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Abstract
Background  Magnetic resonance imaging (MRI) performs well in the locoregional assessment of extranodal 
nasal-type NK/T-cell lymphoma (ENKTCL). It’s important to assess the value of multi-modal MRI-based radiomics for 
estimating overall survival (OS) in patients with ENKTCL.

Methods  Patients with ENKTCL in a prospectively cohort were systemically reviewed and all the pretreatment MRI 
were acquisitioned. An unsupervised spectral clustering method was used to identify risk groups of patients and 
radiomic features. A nomogram-revised risk index (NRI) plus MRI radiomics signature (NRI-M) was developed, and 
compared with the NRI.

Results  The 2 distinct type I and II groups of the MRI radiomics signatures were identified. The 5-year OS rates 
between the type I and type II groups were 87.2% versus 67.3% (P = 0.002) in all patients, and 88.8% versus 69.2% 
(P = 0.003) in early-stage patients. The discrimination and calibration of the NRI-M for OS prediction demonstrated a 
better performance than that of either MRI radiomics or NRI, with a mean area under curve (AUC) of 0.748 and 0.717 
for predicting the 5-year OS in all-stages and early-stage patients.

Conclusions  The NRI-M model has good performance for predicting the prognosis of ENKTCL and may help design 
clinical trials and improve clinical decision making.

Keywords  Extranodal nasal-type NK/T-cell lymphoma, Multi-modal magnetic resonance imaging, Radiomics, 
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Background
Extranodal nasal-type NK/T-cell lymphoma (ENKTCL) 
is a rare and aggressive neoplasm frequently seen in 
adults [1–3], usually manifested by involvement of the 
upper aerodigestive tract (UADT), such as the nasal 
cavity and Waldeyer ring [4–6]. ENKTCL is strongly 
associated with Epstein-Barr virus (EBV) infection and 
frequently presents with early-stage disease and pri-
mary tumor invasion (PTI) [4, 5]. Advances in upfront/
early radiotherapy and non-anthracycline-based chemo-
therapy have improved the outcomes for patients with 
ENKTCL. Radiotherapy is the most efficacious modality 
and is an essential component of multidisciplinary man-
agement for early-stage ENKTCL [6–13], whereas aspar-
aginase-based chemotherapy is the primary treatment 
for advanced-stage disease [14–16]. Several risk models 
from large collaborative studies have been developed to 
provide prognostic prediction for ENKTCL [5, 17–19]. 
More recently, the nomogram-revised risk index (NRI) 
[19], derived from the original visual nomogram model 
[5], has been shown to have excellent prognostic ability, 
and be effective in risk-adapted therapy for early-stage 
ENKTCL [7, 8]. However, optimization of risk stratifica-
tion with incorporation of molecular or radiomics bio-
marker into the NRI warrants further investigation.

Radiomics could convert digital medical images into 
high-dimensional mineable data by using machine 
learning algorithm [20], and non-invasively extract the 
imaging features from tumors for the establishment of 
prognostic prediction models [21]. Previous studies have 
demonstrated that radiologic features and bio-imaging 
features derived from computed tomography (CT), mag-
netic resonance imaging (MRI) or positron emission 
tomography (PET) imaging provide the prognosis predic-
tion in cancers [22–24]. MRI is most useful in ENKTCL 
because it provides good soft-tissue resolution of exten-
sion of the primary tumor into surrounding normal tis-
sues and possesses multiplanar capability [25]. To define 
the primary site and PTI accurately, MRI is routinely 
recommended for optimal locoregional assessment for 
patients with ENTKCL, particularly UADT-ENTKCL 
[12, 25]. Thus, multi-feature signatures based on multi-
modal MRI are assessable to investigate huge numbers of 
markers in a high-throughput manner. However, an asso-
ciation of MRI radiomics signature with survival has not 
yet been reported in patients with ENKTCL.

We hypothesized that incorporation of MRI radiomics 
signature into the previously well-established NRI model 
may be more effective and beneficial to predict outcomes 
for ENKTCL patients. In this study, we aimed to evaluate 
the prognostic effect of MRI radiomics in ENKTCL, and 
develop a combined model that integrates radiomics sig-
nature with clinical features for personalized prognostic 
prediction and treatment decision making.

Methods
Eligibility criteria
Patients with previously untreated ENKTCL between 
2010 and 2017 were prospectively collected and systemi-
cally reviewed in a database from the National Cancer 
Center/Cancer Hospital, Chinese Academy of Medical 
Sciences (CAMS) and Peking Union Medical College 
(PUMC), Beijing, China. Eligibility requirements for this 
study were: (1) the typical histological and immunophe-
notypic features based on the World Health Organization 
classification; (2) primary tumor evaluable assessment by 
complete MRI scans with T1 weighted imaging (T1WI), 
fat-suppressed T2 weighted imaging (T2WI), dynamic 
contrast-enhanced T1-weighted imaging (DCEI) and 
diffusion-weighted imaging (DWI); (3) a comprehensive 
pretreatment staging evaluation; (4) patients primarily 
treated with non-anthracycline-based chemotherapy and 
modern radiotherapy. A total of 176 patients satisfied the 
eligible criteria were included in this study (Fig. 1). Our 
institutional ethics review board approved this study and 
patients signed the informed consent.

