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Abstract
Background  Functioning and non-functioning adrenocortical adenoma are two subtypes of benign adrenal 
adenoma, and their differential diagnosis is crucial. Current diagnostic procedures use an invasive method, adrenal 
venous sampling, for endocrinologic assessment.

Methods  This study proposes establishing an accurate differential model for subtyping adrenal adenoma using 
computed tomography (CT) radiomic features and machine learning (ML) methods. Dataset 1 (289 patients with 
adrenal adenoma) was collected to develop the models, and Dataset 2 (54 patients) was utilized for external 
validation. Cuboids containing the lesion were cropped from the non-contrast, arterial, and venous phase CT images, 
and 1,967 features were extracted from each cuboid. Ten discriminative features were selected from each phase or the 
combined phases. Random forest, support vector machine, logistic regression (LR), Gradient Boosting Machine, and 
eXtreme Gradient Boosting were used to establish prediction models.

Results  The highest accuracies were 72.7%, 72.7%, and 76.1% in the arterial, venous, and non-contrast phases, 
respectively, when using radiomic features alone with the ML classifier of LR. When features from the three CT phases 
were combined, the accuracy of LR reached 83.0%. After adding clinical information, the area under the receiver 
operating characteristic curve increased for all the machine learning methods except for LR. In Dataset 2, the accuracy 
of LR was the highest, reaching 77.8%.

Conclusion  The radiomic features of the lesion in three-phase CT images can potentially suggest the functioning 
or non-functioning nature of adrenal adenoma. The resulting radiomic models can be a non-invasive, low-cost, and 
rapid method of minimizing unnecessary testing in asymptomatic patients with incidentally discovered adrenal 
adenoma.
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Introduction
Adrenal adenomas are common tumors, and their preva-
lence in the general population is about 6% [1], although 
the incidence increases from about 1% for 40 year-olds to 
7% for 70 year-olds [2]. Adrenal adenomas can be divided 
into functioning adrenocortical adenoma (FAA) and non-
functioning adrenocortical adenoma (NAA). This classifi-
cation is mainly based on whether the endocrine function 
is affected. FAA can disrupt hormone levels in patients, 
leading to Cushing’s syndrome (CS) and primary hyper-
aldosteronism (PHA) [3, 4]. Among CS patients, the inci-
dence is high in 20–50 year-olds, and the male-to-female 
ratio is about 1:3 [5]. For PHA, the incidence is high in 
30–50 year-olds, and there is no significant difference in 
prevalence between men and women [6].

Both FAA and NAA are benign adrenal adenomas. The 
clinical diagnosis of the two diseases is mainly through 
endocrine tests for hormone levels or medical imag-
ing [7]. Endocrine analysis requires several blood tests 
and related hormone induction procedures, which are 
tedious, time-consuming, and invasive. If NAA is pres-
ent and there is no hormone abnormality, the hormone 
test may be unnecessary and delay treatment. Radiologic 
diagnosis mainly uses morphological information such as 
the location and size of the lesion. Its accuracy cannot be 
guaranteed, and misdiagnosis may occur [8], leading to 
unnecessary adrenalectomy.

Intervention methods are different for the two types of 
adrenal adenomas. FAA can cause hormone abnormali-
ties, so further examination of hormone levels is required 
and treatment usually involves surgery [9]. Most NAAs 
are asymptomatic, and the treatment method is often 
determined according to the size of the tumor. If the 
tumor is small and benign, surgical resection is relatively 
rare [10] and conservative treatment is usually adopted 
[11], for which no hormone examination is required. 
Therefore, it is necessary to develop a fast, accurate, and 
reliable diagnostic method to improve patient interven-
tion and treatment while minimizing unnecessary testing 
in cases of NAA [12].

Non-invasive computed tomography (CT) can gener-
ate high-resolution images and has become a routine 
examination method. In addition, many features can be 
extracted from CT images for quantitative analysis [13]. 
In oncology, texture analysis is a new tool to help diag-
nose disease [14, 15]. Diagnosis based on machine learn-
ing performs as well as experienced doctors in many 
cases [16, 17]. CT images are assumed to contain valu-
able information that reflects underlying tumor patho-
physiology and quantitative image features (semantic and 
agnostic), and machine learning models can reveal these 
relationships [18]. This approach reduces the workload of 
radiologists and improves the accuracy and efficiency of 
diagnosis [19–21].

