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Abstract 

Background  Cuproptosis, an emerging form of programmed cell death, has recently been identified. However, the 
association between cuproptosis-related long non-coding RNA (lncRNA) signature and the prognosis in prostate car-
cinoma remains elusive. This study aims to develop the novel cuproptosis-related lncRNA signature in prostate cancer 
and explore its latent molecular function.

Methods  RNA-seq data and clinical information were downloaded from the TCGA datasets. Then, cuproptosis-related 
gene was identified from the previous literature and further applied to screen the cuproptosis-related differentially 
expressed lncRNAs. Patients were randomly assigned to the training cohort or the validation cohort with a 1:1 ratio. 
Subsequently, the machine learning algorithms (Lasso and stepwise Cox (direction = both)) were used to construct a 
novel prognostic signature in the training cohorts, which was validated by the validation and the entire TCGA cohorts. 
The nomogram base on the lncRNA signature and several clinicopathological traits were constructed to predict the 
prognosis. Functional enrichment and immune analysis were performed to evaluate its potential mechanism. Further-
more, differences in the landscape of gene mutation, tumour mutational burden (TMB), microsatellite instability (MSI), 
drug sensitivity between both risk groups were also assessed to explicit their relationships.

Results  The cuproptosis-related lncRNA signature was constructed based on the differentially expressed cuprop-
tosis-related lncRNAs, including AC005790.1, AC011472.4, AC099791.2, AC144450.1, LIPE-AS1, and STPG3-AS1. 
Kaplan–Meier survival and ROC curves demonstrate that the prognosis signature as an independent risk indicator 
had excellent potential to predict the prognosis in prostate cancer. The signature was closely associated with age, T 
stage, N stage, and the Gleason score. Immune analysis shows that the high-risk group was in an immunosuppressive 
microenvironment. Additionally, the significant difference in landscape of gene mutation, tumour mutational burden, 
microsatellite instability, and drug sensitivity between both risk groups was observed.

Conclusions  A novel cuproptosis-related lncRNA signature was constructed using machine learning algorithms to 
predict the prognosis of prostate cancer. It was closely with associated with several common clinical traits, immune 
cell infiltration, immune-related functions, immune checkpoints, gene mutation, TMB, MSI, and the drug sensitivity, 
which may be useful to improve the clinical outcome.
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Background
Prostate carcinoma (PCa) is the most prevalently diag-
nosed tumour among men in Western countries and the 
second leading cause of death [1]. Its incidence shows 
increases rather than declines in recent years, which 
accounts for 27% of new cases in males [1]. Androgen-
deprivation therapy or combination therapy with other 
protocols such as radiotherapy and prednisolone initially 
induces remission in most high-risk non-metastatic PCas 
but may result in the development of castration-resistant 
prostate carcinoma (CRPC) [2, 3]. Many patients do not 
derive great benefit from hormonal therapy due to the 
heterogeneity of PCa. Additionally, the progression spec-
trum to CRPC is complicated and variable. Genomic pro-
filing provides the biological feature that would optimize 
the predictive ability of conventional clinicopathological 
traits and further improve the clinical outcomes of can-
cer patients. Indeed, some studies demonstrated that the 
PI3K/AKT pathway (49%) is the third most frequently 
mutated, only behind the androgen receptor (AR) (70%) 
and TP53 (53%) in metastatic CRPC compared to pri-
mary tumour, which has improved the understanding 
and precision treatment of metastatic CRPC [4]. With the 
advancement of high-throughput sequencing technology 
long non-coding RNA (LncRNA), as an important gene 
regulator in mammals and other eukaryotes, has been 
found to be closely related to tumorigenesis, tumour 
invasion, metastasis, epithelial mesenchymal transition, 
and prognosis in PCa [5–7]. Therefore, to improve treat-
ment selection and precision, it is imperative to identify 
novel lncRNA molecular signatures to predict prognosis 
and treatment responses in PCa.

Copper, as a catalytic cofactor for essential enzymes, 
is involved in a variety of critical biochemical pathways 
[8]. It is closely associated with carcinoma progression 
and growth, particularly in angiogenesis and metastasis, 
whose metabolism is also dramatically altered in tumours 
[9, 10]. Among angiogenesis is critical in the develop-
ment and progression of PCa, so targeting angiogenesis 
is a promising treatment strategy for metastatic CRPC 
[11]. However, several clinical trials demonstrated that 
it is discouraging outcomes, for instance, bevacizumab, 
as vascular endothelial growth factor (VEGF)-directed 
agent, showed superiority in progression-free sur-
vival and rates of ≥ 50% prostate-specific antigen (PSA) 
decrease in patients with chemotherapy-naïve, meta-
static CRPC, but it has a higher toxic death rate [11, 12]. 
Meanwhile, numerous studies demonstrated that copper 
levels were elevated in various malignancies, particularly 