MRI acquisition
All patients underwent T1 weighted, fat-suppressed T2 
weighted, diffusion-weighted sequences and contrast-
enhanced T1-weighted images. There are 4 MRI scanners 
used in our study. The MRI was performed using 3.0-T 
unit scanners (Discovery MR 750, GE Healthcare, Mil-
waukee, Wisconsin, USA) with eight-channel head and 
neck coil. The region from the top of the skull to the tho-
racic inlet was examined. Conventional sequences with-
out enhancement were acquired with fast recovery of 
spin echo sequence, section thickness of 5 mm, intersec-
tion gap of 1 mm. Transverse T1WI was obtained with a 
repetition time (TR) of 660.0 ms, echo time (TE) of 9.3 
ms. Transverse fat-suppressed T2WI was obtained with 
a TR of 5760.0 ms, TE of 88.3 ms. Contrast-enhanced 
T1WI were obtained with three-dimensional spoiled gra-
dient recalled echo sequence after bolus injection of 0.2 
ml/kg gadopentetate dimeglumine at 2ml/s. DWI was 
obtained with fast reverse recovery plane echo imaging 
sequence with a TR of 4500.0ms, TE of 89.0 ms, section 
thickness of 5 mm, intersection gap of 1 mm, field of view 
(FOV) of 24 cm×24 cm, matrix of 256 × 256, and 2 b-val-
ues (800 and 1000  s/mm2). On all slices, T1WI, T2WI, 
DWI and DCEI were exported as Digital Imaging and 
Communication in Medicine files. The tumor boundary 
was contoured and validated by two radiologists inde-
pendently, while disagreements were further verified by 
a senior expert.

Extraction of radiomics features
To normalize different image specifications due 
to the utilization of different MRI scanners, MRI 
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signal-intensity normalization was performed. The 
Marching Cube (MC) algorithm was performed in our 
study, which is a voxel-level reconstruction method. We 
reconstructed two-dimensional data to three-dimen-
sional data using this algorithm. The basic principle of 
the MC algorithm is to construct iso-surface in the three-
dimensional data field. The voxel of the value surface is 
obtained, and the relevant parameters are calculated. The 
algorithm has a fast calculation speed and a high quality 
of the reconstructed image. The region of interest (ROI) 
was automatically extracted from T1WI, T2WI, DWI 
and DCEI. The AIMED was used for the feature extrac-
tion process (https://www.blothealth.com). For spatial 
resampling, three-dimensional reconstruction was per-
formed, and ROI images were resampled to a voxel size 
of 1 × 1 × 1  mm, which could correct the pixel-spacing 
difference and restore the tumor volume. For intensity 
rescaling, the dcm data was read, and normalized with 
the means and standard deviations at pixel level. This 
step can reduce the difference between different data sets 
caused by equipment and make the model better fit to 
different data sets. The intensity was not discretized for 
the feature extraction process. A total of 3144 radiomics 
features were extracted from three-dimensional tumor 
volumes, with 540 histogram of oriented gradient fea-
tures, 42 texture features, 48 wavelet features and 156 
statistical features in each sequence. Normalization was 
also applied to the features for the sake of comparison, 
which was defined as follows:

	
x∗ =

x − σ

µ
� (1)

Selection and signature building of radiomics features
To build a realistic radiomics signature, the t-test (two-
sided, alpha = 0.05) was used to remove the invalid 
features. Based on the selected features, a radiomics sig-
nature was developed using spectral clustering method. 
Spectral clustering is an unsupervised machine learning 
method based on data similarity matrix. It defines the 
optimization objective function of subgraph division, and 
makes improvements, introduces indicator variables, and 
transforms the division problem into solving the optimal 
indicator variable matrix H. Then, using the properties 
of Rayleigh entropy, the problem is further transformed 
into solving the k minimum eigenvalues of the Lapla-
cian matrix. Finally, H is used as a certain expression of 
the sample, and clustering is performed using traditional 
clustering methods.

Survival analysis was performed based on the results of 
spectral clustering analysis. The workflow of radiomics 
signature analysis is shown in Fig. 2.