Radiomic studies of adrenal adenomas have been car-
ried out. Elmohr et al. [22] conducted texture analysis 
on venous phase CT images and established a binary 
random forest (RF) classification model for benign and 
malignant large adrenal tumors. Moawad et al. [23] 
established a random forest classifier to distinguish 
between benign and malignant uncertain adrenal tumors. 
Daye et al. [24] used the support vector machine (SVM) 
classification model to predict the prognosis of ablation 
patients based on texture features in CT images of adre-
nal metastases before ablation. In the previous studies of 
adrenal adenoma, time-consuming manual segmenta-
tion of the lesion region was usually required. Moreover, 
two-dimensional radiomic features were extracted from 
the largest section, while three-dimensional features that 
can be extracted from a cuboid containing the adrenal 
adenoma region were seldom utilized. To the best of our 
knowledge, differentiation between functioning and non-
functioning subtypes of adrenal adenoma using radiomic 
features and machine learning models has not been 
reported.

The purpose of this study is to establish an accurate 
model to distinguish FAA from NAA using CT radiomic 
features and machine learning methods. This model 
may provide a non-invasive, low-cost, and rapid method 
of adrenal adenoma stratification to help patients with 
NAA avoid unnecessary invasive hormone tests. Our 
study contributes to this goal in three ways. First, a CT 
radiomic model is developed for differentiating function-
ing from non-functioning subtypes of adrenal adenoma 
in a non-invasive, low-cost, and rapid way. Second, the 
tedious step of manual segmentation of adrenal adenoma 
from CT images is replaced by simple cropping of a 
cuboid containing the target adrenal adenoma region to 
extract three-dimensional features. Third, a combination 
of radiomic features obtained from multiple phases of CT 
images improves classification performance.

Materials and methods
Patients and data
Two datasets were collected in this study. Dataset 1 was 
from The First Affiliated Hospital of China Medical Uni-
versity and was used to develop the machine learning 
model. Dataset 2 was from Shengjing Hospital of China 
Medical University and was utilized for external valida-
tion. The Ethics Committee of The First Affiliated Hospi-
tal of China Medical University and Shengjing Hospital 
of China Medical University approved this retrospective 
study, and informed consent was waived.

The experimental subjects were patients who had 
been diagnosed with adrenal adenomas. The data mainly 
included patient clinical records and contrast-enhanced 
CT images. Specifically, the clinical data were the 
patient’s age, gender, examination time, and pathological 
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type. Each CT scan included images of arterial, venous, 
and non-contrast phases. The three-phase CT images 
were used in all cases.

After screening, a total of 289 patients with lesions 
larger than 2 cm were included in Dataset 1. There were 
191 patients with FAA (89 CS, 102 PHA) and 98 with 
NAA. In subsequent experiments, Dataset 1 was ran-
domly divided into training (n = 201; 133 FAA and 68 
NAA) and test (n = 88; 58 FAA and 30 NAA) sets. The 
training and test sets contained different patients to 
ensure that they were independent. In Dataset 2, there 
were 54 patients (30 FAA and 24 NAA). Table  1 sum-
marizes basic patient information and adrenal adenoma 
characteristics.

Figure 1 shows the overall workflow of this study. After 
the acquisition of CT images, the cuboid containing the 
adrenal adenoma region was cut from the CT images of 
the arterial, venous, and non-contrast phases. Next, fea-
ture extraction and selection were conducted. Finally, a 
binary classification model was established to determine 
the final prediction results.

Cuboid cropping
In the process of cuboid cropping, the central point of 
the adrenal adenoma was determined first, and then a 
64*64*32 cuboid was automatically cropped from the CT 
image to ensure that the cuboid completely contained the 
lesion area. In the experiment, the cuboid was cropped 

Fig. 1  Workflow of the experiment, including CT image acquisition, cuboid cropping, feature extraction and selection, and model building and valida-
tion steps
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from the non-contrast, arterial, and venous phase CT 
images and used as the region of interest (ROI). One 
radiologist with 8 years of experience in abdominal imag-
ing cropped the cuboids and another radiologist with 10 
years of experience examined and confirmed the cropped 
results.