in PCa, in which human copper transporter 1 is highly 
expressed in PCa cells [10, 13]. Therefore, these findings 
support the use of this element as a target for positron 
emission tomography imaging in PCa [13]. If the intracel-
lular amount of the copper in mammalian cells exceeds 
the threshold maintaining homeostatic mechanisms, 
it would become toxic to cells and trigger cupropto-
sis [14]. Cuproptosis first described by Tsvetkov et  al., 
which occurs via copper directly binding to the lipoylated 
components of the tricarboxylic acid (TCA) cycle [14]. 
This would lead to the accumulation of lipoylated pro-
teins and subsequent loss of iron-sulfur cluster proteins, 
which in turn triggered proteotoxic stress and ultimately 
cell death. Growing evidence shows that lncRNAs are 
associated with epigenetic pathways such as ferroptosis, 
modification of N6-methyladenosine (m6A) methylation 
in PCa [15–18]. Nevertheless, the role of lncRNA in the 
biological processes of cuproptosis has not been compre-
hensively elucidated. Furthermore, novel cuproptosis-
related lncRNA signatures for predicting prognosis in 
PCa remain to be developed.

In this study, cuproptosis-related lncRNA was used to 
construct a novel consensus signature in training cohorts 
to assess its predictive value for prognosis and its rela-
tionship with the immune microenvironment, immune 
checkpoints, and several common hormonal therapy 
drugs, which was validated in the validation and entire 
The Cancer Genome Atlas (TCGA) cohorts. This work 
may be contributed to provide novel insights into molec-
ular mechanisms and prognostic prediction in PCa.

Material and methods
Data collection and pre‑processing
The overview of this study is illustrated in Fig.  1. The 
RNA-seq data (FPKM normalised data) and clinical 
information of five hundred and fifty-three samples 
(including 52 non-tumour and 501 tumour tissues) were 
downloaded from prostate adenocarcinoma (PRAD) of 
TCGA database (https://​portal.​gdc.​cancer.​gov/) in July 
2022. The RNA-seq FPKM normalised data would be 
log-2 transformed for further analysis. Furthermore, 
missing data including disease-free survival (DFS) and 
microsatellite instability (MSI) were retrospectively 
obtained from cBioPortal for cancer genomics database 
(https://​www.​cbiop​ortal.​org/). Participants with com-
plete DFS information from the TCGA and cBioPor-
tal database were included to develop and validate the 
stratification signature. The TCGA dataset was randomly 
divided into training and validation cohorts with a ratio 

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
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of 1: 1. The 13 cuproptosis-related gene were available 
from previously published literatures [14], as detailed in 
supplementary table 1.

Identification for cuproptosis‑related differentially 
expressed lncRNAs
The correlation between cuproptosis-related gene and 
lncRNA was assessed via Pearson’s correlation analysis. 
The cuproptosis-related lncRNAs were identified with 
the Pearson correlation coefficient criteria greater than 
0.4 (R > 0.4) and P values less than 0.01. Then, cuprop-
tosis-related differentially expressed lncRNAs between 
normal and PCa tissues were obtained with the criteria 
of adjusting p < 0.05 and | log2 fold change (FC) |> 0.5 via 
applying the Wilcoxon test in the TCGA cohort.

Development and validation of cuproptosis‑related 
lncRNA signatures
Interesting cuproptosis-related lncRNAs that influence 
PCa DFS were primarily identified through univariate 
Cox regression based on cuproptosis related differen-
tially expressed lncRNAs. In training cohorts, the algo-
rithm models integrating the least absolute shrinkage and 
selection operator (Lasso) with the stepwise Cox (direc-
tion = both) was used to develop the consensus lncRNA 
signature via the ‘glmnet’ and ‘survival’ package. The risk 
score was calculated for each patient using the following 
formula: risk score =  n

i=1
Coef i × Expi(where Coefi was 

the coefficient of selected gene weighted via multivariate 

Cox regression and Expi was the gene expression of 
selected gene). Each patient was assigned to the high- 
and low- risk group according to the optimal cutoff 
value established by the ‘survminer’ package. Then, its 
predictive value was evaluated via the log-rank test and 
Kaplan–Meier curves, which were generated by using the 
‘survival’ and ‘survminer’ packages, respectively. Moreo-
ver, the time-dependent receiver operating characteristic 
(ROC) curve using the ’timeROC’ package was also used 
to evaluate the novel lncRNA signature. Similarly, the 
abovementioned method also was used to validate the 
novel risk stratification signature in validation and entire 
TCGA cohorts.

Construction of the nomogram and association 
of the cuproptosis‑related lncRNA signatures 
with clinicopathological traits
Based on the several available clinical traits and lncRNA 
signatures, the nomogram was constructed in TCGA 
cohorts via the ‘rms’ package. To evaluate its predictive 
performer, Harrell’s concordance index (C-index) was 
calculated. Subsequently, the time-dependent ROC, as 
well as 1-year, 3-year, and 5-year calibration curves were 
also plotted to assess the accuracy and stability of this 
model, respectively. Then, the association of the cuprop-
tosis‑related lncRNA signatures with common clinical 
traits also was evaluated, and its predictive value was fur-
ther assessed by subgroup analysis as well.

