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Abstract
Background  Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most 
aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping 
and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in 
cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free 
technique, has already shown promise in cancer diagnostics.

Methods  RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of 
glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and 
spheroids.

Results  Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. 
Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, 
serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in 
glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content.

Conclusion  RS combined with machine learning could pave the way for more objective and less invasive grading of 
glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression 
changes.
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Background
Gliomas encompass tumours of glial cell origin arising 
in the central nervous system. The highest grade of adult 
astrocytic glioma, glioblastoma (GBM), represents the 
most common and lethal form of brain tumour. GBM is 
characterized by hypoxia-driven necrosis, microvascular 
proliferation, and diffuse infiltration of cancer cells that 
migrate beyond the radiologically-defined tumour mar-
gins [1], making its treatment difficult [2]. Gliomas can 
be classified traditionally into four histological grades: 
non-malignant grades I (pilocytic) and II (diffuse), and 
malignant grades III (anaplastic) and IV (GBM) [3]. Since 
recently (2021 WHO Classification), the isocitrate dehy-
drogenase (IDH) genotype plays a more crucial role in the 
classification of glioma than histology alone [4]. Grade I 
histological glioma rarely progresses into higher-grades 
and is easily histologically distinguished [5]. However, 
higher-grade gliomas, and especially the two malignant 
grades (III and IV), are more challenging to discriminate 
as they may share overlapping characteristics [6].

Current glioma diagnosis relies on subjective his-
tological assessment by a pathologist using immuno-
histochemical approaches, in addition to molecular 
characterization. Thus, there is a need for more objec-
tive and label-free diagnostic techniques, which may 
offer greater convenience, efficiency and value for money 
in the diagnosis of glioma [7]. Confocal Raman spec-
troscopy (RS), which combines vibrational spectros-
copy with confocal microscopy, permits fingerprinting 
a sample’s chemical structure by analysing its biocom-
ponents’ molecular bond vibrations. This informa-
tion is represented as a spectral signature [8]; typically, 
a reduced spectral intensity correlates with a reduced 
concentration of biomolecules. RS has been used in can-
cer diagnosis to capture subtle changes in biomolecular 
composition, such as in DNA or protein [9], allowing 
comparison between cancerous and non-cancerous tis-
sues and between stages of cancer development. RS has 
already been used in several areas of diagnosis [10], by 
accurately predicting the type and grade of cancerous 
tissue [11, 12]. Glioma serum samples have been suc-
cessfully discriminated with RS from normal samples 
and other types of cancer [13–15]. In addition, normal 
brain, meningioma, glioma, and brain cancer metastasis 
tissues have been discriminated in formalin-fixed paraf-
fin-embedded (FFPE) tissues [16] and low-grades from 
higher malignant glioma grades in serum samples [17].

More recently, RS has also been used to monitor pro-
tein post-translational modifications (PTMs) [18]. 
Modifications in the glycosylation patterns are highly 
transformed in cancer and are thought to play a key role 
in cancer development and progression [19]. Of note, 
some O-glycosylated proteins, including mucins found 
in serum, are overexpressed in cancer [20], suggesting a 

potential role as biomarkers [21]. Thus, there is consider-
able clinical potential in the detection of aberrant glyco-
sylation patterns in the brain tissue and body fluids for 
the diagnosis, follow-up, and possibly even treatment of 
brain cancer [22].

In the present study, we used RS, in combination with 
machine learning approaches, to detect changes at dif-
ferent glioma grades, focussing on glycosylation patterns 
among the investigation of other biomolecular signa-
tures. This study discriminated glioma grades with accu-
racy, and delineated biomolecular changes during glioma 
progression at three levels: (i) the tissue, comprising the 
tumour and the complex tumour microenvironment, (ii) 
moving to the circulation at the serum level, that can be 
exploited for liquid biopsy investigation and, (iii) at the 
single cell and multicellular spheroid level for further 
investigation of the glioma progression.

Methods
Patients and clinical samples
The Research Ethics Boards approved sample collection 
of the respective Biobanks (Manchester Cancer Research 
Centre (MCRC) (REC Ref 18/NW/0092) and NovoPath 
Biobank Newcastle (REC Ref 17/NE/0070)) UK and the 
Teesside University Research Ethics Committee upon 
receipt of the ethical approval. Informed consent was col-
lected for each patient and all procedures followed the 
Declaration of Helsinki. Patient-informed consent was 
provided under the existing ethics approval procedures.

Serum samples were stored at − 80  °C prior to analy-
sis. FFPE samples, cut on stainless-steel slides for Raman 
acquisitions and on glass for parallel histological analy-
sis, were obtained from tumour debulking surgery or 
biopsies. Thirty FFPE tissue slides (10 grade II, 10 grade 
III, 10 grade IV) were obtained from NovoPath Biobank 
(Newcastle, UK). All grade II and grade III patients had 
a glioma of astrocytic type. Grades for each case were 
determined by a neuropathologist beforehand, follow-
ing the histological classification. Thirty blood serum 
samples (10 non-glioma benign (controls), 10 grade III, 
10 grade IV) were obtained from the MCRC biobank 
(Manchester, UK). Grade III patients of the serum sample 
set contained both oligodendrogliomas and astrocytes. 
Patients’ characteristics are summarized in Table S1, 
Supplementary file.