Feature extraction
Pyradiomics software [25] was used to extract features 
from the cropped cuboids from the three-phase CT 
images. The extracted features initially included the fol-
lowing seven groups: (a) First Order Features, (b) Shape 
Features, (c) Gray Level Co-occurrence Matrix (GLCM), 
(d) Gray Level Size Zone Matrix (GLSZM), (e) Gray 
Level Run Length Matrix (GLRLM), (f ) Neighboring 
Gray Tone Difference Matrix (NGTDM), and (g) Gray 
Level Dependence Matrix (GLDM). The definitions and 
detailed explanations of all the above texture features can 
be found in the Pyradiomics documentation [26]. Finally, 
a total of 1,967 radiomic features were extracted from 
each ROI.

Feature selection
Feature selection is performed to identify critical and 
discriminative features and reduce over-fitting risk in the 
final prediction model [27]. First, an independent two-
sample t-test was used to calculate whether each feature 
was significantly different between the two subtypes of 
adrenal adenoma. If p < 0.05, the feature was retained. 
Second, the Least Absolute Shrinkage and Selection 
Operator (LASSO) was employed to identify the final dis-
criminative features. LASSO improves both prediction 
accuracy and model interpretability by combining the 
superior qualities of ridge regression and subset selection 
[28] and therefore is commonly used for feature selection 
[29, 30]. LASSO can reduce the coefficient of variables 
(that have little effect on the regression) to 0 during the 
fitting process, hence achieving variable screening and 
complexity adjustment [31, 32].

Only the training set data is used in feature selection. 
By calculating the coefficients of each variable in the 
LASSO, the features of the model can be sorted in order 
of importance from high to low. For every phase of the 
CT images, the top 10 features were used to train the 
subsequent two-category classifiers.

The radiomic features from the three phases of CT 
images were combined to improve the classification 
performance. First, a two-sample t-test was conducted 
for features from each phase. Second, the radiomic fea-
tures that had significant differences were obtained from 
the three phases of CT images and concatenated into a 
vector. Third, LASSO regression was used to calculate 
the coefficients of each feature in the vector. Fourth, the 

features were sorted and the top 10 features were selected 
to build the models.

Machine-learning classification model
Five machine learning algorithms, RF [33, 34], SVM [35, 
36], Logistic Regression [37, 38] (LR) Gradient Boost-
ing Machine (GBM), and eXtreme Gradient Boosting 
(XGBoost), were used to establish two-category classifi-
cation models. For hyperparameter optimization of the 
classification model, grid-search was used for 10-fold 
cross-validation to search for the optimal parameters of 
the model [39].

The models using single-phase CT features, multi-
phase fusion CT features, and radiomic-clinical features 
were trained, tested, and compared. An independent test 
set in Dataset 1 was used to evaluate the performance of 
the model using measures of accuracy (ACC), specific-
ity, sensitivity, and area under the curve (AUC). Receiver 
operating characteristic (ROC) curves were drawn. 
Moreover, models with and without the hyperparam-
eter optimization were also compared. Dataset 2 with 54 
patients served as the external validation to investigate 
the model’s generalization capability.

The machine learning algorithms were completed using 
the open-source Python Scikit-Learn library [40] (Ver-
sion 0.24.1). All experiments were conducted on Pycharm 
(Version 2020.2, Python Version 3.7.9). An independent 
two-sample t-test was used for statistical analysis of the 
age, gender, and location of adrenal adenomas. A p-value 
less than 0.05 indicated significant differences between 
the two independent groups.

Results
Demographic and clinical characteristics
The demographic and clinical characteristics of patients 
with adrenal adenomas in Datasets 1 and 2 are presented 
in Table 1. In Dataset 1, there was a significant age dif-
ference between FAA and NAA patients (p = 0.041). The 
average age of NAA patients was slightly higher than that 
of FAA patients, and no significant gender difference was 
found (p = 0.419). In FAA, 100 patients had lesions on the 
left, 77 on the right, and 14 on both sides. In NAA, 51, 
40, and 7 patients had lesions on the left, right, or both 
sides, respectively. In Dataset 2, there was no significant 
difference in gender or age between the two groups.

Radiomic characteristics
Figure  2 shows the mean square error (MSE) with 
Lambda in the LASSO and the variation of each feature 
coefficient with Lambda. A two-sample t-test showed 
there were 661 features with significant differences, 
including 146, 343, and 172 from the arterial, venous, and 
non-contrast phases, respectively. While MSE reached 
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the minimum value marked in the dotted line in Fig.  2, 
the number of features was reduced to 37.