Fig. 1  Flow chart. By Figdraw (www.​figdr​aw.​com)

http://www.figdraw.com
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Enrichment analysis
The differentially expressed coding RNA genes between 
the high- and low-risk groups were uploaded to the Metas-
cape database (http://​metas​cape.​org/​gp/​index.​html) to 
perform gene enrichment analysis [19]. Then, the gene 
expression matrix and risk group were uploaded to Gene 
set enrichment analysis (GSEA) software V4.2 for GSEA 
with permutation = 1000, min size = 15 and max size = 500 
to further explore potential pathways.

Immune cell infiltration, immune‑related function, 
and immune checkpoint analysis
Adaptive or innate infiltrated immune cells were involved 
in the development, progression, metastasis, and treat-
ment of PCa [20]. In addition, the prevalence of defects 
in mismatch repair (MMR) in PCa was reported to be 
between 3 and 5% according to the literature [21]. In the 
second-line treatment of metastatic CRPC, patients with 
MMR deficiency were candidates for immune checkpoint 
inhibitor therapy [22]. Thus, it was vital to assess the 
status of immune cell infiltration, immune-related func-
tion, and immune checkpoints in PCa. The single sample 
gene set enrichment analysis (ssGSEA) was conducted 
to assess the amount of 28 immune cell infiltration and 
immune-related function. The metagenes list of pan-can-
cer immune was accessible in supplementary table 2 [23]. 
The proportion of immune cell in both risk group was 
also evaluated via MCP-counter and TIMER algorithm, 
which were performed using ‘IOBR’ R package [24]. The 
key immune checkpoints expression level between both 
risk groups were also compared to predict the benefit 
from immunotherapy.

Landscape of gene mutation, tumour mutational burden, 
microsatellite instability, and drug sensitivity analysis
The mutation frequencies and oncoplot waterfall plots 
for both risk groups were analysed and visualized with 
the ‘maftools’ package.

Tumour mutational burden (TMB) and microsatellite 
instability (MSI) could be regarded as an indicator to pre-
dict immunotherapy response. The presence of homol-
ogous recombination deficiencies, such as BRCA1/2 
mutations, can lead to TMB amplification and contribute 
to immune checkpoint inhibitor sensitivity [25]. Previous 
studies also showed that TMB was closely related to com-
mon clinical traits such as T and N stage and patients 
with high TMB had worse survival than those with low 
TMB in PCa [26]. 45.5% of patients with MSI-high/ or 
mismatch repair–deficient metastatic CRPC derived 
durable clinical benefit from immune check-point 
blockade [27].Thus, it is essential to assess the status of 
TMB and MSI and their relationship with the cupropto-
sis‑related lncRNA signatures in both risk group.

Several common drug sensitivities were estimated from 
the Genomics of Drug Sensitivity in Cancer database 
(https://​www.​cance​rrxge​ne.​org/) via the ‘pRRophetic’ 
package [28].

Validation of the cuproptosis‑related lncRNA signature
Trizol reagent (ComWin Biotech, Beijing, China) and 
reversed transcribed into cDNA with the TransScript 
First-Strand cDNA Synthesis SuperMix kit (TransGen 
Biotech, Beijing, China) was used to extract total RNA 
from prostate normal or cancer cell lines RWPE-1, PC3, 
DU145, VCaP, and LNCaP according to the manufac-
turer’s description. Real-time quantitative polymerase 
chain reaction (RT-qPCR) was conducted in triplicate 
with qPCR SYBR Green SuperMix (TransGen Biotech, 
Beijing, China). β-Actin was employed as an internal ref-
erence gene to normalize relative expressions of lncRNA 
with the 2−ΔΔCT method. The primer sequences were 
accessible in supplementary Table 3.

Statistical analysis
All data processing and statistical analyzes were per-
formed using R software (Version 4.2.1). The Wilcoxon 
test or independent t test was used to analyse continu-
ous data, while the Chi-square test or Fisher’s exact test 
categorical data. A P- value less than 0.05 was considered 
statistically significant criteria.

Results
Identification of cuproptosis‑related differentially 
expressed lncRNAs
Thirteen cuproptosis-related genes were available from 
the study of Tsvetkov P et  al. [14]. The result of Pear-
son’s correlation analysis demonstrated that 311 lncR-
NAs expression level were tightly correlated with the 
cuproptosis-related gene, which was illustrated in sup-
plementary Table  4. Forty-seven differentially expressed 
lncRNAs were identified via the Wilcoxon test in the 
TCGA cohort, which contained 20 down-regulated genes 
and 27 up-regulated lncRNA genes, as shown in Figs. 2A 
and B. Then, the TCGA cohorts were assigned to the 
training and validation cohorts. The baseline character-
istics of PCa patients between both cohorts are shown in 
Table 1.