In-house glycosylation database
To generate the glycosylation database, Raman spec-
tra of glycan standards were collected. Glycan stan-
dards were mannose, fucose, N-acetyl-galactosamine, 
N-acetyl neuraminic acid, galactose, glucose, and N-ace-
tyl-glucosamine (Sigma-Aldrich, Merck Group, MO, 
USA). Standards were dissolved in ultra-pure water at 
three different concentrations (12, 25, and 50  mg/ml) 
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to assure specificity of the peaks. A 20 µl liquid droplet 
was placed on a stainless-steel slide for each concentra-
tion of standard. Measurements were taken in dupli-
cate for each concentration in the non-dried form with 
a Raman spectrophotometer inVia Qontor (Renishaw, 
Gloucestershire, UK). All spectra were recorded between 
400 and 1800  cm− 1 wavenumber range (1  cm− 1 spec-
tral resolution) with a 50x objective and a 785 nm (Near 
infrared) laser. An integration time of 10  s was used at 
50% (approximately, 55 mW) laser power at the sample 
surface. The baseline was automatically selected and 
subtracted, cosmic rays were removed and a 5th order 
polynomial smoothing (Slavitzky-Golay) applied with the 
WiRE software (Renishaw, Gloucestershire, UK). Calibra-
tion using the 520 cm− 1 peak of a silicon wafer was per-
formed before sample spectrum acquisition. All spectra 
obtained were then averaged for each glycan. Only the 
highest peaks (reaching at least 100 intensity counts) 
were selected for inclusion in the database.

Tissue and serum Raman spectra acquisitions
For tissue acquisitions, FFPE stainless-steel slides were 
dewaxed by immersion in xylene for 18 h. Then the sec-
tions were rehydrated in decreasing concentrations of 
ethanol before being rinsed in distilled water and left to 
air-dry for at least 30 min using a modified protocol for 
Raman spectroscopy to minimize wax, xylene, and etha-
nol contamination from the samples [23]. For Raman 
measurements, 25 single spectra per section were ran-
domly sampled in the region of interest within neoplas-
tic tissue (750 acquisitions in total). To ensure optimum 
laser focus between each measurement, the samples were 
manually focussed. To ensure that neoplastic regions, 
rather than surrounding healthy tissue, were targeted, 
comparison with a corresponding immunohistochemi-
cally stained section with representative markers, EGFR 
(Abcam, Ab52894) and GFAP (Sigma, G3893) was used 
for reference. Offset spectra (repeats presenting obvi-
ous deviation from the characteristic signature) were 
removed from the dataset and the mean spectrum for 
each group was generated by calculating the arithmetic 
mean at each point. In total, more than 600 acquisitions 
were used in the tissue analysis (n = 198 for grade II, 196 
for grade III, and 208 for grade IV).

Identical processing parameters were used for the 
serum samples. For blood serum acquisitions, a 20  µl 
drop was dispensed on the steel slide and directly pro-
cessed while liquid. The same parameters were used as 
described above. Spectra were acquired from 5 random 
locations in the serum sample and the mean spectrum 
for each group was generated. In total, approximately 150 
acquisitions were used in the serum analysis (n = 49 for 
control, n = 49 for grade III, and n = 50 for grade IV).

Raman spectra acquisitions on cell culture monolayers and 
spheroid formation
Glioma cell lines A-172 (CRL-1620), SW1088 (HTB-12), 
and T98G (CRL-1690) were obtained and grown accord-
ing to the American Type Culture Collection (ATCC) 
(Manassas, Virginia, USA) standard protocols. A-172 and 
T98G cell lines had been derived from GBM patients and 
SW1088 cell line from a grade III astrocytoma patient. 
The three cell lines used in this study were received from 
ATCC and certified by short tandem repeat DNA profil-
ing authentication and a negative test for mycoplasma 
contamination.

Briefly, for monolayer culture, 1 × 105 cells were seeded 
in a Petri dish containing a stainless-steel slide covered 
with 10 ml of ATCC-formulated DMEM medium, sup-
plemented with 10% fetal bovine serum (FBS) and 1× 
antibiotic-antimycotic (Gibco, ThermoFisher Scientific). 
After 48  h of incubation (37  °C, 5% CO2), cell viability 
was checked via morphological changes under the micro-
scope, and the slide was washed with PBS. Acquisitions 
on the cell monolayers were performed while the cells 
were still viable, and the slide was kept wet following PBS 
addition. One cell was targeted for each acquisition. In 
total, for monolayers, 12 cells were sampled for grade III 
and 28 for grade IV (n = 9 for A-172, and n = 19 for T98G).

For the 3D cell culture, spheroids were generated using 
the ‘hanging drop’ method, as previously described [24]. 
Briefly, 20  µl drops of cell suspension (20 × 103 cells per 
ml) were applied to the inside of the petri dish lid so 
the drops hung upside down in a closed dish, filled with 
growth medium to prevent evaporation. After 48  h, the 
spheroids were collected with a pipette and washed once 
with PBS. For Raman acquisitions, spheroids were left in 
a small volume of PBS and dispensed inside a stainless-
steel culture plate. One spheroid was targeted for each 
acquisition with 12 spheroids interrogated for grade 
III and 32 for grade IV (n = 10 for A-172, and n = 22 for 
T98G).

