)

Negative predictive value (%) 100.0 (92.0–100.0) 88.9 (75.2–95.8) 79.5 (73.5–84.4) 74.1 (60.0–84.6)

Accuracy (%) 100.0 (98.4–100.0) 89.5 (78.5–96.0) 80.2 (74.5–85.1) 73.7 (60.3–84.5)

Area under the curve 1.000 (1.000–1.000) 0.947 (0.889–1.000) 0.971 (0.953–0.990) 0.867 (0.765–0.968)
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or absence of portal vein thrombus were the top 3 
features of importance (Fig.  5). In addition, the plot 
of the time-dependent OOB Brier score and CRPS 
demonstrated that the random survival forest model 
for the prediction of PFS performed the worst for the 

low-risk quartile sample set (0–25% line) and had bet-
ter performance over long term compared to the first 
200 days (Fig. 6). In Model 2, the random forest algo-
rithm achieved OOB Error Rate of 0.529. The CRPS 
was 0.193, which is inferior to Model 1.

Fig. 2  The Gini importance of random forest classifier based on selected features for the assessment of treatment response. 
AFP = alpha-fetoprotein; ALT = alanine transaminase

Fig. 3  Importance list of 20 features in the random survival forest predicting OS. The abscissa depicts the variable importance. Relative importance 
is calculated by dividing each variable importance score by the largest importance score of the variables. AFP = alpha-fetoprotein; ALT = alanine 
transaminase; OS = overall survival
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Fig. 4  Performance of random survival forest predicting OS over time (days). A Forest estimated survival function. The black line indicates each 
individual; the thick red line indicates overall ensemble survival and the thick green line indicates the Nelson-Aalen estimator. B Brier score stratified 
by ensemble mortality. Red line is the overall (non-stratified) Brier score. This score ranges from 0–1 (0 = perfect, 1 = poor); C The CRPS was 
calculated as Brier score divided by time; D Plots of mortality of each individual versus observed time. Points in blue correspond to death events, 
black points are censored observations. CRPS = continuous ranked probability score; OS = overall survival

Fig. 5  Importance list of 20 features in the random survival forest predicting PFS. The abscissa depicts the variable importance. Relative importance 
is calculated by dividing each variable importance score by the largest importance score of the variables. AFP = alpha-fetoprotein; ALT = alanine 
transaminase; PFS = progress-free survival
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Discussion
Our study constructed a random forest classifier that 
incorporated CT texture features, general imaging fea-
tures and clinical information in predicting treatment 
response in HCC after TACE. This model achieved 
good performance, offering an objective and non-inva-
sive method for evaluating TACE treatment, potentially 
avoiding extra imaging examinations or diagnostic work-
up and facilitating personalized treatment.

It has been well established that high tumour bur-
den, impaired liver function, incomplete necrosis, the 
occurrence of extrahepatic spread and vascular invasion 
should reduce the therapeutic effectiveness of TACE 
[21]. The AFP level was reported as one of the most sig-
nificant prognostic factors to predict treatment outcome, 
and the changes in AFP after treatment highly correlated 
with radiologic response and survival [22, 23]. Similar 
conclusions have been drawn from our study, in  which 
AFP level showed high importance for predicting mRE-
CIST, OS and PFS. Elevated ALT level indicates the 

impairment of liver function and is a critical point when 
assessing TACE feasibility. Interestingly, ALT showed 
high importance in the prediction of PFS in our study. 
This phenomenon could be preserved liver function will 
help form sufficient tumour necrosis after TACE which 
prevented tumour invasion and progression. The pres-
ence of portal vein thrombus has been well established 
as a negative predictor for survival [24]. We observed 
that the presence of thrombus had  high importance in 
OS and PFS random survival forest models, in contrast, 
for the prediction of mRECIST, the  presence of portal 
vein thrombus was the least important variable. This 
could be due to the fact that following TACE,  immedi-
ate treatment response was rapidly  assessed, while the 
presence of portal vein thrombus may have a long-term 
adverse effect on prognosis.