Development and validation of cuproptosis‑related 
lncRNA signatures
In the training cohorts, univariate Cox regression based 
on cuproptosis-related differentially expressed lncR-
NAs was ultimately selected for the 21 prognostic lncR-
NAs, including AC005387.1, AC005790.1, AC008610.1, 
AC011445.1, AC011472.4, AC016773.1, AC074212.1, 
AC099791.2, AC126118.1, AC132938.1, AC141930.1, 

http://metascape.org/gp/index.html
https://www.cancerrxgene.org/
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Fig. 2  Cuproptosis-related differentially expressed lncRNAs in TCGA cohorts. A Volcano plots of cuproptosis-related differentially expressed 
lncRNAs. B Heatmap plots of cuproptosis-related differentially expressed lncRNAs

Table 1  Clinical characteristics in the training and validation cohorts

Variable All cohorts (N = 489) Training cohorts 
(N = 244)

Validation cohorts 
(N = 245)

P-value

Age: n (%) 0.276

  < 61 221 (45.2%) 104 (42.6%) 117 (47.8%)

  ≥ 61 268 (54.8%) 140 (57.4%) 128 (52.2%)

Race: n (%) 0.589

  American indian or Alaska native 1 (0.2%) 1 (0.4%) -

  Asian 12 (2.5%) 4 (1.6%) 8 (3.3%)

  Black or african american 57 (11.7%) 29 (11.9%) 28 (11.4%)

  White 406 (83.0%) 202 (82.8%) 204 (83.3%)

  Not reported 13 (2.7%) 8 (3.3%) 5 (2.0%)

M stage: n (%) 0.558

  M0 447 (91.4%) 223 (91.4%) 224 (91.4%)

  M1 2 (0.4%) 2 (0.8%) -

  Mx 40 (8.2%) 19 (7.8%) 21 (8.6%)

N stage: n (%) 0.841

  N0 340 (69.5%) 169 (69.3%) 171 (69.8%)

  N1 79 (16.2%) 38 (15.6%) 41 (16.7%)

  Nx 70 (14.3%) 37 (15.2%) 33 (13.5%)

T stage: n (%) 0.916

  T2 187 (38.2%) 95 (38.9%) 92 (37.6%)

  T3 291 (59.5%) 144 (59.0%) 147 (60.0%)

  T4 11 (2.2%) 5 (2.0%) 6 (2.4%)

Gleason score: n (%) 0.762

  6 45 (9.2%) 26 (10.7%) 19 (7.8%)

  7 243 (49.7%) 120 (49.2%) 123 (50.2%)

  8 63 (12.9%) 32 (13.1%) 31 (12.7%)

  9 135 (27.6%) 64 (26.2%) 71 (29.0%)

  10 3 (0.6%) 2 (0.8%) 1 (0.4%)
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AC144450.1, AL031985.3, AL122035.1, AP003419.3, 
ARHGAP27P1-BPTFP1-KPNA2P3, ERVE.1, LIPE-AS1, 
SNHG25, STPG3-AS1, U47924.1, as detailed in Fig.  3A. 
Then, the combined algorithm models of Lasso and the 
stepwise Cox (direction = both) were used to construct 
the prognostic signature in order to effectively avoid mul-
ticollinearity among various variables and to reduce data 
dimensionality. When the optimal lambda was 0.0124, the 
partial likelihood of deviance reached the minimum. Thus, 
AC005790.1, AC008610.1, AC011472.4, AC016773.1, 
AC099791.2, AC126118.1, AC144450.1, AL122035.1, 
ARHGAP27P1-BPTFP1-KPNA2P3, ERVE.1, LIPE-AS1, 
SNHG25, STPG3-AS1, and U47924.1 were selected 
(Fig. 3B and C). The stepwise Cox (direction = both) was 
applied to further screen key lncRNAs based on the Lasso 
regression with tenfold cross-validation. Eventually, the 
risk score of each patient was calculated with the following 
formula: risk score = AC005790.1*-1.202 + AC011472.4*-
1.872 + AC099791.2*1.528 + AC144450.1*-1.027 + LIPE-
AS1*-2.658 + STPG3-AS1*-1.517 (Fig.  3D). Then, all 
patients in the TCGA cohorts were assigned to the low- 
and high-risk group according to the optimal cut-off value 
for this prognostic signature.