Using the absolute value of the coefficients, the top 10 
discriminate features in a fusion of the three CT image 
phases are summarized in Table  2. The features (mean 
and standard deviation) from the CT images of the three 
phases selected by LASSO are compared in Fig.  3. It is 
noteworthy that there is a significant difference between 
groups, as shown by a two-sample t-test before LASSO. 
In Table 2; Fig. 3, the last letter in the name of the feature 
indicates which phase the feature is from (A, arterial; V, 
venous; N, non-contrast).

The mean values of SizeZoneNonUniformityNormaliz
ed_A (SZNN), Imc2_V, SZNN_N, and ClusterShade_N 

were greater in FAA than in NAA. By contrast, NAA had 
higher mean values for the other features.

Performance of models using CT features from single 
phases
Figure 4 shows the ROC curve of five classification mod-
els with different machine-learning methods for each 
phase. The AUC of the five models did not change signifi-
cantly when using features from single phases. Specifi-
cally, the AUC range of the five machine learning models 
was 0.69–0.74 for arterial phase features, 0.65–0.72 for 
venous phase features, and 0.70–0.76 for non-contrast 
phase features.

Table  3 describes the performance measures of the 
five machine learning methods using 10 features from 

Table 1  Demographic and clinical characteristics
Measure Dataset 1 (289 patients) Dataset 2 (54 patients)

FAA NAA P value* FAA NAA P value*
Number of patients 191 98 — 30 24 —

Sex (F/M) 104/87 59/39 0.419 16/14 13/11 1.0

Age
(mean/range)
(years)

54.3
(30–76)

57.1
(36–85)

0.041 54.0
(33–74)

56.9
(32–78)

0.382

Lesion side
(R/L/B)

77/100/14 40/51/7 — 15/13/2 10/11/3 —

*A two-sample t-test was used for age comparison between the two groups, and the Chi-square test for gender comparison. F, female; M, male; R, right; L, left; B, 
bilateral.

Fig. 2  Variation of MSE and coefficient of each feature with Lambda in the LASSO. The features were retained when the three phases were combined 
(two-sample t-test)
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the single phases. The highest accuracy was 72.7% in the 
arterial phase, 72.7% in the venous phase, and 76.1% in 
the non-contrast phase. In summary, the mean accu-
racy of the final prediction was less than 80.0% for single 
phases.

Performance of models using combined features from all 
three CT phases
The experiment used a grid-search algorithm to opti-
mize the model’s hyperparameters. As a comparison, we 
first used the models without parameter optimization 
for prediction analysis. Table  4 shows the performance 
measures of the five machine learning models without 
parameter optimization for 10 features in three phases. 
Figure  5(a) shows the ROC curves of the five models. 
The results show that LR yielded the best performance, 
with precision, recall, and accuracy of 76.5%, 74.0%, and 
78.4%, respectively, and the AUC value was 0.78.

Table  5 shows the performance measures of five 
machine learning methods with 10 features in three 
stages following parameter optimization, and Fig.  5(b) 
shows the ROC curves of these models. Among them, 
LR performed best, with precision, recall, accuracy, and 
AUC values of 85.3%, 76.6%, 83.0%, and 0.86, respec-
tively. Parameter optimization improved the accuracy 
and AUC of the models.

Meanwhile, the patients had statistically significant age 
differences, so this clinical information was added to the 
training feature set to train the models and evaluate the 
effect of age. Table 6 shows the test results of the models 
after adding this clinical feature, and Fig. 5(c) shows the 
ROC curve of the five models. The accuracy of the mod-
els did not increase significantly after adding the clinical 
information as a feature, but AUC did increase signifi-
cantly. Among the models, LR still performed best, with 
precision, recall, and accuracy values of 85.3%, 76.6%, 
and 83.0%, respectively, and an AUC of 0.86.

The p-value of the Delong test from the ROC curve 
for the LR models among the four CT image sets (three 
single phases and a combination of the three phases) is 
shown in Fig.  6. For FAA vs. NAA, the AUC of the LR 
model after feature fusion was significantly higher than 
that of the model using only the venous phase features 
(Delong test, p = 0.049). Although the AUC was also 
higher than that of the arterial and non-contrast phase 
models, no significant differences were observed in the 
Delong test (p = 0.11, 0.27, respectively).