Statistical analysis
The intensity values were rescaled between 0 and 1 using 
the min-max formula. Principal component analysis 
(PCA) was performed to reduce the dimensionality of 
the dataset and 2D/3D plots were generated for averaged 
and rescaled tissue and serum samples by exporting the 
dataset matrix into MATLAB R2021b (The Mathworks, 
Inc., Massachusetts). The entire spectral range between 
400 and 1800 cm− 1 was used for PCA. The built-in clas-
sification learner application was used in MATLAB to 
generate the accuracy rates with PCA. The three largest 
principal components were used for the classification. 
For all data, 5-fold cross-validation was used. To calculate 
the significance of the difference observed between two 
grades at different manually selected peaks, a two-tailed 
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unpaired t-test was performed with GraphPad Prism ver-
sion 9.3 (GraphPad Prism software, California) on aver-
aged rescaled intensities.

Results
Generation of an in-house glycosylation standards 
database
First, an in-house glycosylation database was generated 
for monitoring changes in glycosylation patterns in the 
samples. Seven glycan motifs most frequently present 
on heavily glycosylated proteins were included [25, 26]: 
glucose, fucose, galactosamine, galactose, glucosamine, 
mannose, and neuraminic acid (Fig. 1). The mean spectra 

for each glycan are represented in Fig. 1A and the char-
acteristic peaks in Fig. 1B (note that the 1660 cm− 1 peak 
corresponds to the water peak, which did not change 
with the glycan concentration). The glucose spectra sig-
nature was in accordance with the reference spectrum 
from previous studies [27]. Glycan signatures shared 
common increased intensities, especially in the 800–
910 cm− 1 and 950–1200 cm− 1 (Fig. 1A, pink areas), but 
also in the 400–600  cm− 1 (except for neuraminic acid), 
and the 1600–1700  cm− 1 regions (except for glucose) 
(Fig. 1A).

Fig. 1  Glycosylation database. (A) Mean spectra for each glycan. Pink areas correspond to shared increased intensities between all glycans. (B) Char-
acteristic peaks of the different glycans are listed
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Grade discrimination in glioma FFPE tissue samples using 
combined Raman spectroscopy and machine learning
During RS interrogation on grade II, III, and IV glioma 
tissue (astrocytic only), visualization of the tissue struc-
tures was possible under the microscope after dewaxing 
(Fig. 2A). Non-relevant structures, such as vessels, abun-
dant in grade IV glioma, were avoided with the help of 
the stained parallel slides (Fig. S1, Supplementary file). 
An averaged spectrum was generated for each patient 
after standard processing and rescaling. The variance and 
standard deviation between the patients were low for all 
the grades (an example for grade IV is shown in Fig. S2, 
Supplementary file).

PCA and classification were performed to evaluate 
whether the main variations between the samples could 
be assigned to their histological grades. The 2D PCA plot 
using the two largest PCs is represented in Fig. 2B for the 
three grades (II-IV). The two largest components, PC1 
and PC2, were able to clearly discriminate all the patients 
in accordance with their grades and explained together 
69% of all the variance between the samples (Table S2, 
Supplementary file for the percentage explained for 
all PCs). We then used classification learning to calcu-
late the accuracy rate of this discrimination by using a 
5-fold cross-validation on different model types and with 
the three largest PCs. Linear Support Vector Machine 
(SVM) provided the highest accuracy rate to discrimi-
nate between the grades in the tissue: 80% between grade 
II and III, 85% between III and IV, and 75% between II 
and IV (Table 1). These results suggest that RS, combined 
with PCA and machine learning, predicts the histological 
grade of astrocytic tumour tissue samples with very good 
accuracy from dewaxed tissue samples.

Since IDH1 genotype is crucial in the current diag-
nostic decisions, the discrimination between wild type 
and mutated IDH1 was tested. As expected, – since IDH 
genotype is strongly correlated to the histology – the two 
genotypes could be easily discriminated on the PCA plot, 
like the histological grades. The three first PCs explained 
76% of the variance between the samples and the accu-
racy rate was 80% (Linear SVM) (Fig. S3, Supplementary 
file). The wild-type group, which is strongly associated 
with higher histological grades, was slightly more dis-
persed on the PCA plot. The mutated group, strongly 
associated with lower glioma grades and presenting 
better prognosis, displayed less variance between the 
samples.

Analysis of the biomolecular changes in glioma FFPE tissue 
grades
Pair-wise comparison of the representative spectra was 
then conducted between each grade to identify differ-
ences that could discriminate the grades. Comparison of 
grades II and III and grades III and IV are represented in 

Fig.  2C. To assign peaks showing variation between the 
two grades to specific biomolecules, the in-house glyco-
sylation database and a literature-based summary were 
used [27–36] (Table S3, Supplementary file).