Kaplan–Meier (K-M) survival curve analysis demon-
strated that DFS in the high-risk group was apparently 
shorter than in the low-risk group in the training dataset 
(Fig. 4A), which was validated by the validation (Fig. 4B) 
and entire TCGA dataset (Fig. 4C). Consistently, the risk 
score distribution and survival status of both risk group 
was evaluated via the risk score formula in the training 
(Fig. 4D), the validation (Fig. 4E), and entire TCGA data-
set (Fig. 4F), respectively. The expression heatmaps of the 
six selected cuproptosis-related lncRNAs for the training 
datasets were shown in Fig. 4G, the validation datasets in 
Fig. 4H, and the entire TCGA datasets in Fig. 4I, respec-
tively. ROC analysis of DFS was conducted to assess the 
discrimination of the cuproptosis-related lncRNA signa-
ture. Its results suggested that the 1-, 3-, and 5-year areas 
under the ROC curves (AUCs) were 0.789, 0.756, and 
0.761 in the training cohorts (Fig.  4J), 0.815, 0.761, and 
0.729 in the validation cohorts (Fig. 4K), as well as 0.762, 
0.741, and 0.693 in the entire TCGA cohorts (Fig.  4L), 
respectively.

Construction of a nomogram
After rigorous screening of patients with complete and 
definitive clinicopathological information, four hundred 
and twenty PC patients were ultimately included for 
further analysis in the entire TCGA cohort. The results 
of the multivariate Cox regression showed that T stage, 
Gleason score, and risk were considered as independ-
ent prognostic metrics, as detailed in Fig. 5A. Thus, the 

nomogram was constructed to predict 1-, 3-, and 5-year 
DFS based on this multivariate Cox regression in TCGA 
cohort (Fig. 5B). To evaluate the accuracy of this model, 
the ROC curves were utilised to compare this cuprop-
tosis-related LncRNA signature with several available 
clinical traits (Fig.  5C-E). This result showed that the 
predictive value of this nomogram model was more opti-
mal compared to several clinical traits such as T stage, 
N stage, and Gleason score at 1, 3, and 5  years. Subse-
quently, the calibration curves for the nomogram indi-
cated that the actual DFS was well consistent with the 
predicted DFS (Fig. 5F).

Relationship between the lncRNA signature 
and clinicopathological traits
In the cuproptosis-related lncRNA signature, the 
expression level of AC099791.2 and STPG3-AS1 were 
upregulated in the high-risk group, whilst AC005790.1, 
AC011472.4, AC144450.1, and LIPE-AS1 were down-
regulated in the high-risk group (Fig.  6A). To further 
analyse the relationship between the prognostic lncRNA 
signature and clinicopathological traits, the risk score 
was compared in different cohorts, showing that the 
PCa patient with the older, advanced T and N stage, as 
well as the worse Gleason score had the higher risk score 
(Fig. 6B-E). Moreover, to evaluate the prognostic predic-
tive value of the lncRNA signature in different stratified 
cohorts, the subgroup analysis was performed, indicating 
that it provides a reliable and accurate prediction ability 
in patients with age < 62, age ≥ 62, T1/2, T3/4, N0, N1, 
Gleason score ≥ 8, and Gleason score < 8 (Fig.  7A-H). 
In sum, the cuproptosis-related lncRNA signature was 
closely associated with several common clinicopathologi-
cal traits and has surprising potential for predicting prog-
nosis in PCa patients.

Functional enrichment analysis
Nine hundred ninety-one differentially expressed cod-
ing RNA genes between the high- and low-risk groups 
were acquired with cut-off criteria of adjusting p < 0.05 
and |log2FC|≥ 0.5 and then were uploaded to Metascape 
database to explore the potential cellular functions and 
processes. As shown in Fig. 8A, these genes were mainly 
enriched in ion and small molecules transport. Mean-
while, GSEA was conducted to investigate the signalling 
pathways underlying the risk signature, suggesting that 
the high-risk group was mainly enriched in base excision 
repair, cell cycle, DNA replication, and so on (Fig.  8B). 
Likewise, the low-risk group mainly focused on the adi-
pocytokine signaling pathway, the citrate cycle TCA cycle, 
fatty acid metabolism, prostate cancer, etc. (Fig. 8C).
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Fig. 3  Regression analysis. A Univariate Cox regression analysis of cuproptosis-related differentially expressed lncRNAs; (B, C) Lasso regression 
analysis of AAM‐related DEGs; (D) Coefficients of 6 lncRNAs obtained in stepwise Cox regression
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Immune analysis
Immune cell infiltration, immune-related function, 
and immune checkpoints were evaluated to explore 
the effect of immune in the development, progression, 

and metastasis of PCa. According to 28 immune cells 
infiltration assessed by ssGSEA, the result demon-
strated that the high-risk group trend to have an 
immunosuppressive microenvironment (Fig.  9A). In 