Performance using the external validation dataset
In the external validation dataset, the performance of 
the five machine learning models using radiomic-clinical 
features is presented in Table 7. LR achieved the highest 
accuracy of 77.8% (42/54). SVM, RF, GBM, and XGBoost 
yielded accuracies of 77.8% (42/54), 74.1% (40/54), 74.1% 

Table 2  Discriminative features in two-category models
No. Name Definition Comparison
1 gradient_glcm_Imc2_A Distributions 

of i and j 
(quantifying 
the complex-
ity of the 
texture).

NAA ↑

2 log-sigma-1-mm-3D_glszm_
SZNN_A

The measure 
of the vari-
ability of size 
zone volumes 
throughout 
the image.

FAA ↑

3 log-sigma-2-mm-3D_glszm_
LGLZE_V

The measure 
of the 
distribution 
of lower 
gray-level size 
zones.

NAA ↑

4 wavelet-LHH_glrlm_LRE_V The measure 
of the 
distribution 
of long run 
lengths.

NAA ↑

5 wavelet-HLH_glcm_Imc2_V Distributions 
of i and j 
(quantifying 
the complex-
ity of the 
texture).

FAA ↑

6 wavelet-HHL_glszm_SZNN_V The measure 
of the vari-
ability of size 
zone volumes 
throughout 
the image.

NAA ↑

7 exponential_glszm_SZNN_N The measure 
of the vari-
ability of size 
zone volumes 
throughout 
the image.

FAA ↑

8 log-sigma-2-mm-3D_glszm_
SALGLE_N

Distribution 
of smaller size 
zones with 
lower gray 
levels.

NAA ↑

9 logarithm_glcm_ClusterShade_N The measure 
of the skew-
ness and 
uniformity of 
the GLCM.

FAA ↑

10 wavelet-LLH_glcm_MCC_N The Maximal 
Correlation 
Coefficient is 
a measure of 
the complex-
ity of the 
texture.

NAA ↑
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(40/54), and 72.2% (39/54), respectively. Figure  7 shows 
the ROC curve of the five models using the external vali-
dation dataset.

Discussion
In this study, CT radiomic features extracted from CT 
images have been utilized to differentiate between func-
tioning and non-functioning adrenal adenomas using 
machine learning models. Differences in demographic 
and clinical characteristics were observed between the 

Table 3  Prediction performance of five two-category models in 
each phase
Phase Classifier Precision Recall Accuracy AUC
Arterial RF 65.6% 59.8% 69.3% 0.74

LR 69.7% 66.4% 72.7% 0.74
SVM 72.1% 60.7% 71.6% 0.70

GBM 68.3% 64.8% 71.6% 0.74

XGB 61.7% 55.7% 67.0% 0.69

Venous RF 65.2% 61.4% 69.3% 0.67

LR 71.2% 64.0% 72.7% 0.72
SVM 66.7% 65.5% 70.5% 0.67

GBM 61.0% 61.2% 64.8% 0.65

XGB 65.3% 63.9% 69.3% 0.67

Non-contrast RF 71.2% 64.0% 72.7% 0.73

LR 76.3% 68.2% 76.1% 0.76
SVM 76.3% 68.2% 76.1% 0.76

GBM 68.1% 66.4% 71.6% 0.71

XGB 67.4% 61.5% 70.5% 0.70
Bold font indicates the highest accuracy among the five machine learning 
methods.

Table 4  Prediction performance of five models without 
parameter optimization using combined features from all three 
phases in the test set
Classifier Precision Recall Accuracy AUC
RF 69.0% 63.2% 71.6% 0.71

LR 76.5% 74.0% 78.4% 0.78
SVM 77.0% 73.2% 78.4% 0.77

GBM 70.0% 65.6% 72.7% 0.72

XGB 70.0% 65.6% 72.7% 0.71
Bold font indicates the highest accuracy among the five machine learning 
methods.

Fig. 4  ROC curve of two-category models in each phase. (a) Arterial phase; (b) Venous phase; (c) Non-contrast phase

 

Fig. 3  Comparison of features (mean and standard deviation) selected by LASSO from the three CT image phases. It is noteworthy that there is a signifi-
cant difference between groups, as shown by a two-sample t-test before LASSO.