Overall, the Raman peaks of grade III dominated in 
intensity compared with grade II (Fig.  2C, grade II vs. 
grade III) and were largely assigned to different glycans 
(see Table  2 for the detailed assignments). The most 
important difference was localized within the 1000–
1150  cm− 1 region, which corresponded to the high-
intensity regions shared by all glycans (Figs.  1 and 2C). 
Assignments to other biomolecules present in several 
spectral areas could also be made from the literature 
database (Table  2): cholesterol, proteins, haemoglobin, 
DNA, GAG, collagen, proteins, lipids, and phospholipids, 
indicating differences between grade II and III.

Changes in intensities between the malignant grades 
III and IV were smaller and the 1000–1200 cm− 1 region 
showed no difference (Fig. 2C, grade III vs. IV). Overall, 
there was a slight decrease in grade IV compared with 
grade III and most spectral ranges that differed could be 
assigned to glycans from the glycosylation database but 
also to the carotenoid motif from the literature sum-
mary (Table  2). The increase of intensity in the 1210–
1350 cm− 1 in grade IV, compared to grade III, could also 
be interpreted as an increase in collagen, proteins, lipids, 
haemoglobin, GAG, and DNA (Table 2).

Comparison between grade II and grade IV spectra 
showed an increase in grade IV compared with grade II in 
the glycan-riche region 1000–1150 cm− 1 region (data not 
shown). According to the literature, this region could also 
be assigned to an increase in proteins (1032  cm− 1), lip-
ids (1063 cm− 1), phospholipids and collagen (1074 cm− 1), 
whereas all the other regions had very similar intensities 
(data not shown).

To further assess the significance of these changes 
observed between the different grades and to screen 
for specific individual peaks that could be useful for 
diagnosis, we selected the peaks that showed the larg-
est intensity difference between the two grades. t-tests 
were performed for those peaks, meaning, intensity val-
ues for each specific peak were compared between the 
two grades (Fig.  2D, significance is indicated by aster-
isks in Fig.  2C). Differences between grades II and III 
were overall more significant than differences between 
grade III and IV and notably, the 1000–1150 cm− 1 region, 
assigned to glycans, showed significant difference for 
the four peaks selected (1015, 1042, 1050, 1070  cm− 1). 
These peaks could not be assigned to any other compo-
nent than glucose, according to the literature database. In 
addition, other peaks that showed significant difference 
could be assigned to various well-characterized biomol-
ecules (Fig. 2D).
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Fig. 2  Grade discrimination from FFPE tissue samples. (A) Example view of a GBM tissue sample with the Raman microscope after dewaxing, before 
acquisition. Main structures are visible (vessels, red blood cells, cancer cells) and can be targeted. (B) PCA plot of the 30 glioma FFPE samples. Grade II (in 
red), grade III (in green), and grade IV (in blue) are easily discriminated by using the two largest principal components. (C) Pair-wise comparison between 
the averaged spectra of grade II and grade III, and grade III and grade IV. Asterisks indicate the peaks that were significantly different using an unpaired 
t-test. (D) Scatter plots of individual intensities (and mean ± standard deviation) at peaks showing significant difference using a two-tailed unpaired t-test. 
Circles drawn on PCA plot highlight trends assessed subjectively by eye

 



Page 7 of 15Quesnel et al. BMC Cancer          (2023) 23:174 

The PCA loadings plot was next generated to visualize 
the contribution of each of the largest PCs to the vari-
ances observed between the grades across the spectrum. 
In addition to the t-tests performed, this type of repre-
sentation can further confirm what areas of the spectrum 
contribute the most to the significant differences between 
the grades. The results are shown in Figure S4. The dif-
ferent PCs are usually widely distributed throughout 
the variables.However, the plot clearly showed that two 
regions had major contributions in the grade discrimina-
tion, namely, the 950–1200 cm-1 and the 1250–1350 cm-1 
regions of the spectrum, which further confirmed the 
importance of the glycosylation changes discussed earlier 
but also the relevance of this method.

Finally, the Raman signatures of IDH1-mutated and 
IDH1-wild-type patients were compared. The compari-
son between the two signatures looked very similar to 
the comparison between grade II (containing almost only 
IDH1-mutated patients) and grade IV (containing almost 
only IDH1-wild type patients); the wild-type signa-
ture showed mainly an increase in the 1000–1150 cm− 1 
(characteristic of glycans) in comparison with the IDH1-
mutated signature (Fig. S5, Supplementary file). This 
implies that the level of overall glycosylation seemed to 
account widely for the high accuracy of Raman discrimi-
nation between IDH1-mutated and IDH1-wild type 
patients.

Grade discrimination from blood serum samples using 
combined Raman spectroscopy and machine learning
Next, we wanted to investigate whether discrimination 
between the most challenging glioma grades, grade III 
and IV, could also be achieved from liquid biopsies as 
they are collected less invasively. Raman spectra were 
acquired from blood serum samples on stainless steel 
slides. A control group of non-glioma benign samples was 
included. The inter-patient standard deviation was higher 
(Fig. S6, Supplementary file) than previously observed in 

the tissue samples. This may indicate that RS can detect 
more subtle biological changes from liquid serum than 
from dewaxed fixed tissue, which could be explained by 
the nature of this type of samples (non-paraffinized and 
in their native state).