A series of studies have been published using texture 
analysis or radiomic techniques to predict the response 
of TACE in HCC across different modalities, such as 
non-contrast CT [25], contrast CT [26], and MRI [27], 

Fig. 6  Performance of random survival forest predicting PFS over time (days). A Forest estimated survival function. The black line indicates each 
individual; the thick red line indicates progress-free ensemble survival and the thick green line indicates the Nelson-Aalen estimator. B Brier score 
stratified by ensemble mortality. Red line is the progress-free (non-stratified) Brier score. This score ranges from 0–1 (0 = perfect, 1 = poor); C The 
CRPS was calculated as Brier score divided by time; D Plots of mortality of each individual versus observed time. Points in blue correspond to 
disease progression, black points are censored observations. CRPS = continuous ranked probability score; PFS = progress-free survival
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with good performance (AUC ranging from 0.884–
0.960). Tumour heterogeneity and size were identified as 
critical prognostic features in the Nested multiparamet-
ric decision tree [28]. The histogram-based features and 
shape features were reported to be sensitive in determin-
ing the nature of the tumour, which is related to tumoral 
heterogeneity [29, 30]. Our study achieved a similar or 
higher AUC compared to the above-mentioned studies 
and several texture features showed high importance in 
our classifier, especially for the 3-dimension grey level 
in a matrix classified by region volume, the GLSZM. 
These features indirectly express a higher degree of tis-
sue homogeneity, which may be interpreted as a conse-
quence of the TACE treatment response, thus reducing 
the contrast between neighbouring voxels in the  non-
tumoral component. The CT textural analysis mark-
edly added to the information generated by the clinical 
parameters in the model for the prediction of immediate 
treatment response after TACE.

Our random survival forest Model 1 incorporating 
texture features showed lower CRPS and OOB Error 
Rate compared to Model 2 based on clinical informa-
tion and general imaging features. Thus, CT texture fea-
tures had added value in predicting survival in patients 
with HCC treated with TACE. Prior studies have proven 
the value of several features in predicting survival in 
HCC, including AFP level, ALT level, and presence or 
absence of portal vein thrombosis [31–34], similarly 
those features showed high importance in our random 
survival forest models. There are two main differences 
between our study and the prior studies. First, our 
study extracted several texture features to characterize 
tumour nature and demonstrated high importance. Sec-
ond, prior studies constructed models based on radi-
omics or clinical scores that might have dependencies. 
Their combination without considering the potential 
correlation among these dependencies might lead to 
overfitting the data, in contrast, the random forest algo-
rithms in our study can prevent overfitting by simply 
reducing tree depth.

There were limitations in our study. First, only arte-
rial phase images were analysed in our study as previ-
ous studies have proven that the extracellular volume 
and blood flow in HCC during the arterial phase could 
give rise to unique radiological features [35–37]. Second, 
selection bias could have resulted from the fact that the 
patients were recruited from a single specialized oncol-
ogy medical centre, and that by the time they sought 
treatment here, their disease may have  already been 
advanced. Finally, the results from this study were based 
on texture features extracted using one software. They 
may not be applicable when using other platforms with 
different analysis algorithms or higher-order statistics. 

Standardization and data reproducibility are impor-
tant before CT texture analysis can be widely applied in 
clinics.

Conclusions
The current study showed that using random forest algo-
rithms based on the combination of clinical information, 
general imaging features and texture features derived 
from pre-treatment contrast-enhanced CT could predict 
treatment response and survival in HCC treated with 
TACE. Our findings potentially help patients with HCC 
avoid additional examinations and assist in treatment 
planning.
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criteria. A plot of the partial likelihood deviance was made against log (λ). 
The minimum and 1-SE criteria were used to draw the dotted vertical lines 
at the optimal values. (B) Profiles of the LASSO coefficients for the texture 
features. The vertical line was drawn at a value selected from the log (λ) 
sequence using 10-fold cross-validation. Seventeen texture features were 
selected within this range. Suppl 4. ROC curves of Model 1 (A) incorporat-
ing selected clinical information, general imaging features and texture 
features and Model 2 (B) without texture features for the prediction of 
treatment response.
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