 



Page 8 of 12Qi et al. BMC Cancer          (2023) 23:111 

two groups. Ten discriminative features from three-phase 
CT images were identified and analyzed while differenti-
ating between the two subtypes. The accuracy of the final 
prediction using LR can reach as high as 83.0%.

Clinical significance of differentiating between adrenal 
adenoma subtypes
Adrenal adenomas are common urinary tract tumors. 
For tumor-based diseases, patients and their families are 
concerned about effective treatment, and early diagno-
sis of the disease is of great importance for determining 
the proper method and timing of subsequent treatments 
[41].

FAA and NAA require different follow-up treatments, 
including the type of medication and the need for surgery 
with its attendant risks. There are several difficulties with 

the current methods of clinical diagnosis. Radiologists 
cannot always make an accurate diagnosis directly from 
CT images, which can lead to unnecessary treatment 
[10]. Currently, patients with FAA need to have multiple 
invasive blood tests, often including adrenal venous sam-
pling, to measure hormone levels that serve to guide sur-
geons in resecting the functioning lesion(s). Therefore, 
advanced diagnosis of NAA without invasive blood tests 
could reduce risk and discomfort for patients while sim-
plifying and accelerating testing and treatment.

Using our models described here, the accuracy of dif-
ferentiating FAA from NAA was more than 80%. This 
method can help doctors quickly estimate the type of 
adrenal adenoma, rapidly determine the corresponding 
effective treatment plan, and minimize unnecessary lab 
testing of patients who do not present with hormonal 
imbalance. In addition, this method is completely non-
invasive, simple, and fast. The only material required is 
the patient’s CT images, which are routinely collected in 
the clinic.

Discriminative features between the two subtypes
Most of our patients with FAA and NAA were female, 
which is consistent with the results of previous studies 
showing that the incidence of adrenal adenomas is higher 
in women [5, 42]. In terms of age, FAA typically develops 
earlier in life than NAA, while the average age is over 50 
years, demonstrating that the incidence of adrenal ade-
nomas increases with age [2, 43, 44].

Cluster Shade is a quantity that describes the skew-
ness and uniformity of the GLCM, with higher val-
ues indicating greater asymmetry about the mean. The 
value of Cluster Shade in assessing FAA is higher than 
that for NAA, which indicates NAA has a more uniform 
gray level distribution in CT images. Because of the dif-
ferences in tumor cells that make up FAA, tumor cell 
morphology may be heterogeneous, thus increasing the 
heterogeneity of FAA in histopathology [45, 46].

Table 5  Prediction performance of five models with parameter 
optimization using combined features from all three phases in 
the test set
Classifier Precision Recall Accuracy AUC
RF 76.5% 70.7% 77.3% 0.76

LR 85.3% 76.6% 83.0% 0.86
SVM 79.2% 76.2% 80.7% 0.81

GBM 72.2% 72.2% 75.0% 0.78

XGB 70.9% 70.9% 73.9% 0.73
Bold font indicates the highest accuracy among the five machine learning 
methods.

Table 6  The prediction performance of five models after adding 
a clinical feature to the test set
Classifier Precision Recall Accuracy AUC
RF 76.5% 74.0% 78.4% 0.79

LR 85.3% 76.6% 83.0% 0.86
SVM 79.7% 73.2% 79.5% 0.82

GBM 72.2% 72.2% 75.0% 0.82

XGB 73.7% 71.4% 76.1% 0.79
Bold font indicates the highest accuracy among the five machine learning 
methods.

Fig. 5  ROC curves of models with combined features from all three CT image phases: (a) no parameter optimization; (b) parameter optimization; (c) 
clinical features included
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SZNN is a measure of the variability of size zone vol-
umes throughout the image, with a lower value indicat-
ing more homogeneity among zone size volumes in the 
image. The SZNN feature value for FAA was greater than 
for NAA, and therefore NAA was more homogeneous. 
The etiology of FAA includes extensive adrenal hyper-
plasia, which may show clinical, morphological, and 
molecular heterogeneity [45]. Long Run Emphasis (LRE) 
is a measure of the distribution of long run lengths, with 
a greater value indicative of long run lengths and more 
coarse structural textures. [25]. LRE is higher for NAA 
than FAA, so NAA has a rougher texture. This may cor-
relate with tumor micro-environment heterogeneity [47]. 
Therefore, these key radiomic features can assist in ana-
lyzing the texture characteristics of tumors and evaluat-
ing the symmetry and heterogeneity of tumors.