Fig. 4  The prognostic predictive performance of cuproptosis-related lncRNA signature in PCa. A-C Kaplan–Meier survival analysis between both 
risk groups in training (A), validation (B), and entire TCGA (C) cohorts; (D-F) The trend in survival status with increasing risk scores in training (D), 
validation (E), and entire TCGA (F) cohorts; (G-I) Heatmap plots of the individual prognostic lncRNAs in training (G), validation (H), and entire TCGA 
(I) cohorts; (J-L) Time-independent receiver operating characteristic (ROC) curve of this prognostic signature in training (J), validation (K), and entire 
TCGA (L) cohorts
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Fig. 5  Multivariate cox regression analysis and prognostic predictive performance of the nomogram, risk (cuproptosis-related lncRNA signature), 
and other clinical indicators. A Multivariate Cox regression analysis; (B) Nomogram for predicting 1-, 3-, and 5-year DFS. C-E ROC curves for 1-year 
(C), 3-year (D), and 5-year (E) DFS based on the nomogram, risk, and other clinical indicators, respectively; (F) the calibration plots for predicting 1-, 
3-,5-year DFS of the nomogram, respectively
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Fig. 6  Association between the cuproptosis-related lncRNA signature and clinical traits. A Heatmap plot of individual prognostic lncRNA in 
cuproptosis-related signature and correlation between it and other clinicopathological traits; (B-E) Box plots of risk scores for different stratification 
subgroups; ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001
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Fig. 7  Subgroup analysis of the cuproptosis-related lncRNA signature (A-H) 

Fig. 8  Functional enrichment analysis. A Enrichment analysis based on the Metascape database; (B-C) Gene set enrichment analysis in the high-risk 
group (B) and the low-risk group (C)
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MCP-counter algorithm, the content of CD8 T cells, 
myeloid dendritic cells, and neutrophils were lower in 
the high-risk group than that in the low-risk group. In 
the TIMER algorithm, CD8 T cells, neutrophils, and 
DCs had a higher ratio in the high-risk group. Simi-
larly, in the ssGSEA algorithm, the proportion of the 
remaining cells was higher in the low-risk group than 
in the high-risk group, except for activated CD4 and 
CD8 T cells, CD56dim natural killer cell, Gamma delta 
T cell, macrophage, myeloid-derived suppressor cell 
(MDSC), and plasmacytoid dendritic cell (Fig.  9A). 
Likewise, the immune-related function was evaluated, 
demonstrating that the level of antigen presenting cell 
(APC) co-stimulation, co-stimulation C–C chemokines 
receptors (CCR), inflammation-promoting, major his-
tocompatibility complex (MHC) class I, parainflamma-
tion, type II interferon (IFN) reponse was lower in the 
high-risk group than in the low-risk group (Fig.  9B). 
As illustrated in Fig.  9C, the results of the differential 
expression analysis of the key immune checkpoints in 
both risk group indicated that the expression level of 
CD44, TNFRSF9, CD40, CD40LG, CD48, CD274 (PD-
L1), CD244, VTCN1, TMIGD2, TNFSF15, BTLA, and 
PDCD1LG2 (PD-L2) were downregulated in the high-
risk group. On the contrary, few immune checkpoints, 

such as LAG3, TNFSF18, ADORA2A, TNFRSF14, 
TNFRSF18, and TNFRSF25 were upregulated.

Landscape of gene mutation, tumour mutational burden, 
microsatellite instability, and drug sensitivity analysis
The miscellaneous mutation was the most common vari-
ant classification in PCa, followed by the nonsense muta-
tion (Fig.  10A). Single nucleotide polymorphisms were 
the most common variant type, and C > T ranked as the 
top SNV class (Fig.  10A). As shown in Fig.  10B, 291 of 
478 (60.88%) PCa samples had genetic mutations in both 
risk groups. The SPOP and TP53 gene had the high-
est mutation frequency (11%), followed by TNN (10%), 
FOXA1 (6%), and KMT2D (6%).

TMB and MSI, as one of the metrics to predict the 
benefit of immunotherapy, were utilized to guide clini-
cal practice. To explore the relationship between them 
with the risk signature, the TMB and MSI score in both 
risk group were compared. It indicated that the high-
risk group had higher TMB and MSI score (p < 0.001), as 
detailed in Fig. 10C-D.

Bicalutamide and docetaxel were regarded to be 
the first-line drug in PCa treatment regimens. Thus, 
their half-maximal inhibitory concentration (IC50) was 
compared as an indicator of drug sensitivity via the 

Fig. 9  Immune infiltration, immune status, and immune checkpoints analysis. A The heatmap of immune cells content in both risk group via 
MCP-counter, TIMER, and ssGSEA algorithm, respectively; (B) The different immune status in both risk group via ssGSEA algorithm; (C) Gene 
differential expression analysis of key immune checkpoints; ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001
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‘pRRophetic’ package. PCa patients in the high-risk group 
were more sensitive to bicalutamide than in the low-risk 
group, in contrast to docetaxel (Fig. 10E-F).