The 3D PCA plot of the control and grade III groups 
using the three largest PCs was produced (Fig.  3A). 
The three PCs represented together 80% of all the vari-
ance. The discrimination between control and grade III 
patient serum samples was apparent and with no overlap 
and control samples showed relative intragroup spectral 
homogeneity, whereas grade III patients showed more 
dispersion and intragroup heterogeneity (Fig.  3A). The 
3D PCA plot of grade III and grade IV groups using the 
first PCs is also represented in Fig. 3B. The three largest 
PCs represented together 85% of all the variance between 
the samples. Grade IV samples displayed a moderate 
increase in distribution size compared with grade III 
samples (Fig. 3B).

The neural network models gave the best discrimina-
tion rate for serum with accuracy rates of 90% between 
control and grade III, 85% between control and grade 
IV, and most importantly 90% between grade III and IV 
(Table 1).

Finally, the discrimination between the two IDH1 gen-
otypes was tested as previously with the tissue. The three 
first largest PCs explained 84.5% of the variance between 
the samples and the accuracy rate was overall lower than 
for the IDH1 discrimination in tissue (65% with Linear 
SVM) and the clusterization was visibly more challeng-
ing to make on the PCA plot than previously with the 
tissue. However, a clear trend of clusterization could be 
observed (Fig. S7, Supplementary file) and the logistic 
regression gave an accuracy of 85%, which suggests that 
a small drop of serum could represent a non-invasive and 
fast method to help IDH diagnostics in clinics.

Table 1  Classification accuracies. Results from machine learning for six different classification model types when using the first 3 
largest PCs from the PCA and a 5-fold cross-validation, between all groups for tissue and non-dried (fresh) serum. SVM = Support Vector 
Machine, KNN = k-nearest neighbors algorithm
Classification accuracy (%) Linear SVM Linear discriminant Cosine KNN Logistic regression Bilayed neural 

network
Narrow 
neural 
network

Tissue
II vs. III 80% 75% 70% 70% 40% 50%

II vs. IV 75% 70% 60% 70% 45% 55%

III vs. IV 85% 60% 75% 60% 55% 50%

All grades 63.3% 60% 53.3% x 36.7% 30%

Fresh serum
CTRL vs. III 75% 75% 80% 85% 90% 80%

CTRL vs. IV 60% 65% 70% 85% 85% 85%

III vs. IV 60% 65% 65% 75% 90% 85%

All grades 56.7 53.3% 60% x 63.3% 66.7%
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Analysis of the biomolecular changes in glioma serum 
samples
A pair-wise comparison of the representative spectra was 
further conducted to identify the biomolecular changes 
between glioma grades and control in fresh serum 

samples (Fig.  3C). Grade III patients showed dominant 
intensities in Raman shift compared to controls, mostly 
assigned to glycans (Table  2). A decrease observed in 
grade III patients could be assigned to phospholipids 
and lipids. A similar trend was observed between grade 

Table 2  Summary of changes observed in tissue and serum and their tentative assignments. Assignments were made from the 
glycosylation database and the literature-based general database [27, 29–36, 65, 66]. NA = neuraminic acid
Tissue observations
(cm− 1)

Tentative assignments

II < III 400–790 All glycans except NA

790–900 Galactosamine, galactose, fucose, NA, glucose

950–1000 Glucosamine, galactosamine, NA, fucose

1000–1150 All glycans

1750–1800 Galactose

859 Glucose (843)

912 Glucose (910–911)

1094 Mannose (1095)

400–780 Cholesterol and proteins (446–476, 700–703), proteins (500–550, 636–646), DNA 
(498, 676), proteins and DNA (725–729), haemoglobin (670), DNA, proteins, and 
haemoglobin (743–790)

790–900 Collagen (818), proteins (823, 880–890), proteins, collagen, and GAG (857)

950–1000 Proteins (959, 1003)

1000–1150 Proteins (1032, 1127), lipids (1064–1068, 1129), phospholipids and collagen (1074),

1500–1620 DNA, proteins, haemoglobin (1573–1585), proteins (1602–1607)

III < II 1250–1360 Amide III (1230–1306), cytochrome C (1358), lipids (1263), phospholipids (1313), 
collagen (1323)

IV < III 400–790 All glycans except NA

850–920 Fucose, glucose, NA, galactose

950–1000 Glucosamine, galactosamine, NA, fucose

1750–1800 Galactose

1510–1550 Carotenoids (1521)

III < IV 1210–1350 Haemoglobin (1225), GAG (1242), proteins, collagen, lipids (1230–1306), lipids 
(1263), phospholipids (1313), collagen, proteins (1322), DNA, proteins (1331–1338)

Serum observations
(cm− 1)

Tentative assignments

III > CTRL 400–610 Galactose, mannose, fucose, glucose, galactosamine

680–860 All glycans

1010–1120

1290–1340 Glucose, NA, glucosamine, galactosamine

1700–1750 Lipids (1732)

III < CTRL 1420–1470 Phospholipids (1441–1445)

1610–1660 Lipids (1654)

III > IV 420–600 All glycans except NA

680–860 Galactose, galactosamine, NA, fucose, glucose

1000–1130 All glycans

1210–1340 Glucose, galactose, glucosamine, glactosamine

450–500 Cholesterols (446–476, 700–703)

689–750

1010–1070 Lipids (1064–1068, 1220–1306, 1400, 1732)