Model performance after feature fusion
From the experimental results, we have found that 
among the classification models trained after the fusion 
of equivalent features from the three phases, LR had the 
best performance, with an accuracy of 83.0%. Compared 
with the LR models that only used a single-phase fea-
ture, performance improved significantly (arterial phase: 
72.7%, venous phase: 72.7%, and non-contrast phase: 
76.1%). The Delong test [48] confirmed this observa-
tion. Therefore, regardless of the accuracy or AUC of the 
model, fusing features from the three CT image phases to 
train the model is better than using only features from a 
single phase.

Methodological advantages
Table  8 compares our methods with those in previ-
ous studies, where three methodological advantages are 
apparent. First, in our study, we cropped three-dimen-
sional 64*64*32 cuboids containing entire lesions, and 
features were extracted from 3D ROIs in CT images. Our 
method contains more feature information than previous 
studies using features extracted from a single 2D repre-
sentative section of the largest tumor [49]. Daye et al. [24] 
used SVM to predict the prognosis of patients with meta-
static adrenal tumors. However, the ROI was delineated 
only on the largest section of the lesion, while the charac-
teristics of the entire 3D tumor were not considered.

Second, more information about the tumor was 
obtained in our study by fusing features from non-con-
trast-, arterial- and venous-phase CT images. Koo et al. 

Table 7  The prediction performance of five models using the 
external validation dataset
Classifier Precision Recall Accuracy AUC
RF 84.1% 70.8% 74.1% 0.75

LR 85.7% 75.0% 77.8% 0.80
SVM 80.6% 75.8% 77.8% 0.79

GBM 75.0% 72.5% 74.1% 0.79

XGB 74.6% 70.0% 72.2% 0.75
Bold font indicates the highest accuracy among the five machine learning 
methods.

Fig. 6  The Delong test compares the ROC curves of the LR model among four CT image sets (three single phases and a combination of the three phases)
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[50] analyzed the value of 15-minute-delayed contrast-
enhanced CT and chemical shift magnetic resonance 
(CSMR) for identifying adrenal masses and discovered 
that the delay-enhanced images were more effective for 
diagnosing adrenal sebaceous adenoma. In the study of 
Feng et al. [19], feature analysis and selection were per-
formed in three phases of CT images, and the optimal 
feature subset was finally selected for the construction of 
the machine learning classification model.

Third, the model we developed can diagnose both FAA 
and NAA. At the same time, we collected patients’ CT 
data from two hospitals for validation. Previous stud-
ies have primarily focused on the distinction between 
benign and malignant adrenal adenomas [50, 51], while 
few studies have distinguished between functioning and 
non-functioning adrenal adenomas [52]. Additionally, 
there is no relevant research on the automatic differentia-
tion of adrenal adenomas based on CT images.

Limitations and future work
This study has a few limitations. First, although the num-
ber of cases of each subtype was larger than in previous 
studies, the sample size was relatively small, with about 
100 NAA patients. Second, all patients were retrospec-
tively registered from hospitals in the same region, and 
therefore the generalizability of the model is unclear. In 
the future, more data from multiple hospitals in mul-
tiple regions needs to be collected for testing and veri-
fication. Third, the final LR accuracy of the three-phase 

classification is 83.0%. Although it is a satisfactory result, 
the prediction would have been in error for nearly one-
fifth of the patients with adrenal adenoma. We expect 
more high-quality CT images from different hospitals to 
be collected shortly, and advanced deep-learning meth-
ods may further improve the model’s predictive power. 
Additionally, more clinical non-image information can be 
used to optimize the model.

Conclusion
The radiomic features from the lesion region in three-
phase CT images can potentially suggest the functioning 
or non-functioning nature of adrenal adenoma. The dis-
criminative features identified here may help in under-
standing the heterogeneity of adrenal adenoma. The 
resulting radiomic models can be a non-invasive, low-
cost, and rapid method to reduce unnecessary testing in 
asymptomatic patients with incidentally discovered adre-
nal adenoma.

Fig. 7  ROC curve of models using the external validation dataset
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