Validation of cuproptosis‑related lncRNA gene
The level of expression of lncRNA was measured in 
prostate normal or cancer cell lines by RT-qPCR, 

Fig. 10  Gene mutation, tumour mutational burden and microsatellite instability, along with drug sensitivities analyses. (A-B) Landscape of gene 
mutation in PCa (A) and both risk group (B), respectively; (C-D) Association between the cuproptosis-related lncRNA signature and tumour 
mutational burden (C) as well as microsatellite instability (D); (E–F) Drug sensitivities analyses of bicalutamide (E) and docetaxel (F) in both risk 
group, ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001
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showing that the expression of AC005790.1, AC011472.4, 
AC144450.1, and STPG3-AS1 was up-regulated in PCa 
cell lines compared to RWPE1. The expression level of 
AC099791.2, and LIPE-AS1 were slightly elevated in cor-
responding cancer cell lines (Fig. 11).

Discussion
LncRNA has mRNA-like transcripts which are not capa-
ble of encoding proteins or peptides. Its plays an essential 
role in the regulation of gene expression at the tran-
scriptional, translational, and post-translational levels 
[29]. Meanwhile, cuproptosis, as an important cellular 
function and process, has recently been discovered [14]. 
Copper homeostasis plays an important role in the devel-
opment of various tumours, an imbalance of which can 
lead to cytotoxicity and further affect cancer cell growth 
and proliferation [30]. Tsvetkov found that cuproptosis 
was triggered by copper-induced aggregation of lipid-
acylated proteins and loss of iron-sulfur (Fe-S) cluster 
proteins, as well as increased proteotoxic stress through 
direct binding of lipid-acylated components of the tricar-
boxylic acid (TCA) cycle [14]. Given that lipid acylation 
and Fe-S cluster proteins are widely and conservatively 
present in nature, targeted therapy based on this mech-
anism of cuproptosis may be promising options in can-
cer. Therefore, it is essential to construct and develop the 

gene signature to observe the extent of cuproptosis in 
tumours. In addition, due to the heterogeneity of PCa, 
their prognosis and treatment outcomes were highly 
variable and complicated. However, the insufficiency of 
a conventional clinical management tool could some-
times lead to overtreatment or undertreatment of PCa 
patients. For example, androgen receptor splice variant 7 
(AR-V7) could precisely identify who would benefit from 
treatment with novel androgen receptor blocking agents 
in metastatic CRPC, thus it might be a reliable prognos-
tic biomarker [31]. However, it lacks the predictive per-
former for resistance to taxanes [31]. To bridge this gap, 
the novel robust prognostic lncRNA signature was devel-
oped to more accurately predict PCa survival, immune 
infiltration feature, and drug benefits in this study.

In our study, Pearson’s correlation and differen-
tial expression analysis was applied to identify differ-
entially expressed cuproptosis-related lncRNAs. The 
novel lncRNA signature which consist of AC005790.1, 
AC011472.4, AC099791.2, AC144450.1, LIPE-AS1, and 
STPG3-AS1 was further developed via the combined 
algorithm [Lasso and stepwise Cox (direction = both)]. 
This model can not only effectively avoid the issue of 
multicollinearity but also precisely screen the key vari-
ables. Both the K-M survival curve and the ROC curve 
presented that the consensus lncRNA signature could 

Fig. 11  Validation of the expression levels of cuproptosis-related prognostic lncRNAs via RT-qPCR; ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001
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stratify the risk of PCa patients with high precision and 
stability performance in training, validation, and entire 
cohorts of TCGA. Moreover, the cuproptosis-related 
lncRNA signature was also closely associated with the 
common clinical feature, such as T stage, N stage, and 
Gleason score. To better understand the mechanism 
underlying the cuproptosis-related lncRNA signature, it 
is necessary to analyse the role of each gene in cuprop-
tosis. Chu et  al. founded that the Toll-like receptors 
related prognostic gene signature involving AC011472.4 
is an independent risk indicator in colorectal cancer 
[32]. Liu et al. also demonstrated that the new immune-
related lncRNA based on LIPE-AS1 can independently 
assess the prognosis of patients with cervical squamous 
cell carcinoma [33]. Similarly, Li et  al. presented that 
ferroptosis-related lncRNA consisting of fifteen includ-
ing STPG3-AS1 was closely associated with the progno-
sis of colorectal cancer. The studies mentioned above all 
showed that the cuproptosis-related lncRNA signature 
gene was involved in the development and prognosis of 
the tumour.