1290–1340

1380

1700–1750

1145–1160 Carotenoids (1157, 1521)

1500–1520

III < IV 880–920 Glucose (910–911), proteins (880–890)



Page 9 of 15Quesnel et al. BMC Cancer          (2023) 23:174 

Fig. 3  Grade discrimination from fresh serum samples. 3D PCA plot of glioma blood serum samples using the three largest principal components 
(PC1, PC2, PC3). Control (CTRL) and grade III samples can be discriminated (A) as well as grade III and grade IV (B), grade III and grade IV have a wider dis-
tribution in comparison with control samples. (C) Pair-wise comparison between the averaged spectra of control and grade III, and grade III and grade IV. 
Asterisks indicate the peaks that were significantly different using the t-test, while areas shaded in grey highlight important differences. (D) Scatter plots 
of individual intensities (and mean ± standard deviation) at peaks showing significant difference using a two-tailed unpaired t-test. Circles drawn on PCA 
plot highlight trends assessed subjectively by eye
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III and grade IV gliomas. Grade III samples showed 
increased intensity levels compared to grade IV in 
regions that we previously assigned to glycans. These 
regions have also been assigned to cholesterol and lipids 
from the literature database. Moreover, regions assigned 
to carotenoids showed decreased intensity levels in 
grade IV compared with grade III (Table 2). Interestingly, 
Raman peaks assigned to glycosylation changes in serum, 
increased in intensity in grade III compared to non-gli-
oma benign tumours (control), but decreased between 
malignant grades (grade III vs. IV), which aligns with the 
tissue findings.

Peaks that showed significance are represented in 
Fig. 3C-D. The large difference observed within the 700–
850 and 1000–1130 cm− 1 wavenumber regions assigned 
to glycans was significant between controls and grade 
III, between grade III and grade IV samples in the 700–
850  cm− 1, and between grade III and grade IV samples 
in the 1000–1130 cm− 1 region. The 1455 cm− 1 peak was 
the most significant for discrimination between con-
trols and grade IV (p = 0.0003) and controls and grade 
III (p = 0.002) samples. In total, three well-characterised 
peaks could be used to significantly discriminate grade 
III and grade IV (830 cm− 1, p = 0.01; 1050 cm− 1, p = 0.05; 
1560 cm− 1, p = 0.01, respectively assigned to tyrosine, gly-
can, and amide III) (Fig. 3D).

Grade discrimination from cell lines grown in monolayers 
and spheroids
Next, we investigated whether the changes observed 
between grade III and grade IV tissue glioma samples 
would also be reflected at the cellular level using differ-
ent cellular models (2D-monolayers and 3D-spheroids) 
in vitro. This would allow assessment of whether grade 
III and grade IV cell lines could be discriminated and, 
further, whether there is a difference in spectra between 
single cells and multicellular spheroids. Unlike FFPE tis-
sue samples, live cells were not treated with numerous 
preservation and processing steps, involving chemicals, 
meaning the integrity of the lipid content is potentially 
more preserved in cell lines than dewaxed tissue [37]. In 
addition, it was important to confirm that the discrimi-
nation between glioma high grades can be repeated at 
the cellular level for different applications and to further 
study the change in composition.

Therefore, grade III (SW1088) and grade IV (GBM) 
(T98G and A-172) cell lines were grown in 2D mono-
layers and 3D spheroids in the same growth media and 
dispensed before acquisitions. Representative spheroids 
images for each cell line are shown (Fig.  4A). For each 
cellular model, one cell or spheroid was targeted with RS 
microscopy (Fig. 4B).

The cell lines grown in monolayers (Fig.  4C, E) or 
spheroids (Fig.  4D, F) were first compared using PCA. 

For single cells grown in monolayers, the three largest 
PCs explained together 67.6% of the variance between 
the samples. The discrimination rate between the cell 
lines was 85% when using a 5-fold cross-validation (linear 
discriminant analysis). For cells grown in 3D spheroids, 
the first three PCs explained 77.3% of the variance and 
the discrimination rate between the cell lines was 68.2%.

Spectral differences between cellular models and 
biomolecular signatures
The mean spectra of grade III and grade IV cells were 
compared for both monolayers (Fig.  4E) and spheroid 
methods (Fig. 4F). Between 400 and 900 cm− 1, grade IV 
cells displayed higher overall intensity for both methods. 
The higher intensity observed in grade IV (GBM) cells in 
this region could reflect a higher level of protein content 
since this region is widely associated with proteins as well 
as DNA (Table 2).

For monolayers, within a region between 1000 and 
1100  cm− 1 previously largely assigned to glycans, a 
decrease in intensity was observed in grade IV compared 
to grade III, as well as in the 1760–1775  cm− 1 region, 
assigned to galactose. The decrease of glycans within 
the 400 and 900  cm− 1 regions observed between grade 
III and grade IV tissue was not observed at the cellular 
level. Targeting the spheroids, the signature was very 
similar between 1000 and 1800  cm− 1, with an increase 
in the 1200–1400 cm− 1 region, which could be assigned 
to the amide III vibration of proteins, lipids, and DNA. 
The grade IV signatures from single cell or multicellu-
lar spheroids were also compared (Fig.  4G). The inten-
sity given by the 3D spheroids was lower between 400 
and 1200  cm− 1 in regions largely assigned to proteins 
and glycans, while the intensity was higher in the 1200–
1400  cm− 1 region, corresponding to lipids, DNA, and 
amide III. As expected, targeting a single cell or a multi-
cellular spheroid does not provide the same biomolecular 
signature reflecting their differences in cellular metabo-
lism and other biochemical pathways.