To further explore the potential mechanism of the 
cuproptosis-related lncRNA signature in PCa, these 
functional analyzes, including functional enrichment, 
immune, gene mutation, tumour mutational burden, 
microsatellite instability, and drug sensitivity analysis, 
were conducted. The results of the functional enrichment 
analysis found that the differentially expressed coding 
RNA genes between both groups were mainly enriched in 
the transport of ion and small molecules, which further 
confirmed the molecular characteristics of the cuprop-
tosis-related lncRNA signature. In GSEA enrichment 
analyses, the high-risk group tends to enrich in cellular 
functions such as cell cycle and proliferation, while the 
low-risk group in biological processes involving energy 
metabolism. In addition, 28 immune cell infiltration and 
immune-related function were also analysed via ssGSEA 
algorithms to elucidate the relationship between this risk 
signature and the immune microenvironment of tumour. 
The content of activated, memory, and immature B cell 
were elevated in the low-risk group. B cells, as vital com-
ponents of the adaptive immune system, are commonly 
found in various tumour tissues, such as breast, cervical, 
and ovarian cancer, and non-small cell lung cancer [34]. 
It not only plays immune-regulatory function of anti-
body and antibody-antigen complexes, but also has influ-
ence on the functions of other immune or tumour cells 
via presenting antigens, providing co-stimulation, and 
secreting cytokines [35]. CD4 T cell, called as T helper 
(Th) cell, include Th1, Th2, Treg, and Th17 cell. Th cells 
present highly heterogeneous and several subgroups of 
them retain synergy in immune regulation and homeo-
stasis maintenance. In the low-risk group, its proportion 

is significantly higher than that in the high-risk group, 
indicating that Th cells are essential in tumour growth 
and progression. Moreover, CD8 T cells decreased mark-
edly in PCa tissues compared to the normal epithelium 
[36]. Previous studies found that dendritic cell participate 
in anti-toumur responses against PCa and closely asso-
ciated with the favourable prognosis in PCa [37]. Natu-
ral killer cell activity was negatively associated with the 
clinical outcomes on prostate biopsy [38]. Meanwhile, 
the result of immune function shows that the APC co-
stimulation, CCR, inflammation-promoting, MHC class 
I, parainflammation, and type II IFN reponse was down-
regulated in the high-risk group. APC co-stimulation is 
critical in promoting Th cells differentiation as well as 
initiating and maintaining the immune response [39, 40]. 
Several chemokines emerged as essential mediators in 
PCa invasion and metastasis as they do in inflammation 
[41]. Inflammation is served as a risk factor for PCa [42], 
and is also related with aggressive disease [43, 44]. Then, 
the type II IFN response not only promotes immune 
responses to microorganisms, but also participates in 
cancer immunosurveillance [45]. What is more, most key 
immune checkpoints including PD-L1 and PD-L2 are in a 
low expression level in the high-risk group. Collectively, 
these findings indicated that the high-risk group is in an 
immunosuppressive microenvironment, which further 
leads to a poorer prognosis.

With the development of next-generation sequencing, 
germline and somatic genetic testing are considered to 
guide the clinical practice. Based on the identification of 
DNA repair gene defects, poly (ADP-ribose) polymerase 
(PARP) inhibitors were developed and utilized to control 
tumour. Currently, Olaparib was the first PARP inhibi-
tor to show significant activity in metastatic CRPC with 
prior progression to standard therapy [46]. In a single-
arm phase II clinical study, Olaparib had a 50% observed 
objective response rate and a 60% disease control rate in 
advanced cancer patients with germline BRCA1/2 muta-
tion [47]. And Konstantinopoulos P et  al. reported that 
there was in  vivo synergism between the heat shock 
protein (HSP) 90 inhibitor AT13387 Onalespib and the 
PARP inhibitor Olaparib [48]. These are encouraging out-
comes. Based on that, the association between the gene 
mutation and the cuproptosis-related lncRNA signa-
ture is evaluated. According to the landscape of somatic 
gene mutation (Fig.  10A-B), the gene mutation spec-
trum between both risk groups exist disparity to some 
extent, indicating that its different may explain or lead to 
the distinct prognostic outcomes. In addition, TMB and 
MSI were commonly applied to predict the response of 
immunotherapy. This result showed that the TMB and 
MSI score in the high-risk group is significantly higher 
than that in the low-risk group. Wang et  al. found that 
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the high-TMB group had lower overall survival than the 
low-TMB group [26], which is consistent with the results 
of this study. Then, the drug sensitivity analysis was also 
performed via the ‘pRRophetic’ package, the results of 
which demonstrate that patients in the high-risk group 
benefit more from bicalutamide, while in the low-risk 
group from docetaxel.

Although this study develops the novel cuproptosis-
related lncRNA signature, several limitations should 
be realized. Fistly, the prognosis signature cannot be 
validated by external validation cohorts, as other cur-
rent datasets a lack for the lncRNA sequencing data 
and complete clinical information. Secondly, the latent 
mechanism underlying cuproptosis-related lncRNA 
along with its relationship with tumour immune micro-
environment, gene mutation, TMB, MSI, and the drug 
sensitivity should be further validated in vivo and in vitro 
experiments.

Conclusions
In this study, a novel cuproptosis-related lncRNA signa-
ture was constructed via machine learning algorithms, 
along with a nomogram developed based on it and other 
available common clinical traits, both of which can accu-
rately and reliably predict the DFS of PCa. The progno-
sis signature was closely associated with several common 
clinical traits, immune cell infiltration, immune-related 
functions, immune checkpoints, gene mutation, TMB, 
MSI, and drug sensitivity, which may be useful to 
improve the precision treatment and clinical outcome of 
PCa patients.
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