Discussion
Raman spectroscopy (RS) presents many advantages to 
be used as a diagnostic tool, including non-demanding 
sample preparation [38, 39]. In this study, combining RS 
with machine learning, changes in the biomolecular com-
position of glioma tumour tissue and serum samples were 
detected, with a focus on glycosylation patterns. Firstly, 
our approach was used to discriminate grade II, III, and 
IV glioma from FFPE tissue samples, which are systemat-
ically available as stored archival samples. RS could accu-
rately classify glioma patients (Fig. 2) according to their 
histological grades. Importantly, the two consecutive 
malignant glioma grades (III and IV), were discriminated 
with a high degree of accuracy of 85% (Fig. 2). Moreover, 
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Fig. 4  Discrimination in glioma cell lines. (A) Images representing the multicellular spheroids generated by the hanging drop method for the three 
cell lines, magnification 200X. (B) Images representing cells grown in 2D (monolayers) and 3D (spheroids) under the Raman confocal microscope after 
48 h before acquisition. (C) 3D PCA plot of the individual cells (one dot represents one cell) grown in 2D using the three first PCs. (D) 3D PCA plot of all the 
individual spheroids using the three largest PCs. (E) Pair-wise comparison between the mean spectra of grade III and grade IV individual cells. (F) Pair-wise 
comparison between the mean spectra of grade III and grade IV spheroids. (G) Pair-wise comparison between the mean spectra of grade IV 2D and grade 
IV 3D cells. Circles drawn on PCA plot highlight trends assessed subjectively by eye
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Raman spectra differences were statistically significant 
between the grades (Fig.  2C-D) on selected individual 
spectra, implying this method is objective and may help 
diagnostics in clinics. RS was also able to predict with 
good accuracy the IDH1 genotype of the patients, which 
is the marker used currently for cytogenetic classifica-
tion [40]. This result was expected since histological fea-
tures and the IDH1 genotype are strongly correlated. The 
results suggest that RS interrogation of FFPE slides, that 
are available in clinics, could help to confirm histology 
and IDH1 genotyping. With further development, this 
diagnostic method could prove more efficient, faster and 
less expensive, but also interpretable with more objectiv-
ity in comparison with immunostaining methods. More-
over, the averaged spectral difference between the two 
IDH1 genotypes was shown to be clearly condensed in 
the glycosylation region. This implies that the assessment 
of only a restrained spectral range would be enough for 
diagnosis, which would reduce the diagnostic time.

Comparing the Raman spectra in tissue from grade II 
and III patients, changes of intensity were assigned to 
an increase in crucial biomolecules, identified as pro-
teins, haemoglobin, DNA, collagen, and lipids (Fig. 2C). 
Proteins, haemoglobin, and DNA have been shown to 
increase during cancer progression due to higher cell 
density and vascular proliferation, which are also typical 
histological characteristics of GBM [32, 41]. In addition 
to collagen rearrangement, a switch in the level of the dif-
ferent collagen types, has also been shown to occur dur-
ing glioma progression [29, 42–44]. Overall, our study 
confirmed that Raman peaks that increase during glioma 
progression, could be assigned to an increase in colla-
gen, proteins, lipids, haemoglobin, and DNA levels [12, 
32, 45]. In addition, there was a decrease in antioxidant 
carotenoids in grade IV compared to III, a common fea-
ture in RS cancer research studies [12, 46, 47]. It has been 
suggested that the peak intensity reduction assigned to 
carotenoids on Raman spectra in GBM could be used as 
a biomarker in brain cancer to assess tumour aggressive-
ness [12].

Importantly, an increase in the intensity of the bio-
molecular signature could largely be assigned to glycans 
(between grade II and III tissue samples, Table 2; Figs. 1 
and 2C). Of note, FFPE samples have been shown to pre-
serve almost unaltered N-glycan signature after the depa-
raffinization procedure [48]. As expected, the differences 
between grades III and IV were smaller (Fig. 3C). When 
analysing the spectral ranges assigned to glycosylation, 
grade III patterns were higher compared to grade IV. 
An important number of glycans have been found to be 
upregulated in grade III compared to grade II and IV [49]. 
In addition, different glycans have been found in their 
truncated version in grade IV glioma [50], which implies 
that the total level of glycans could be lower in this type 

of cancer. This is in accordance with the highly altered 
glycan biosynthesis observed during cancer progression 
that accounts for the phenotypic aggressiveness [51]. Our 
study included glycans typically found on glycosylated 
proteins [22, 26]. Importantly, such altered glycosylation 
during glioma progression has been shown to contribute 
to the immunosuppressive nature of the glioma micro-
environment [50], indicating the importance of those 
changes in immunotherapeutic treatments. Overall, the 
total glycosylation pattern follows complex dynamics 
during transformation, captured by RS, and might be 
exploited for glioma monitoring and classification.

Liquid biopsies from patient serum samples feature 
significant advantages in glioma diagnosis: they are mini-
mally invasive, can be collected at multiple times for 
disease and therapeutic monitoring, and are considered 
more homogeneous than a complex tissue environment, 
especially when used in their native liquid state, which 
is applicable since water has a low influence on RS [9]. 
Therefore, from a technical viewpoint, the use of serum 
instead of solid biopsies presents several advantages. For 
instance, in the present study, the RS acquisition time 
was reduced by a factor of five (12–15 min per patient) 
in comparison with the tissue, due to the homogeneity 
of liquid samples. The accuracy rate was slightly better 
in serum than tissue (85%) (Table 1); importantly, grade 
III and grade IV patients were discriminated with an 
accuracy of 90% in serum. RS was also able to discrimi-
nate again, with good accuracy, the two IDH1 genotypes 
from fresh serum. Like tissue, this bolsters the use of RS 
in the clinics, with serum representing a less invasive col-
lection method for the patients. IDH genotyping from 
blood serum with Raman spectroscopy would represent 
a fast, non-invasive, objective, and cost-effective diag-
nostic strategy to help both histological grading and IDH 
genotyping, in parallel with monitoring glycosylation and 
other biological changes occurring during cancer pro-
gression − a holy grail for liquid biopsy cancer detection.

Interestingly, significant heterogeneity was observed 
within the high-grade glioma samples when using serum, 
reflecting the tumour heterogeneity; while, as expected, 
the control group showed a much smaller distribution 
on the PCA plot (Fig.  3). Inter-patient heterogeneity 
in the blood is expected to increase in cancer patients 
and has been described in previous RS studies, notably 
in nasopharyngeal cancer [30]. This suggests that bio-
logical changes occurring during cancer progression 
are patient-specific, and that this specificity is reflected 
in serum, which may be further exploited for personal-
ized medicine [52]. Among other biomolecular changes, 
the level of carotenoids was again reduced in the serum 
of grade IV, compared with grade III glioma patients like 
other cancer types such as cervical cancer, meningioma, 
and breast cancer [47, 53, 54]. This shows that a high 
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level of circulating carotenoids, which have antioxidant 
properties, could play a protective role against malignant 
tumours, including GBM.

The same glycosylation trend was observed in tissue 
and serum, with higher glycosylation in grade III com-
pared to grade IV. This result suggests a promising use 
of glycosylation signatures from liquid biopsies for can-
cer diagnostics and progression monitoring. The pres-
ence of individual glycoproteins in blood serum has been 
shown to be useful for cancer diagnostics [22, 55]. Glyco-
proteins, such as mucins, are in their aberrant glycosyl-
ated forms specifically in advanced cancer, meaning they 
could play a direct role in neoplasia and have been sug-
gested as potential serum biomarkers [56–62].

Further studies on a large cohort of patients should 
be conducted in clinics, firstly to confirm the results of 
this study, but also to evaluate how RS aligned with even 
more precise sub-classifications of glioma, such as the 
distinction between astrocytoma and oligodendroglioma. 
The method presented here offers significant advantages 
over other technologies. In addition to cost benefits, RS 
combined with PCA is a reasonably simple and objective 
method that can be applied in clinics for both tumour 
classification and detection of biological changes. The 
approach followed here relies mainly on PCA, which 
has shown previous success in classifying cell behaviour 
even in the presence of a small sample size, being based 
on linear transformations [63]. Moreover, this method 
could allow monitoring at different time points thanks 
to its application on serum samples, collected in a non-
invasive way. Non-spectroscopic methods and tech-
nologies to classify brain tumour samples have been 
suggested recently, including complex methylation array 
processing which can be used on solid biopsies [64]. This 
method may be less convenient in clinics at different time 
points; however, methylation classification is very pre-
cise, with many refined molecular clusters holding great 
promise for precision medicine. Future studies investi-
gating whether different sub-molecular classes such as 
methylation, and others, such as the 1p19q correlation, 
could be discriminated with RS and aligned with spectro-
scopic analysis offering new, exciting potential diagnostic 
avenues.

Finally, we further studied the discrimination between 
grade III and grade IV glioma at the cellular level (Fig. 4). 
Different cell lines could be discriminated by PCA from 
single cells and spheroids with high accuracy (Fig. 4C and 
D), indicating that grade discrimination may be achiev-
able on single live cells. Both methods gave similar but 
also different biomolecular signatures for GBM cells 
(Fig.  4E-G). The intensity given by the spheroids was 
decreased in the regions largely assigned to proteins and 
glycans, while the intensity was higher in regions, cor-
responding to lipids, DNA, and amide III (Fig. 4G). This 

result can be explained considering the complex tumour 
microenvironment of the tissue compared to the single 
cell and the multicellular spheroids. The increased level 
of lipid, DNA, and amide III band in the 3D-spheroid sig-
nature could reflect that several nuclei are targeted by RS 
but also a change of lipid and protein configuration due 
to cellular interactions. More importantly, targeting sin-
gle cells with the proposed RS approach could provide an 
additional benefit to the current single-cell technologies 
in the era of cancer personalized medicine.
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