Development and evaluation of combined prognostic 
model
As described previously19, the risk factors in the NRI 
included age > 60 years, Eastern Cooperative Oncology 
Group (ECOG) score ≥ 2, elevated lactate dehydrogenase 
(LDH), PTI, stage II, and stage III/IV. The NRI strati-
fied patients into low-risk (0), intermediate-low-risk (1), 
intermediate-high-risk (2), high-risk (3), and very high-
risk (≥ 4) groups. After exclusion of stage III/IV disease, 

Fig. 1  Patient selection flowchart
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the early-stage adjusted NRI (ES-NRI) stratified into low-
risk (0), intermediate-low-risk (1), intermediate-high-risk 
(2), and high-risk (≥ 3) groups.

A combined clinic-radiomics model, NRI plus MRI 
radiomics (NRI-M), was developed. The discrimination 
and calibration performance were evaluated by time-
dependent receiver operating characteristic (tROC), cor-
responding area under curve (tAUC), Harrell’s C-index, 
calibration graph, cumulative prediction error, and inte-
grated Brier score (IBS). Bootstrap method was used for 
internal verification.

Endpoints and statistics
The primary endpoint was overall survival (OS), defined 
as the time from the start of treatment to death from any 
cause or to the last follow-up. Progression-free survival 
(PFS) was defined as the time from the start of treat-
ment to disease progression, relapse, or death. Survivals 
were estimated by the Kaplan-Meier method and com-
pared with log-rank tests. The univariable and multivari-
able analyses were used with Cox proportional hazards 
regression. The categorical variables between groups 
were compared by using χ2 test.

Predicted survival probabilities by applying the 
radiomics signature and NRI-M to the baseline survival 
estimate at the individual level, and averaging across each 
risk group. Then the predicted survival is compared with 
the Kaplan-Meier observed survival. The tROC, tAUC 
and Harrell’s C-index were used to evaluate model dis-
crimination. The tROC and tAUC compute the sensitivity 
(true-positive rate) against one minus specificity (false-
positive rate) for consecutive cutoffs for the predicted 
risk and over time. The cumulative prediction errors or 

IBS was used to evaluate prediction accuracy over time, 
with inverse of the probability of censoring weights 
(IPCW) to account for censoring, cross-validation used 
to avoid overfitting. ROI segmentation, MRI normaliza-
tion, feature extraction and selection, and model con-
struction were performed using AIMED version 1.7.5 
(https://www.blothealth.com). Statistical analyses were 
performed using IBM SPSS Statistics, Version 24.0, and 
packages of “survival”, “survminer”, “timeROC”, “dynpred”, 
“rms”, and “pec” in R version 3.6.2 (http://www.r-project.
org/).

Results
Patients’ characteristics and survival
The clinical characteristics are shown in Table  1. All 
patients had primary disease in the UADT sites. The 
male-to-female ratio was 2.7:1. The median age was 46 
years (range, 6–85). The majority of patients originated 
from the nasal cavity (80.1%), presented with early-stage 
disease (94.3%), and had PTI (71.6%) and good perfor-
mance status (ECOG score 0–1; 94.3%). With a median 
follow-up time of 50 months for surviving patients, the 
5-year OS and PFS rates were 74.9% and 64.9% for all 
patients, and 76.8% and 67.9% for early-stage patients.

Risk-stratified subgroups by radiomics signatures
A total of 777 features with statistical significance 
(P < 0.05) were preliminarily selected from the 3144 
radiomics features in the whole group. A radiomics sig-
nature was further constructed based on the spectrum 
cluster analysis of unsupervised learning. The heat map 
of cluster analysis showed the final classification results 
(Fig.  3A, Supplementary Tables  1, Supplementary 

Fig. 2  Workflow of necessary steps in the radiomics signature analysis. The ROI in each transverse section was segmented on T1-weighted, T2-weighted, 
diffusion-weighted and dynamic contrast-enhanced magnetic resonance images. After three-dimensional reconstruction of the ROI, features were ex-
tracted, and selected via t-test. Based on the selected features, a radiomics signature was developed using the spectral clustering method. The perfor-
mance of the radiomics signature was evaluated with discrimination and calibration. ROI, region of interest; HOG, histogram of oriented gradient

 

https://www.blothealth.com
http://www.r-project.org/
http://www.r-project.org/


Page 5 of 11Zhao et al. BMC Cancer           (2023) 23:88 

Table  2). In type I group, 1-528 and 641–705 are dark 
green, with low eigenvalues, and 529–640 and 706–777 
are red, yellow, and light green, with high eigenvalues. 
In type II group, 1-528 and 641–705 are red, yellow, and 
light green, with high eigenvalues, and 529–640 and 706–
777 are dark green, with low eigenvalues.

Patients with type II had significantly higher adverse 
prognostic factors, including B symptoms, ECOG 
score ≥ 2, elevated LDH, advanced-stage disease and PTI, 
than those with type I (Table 1). The 5-year OS was 87.2% 
in type I, significantly higher than 67.3% in type II (Haz-
ard Ratio [HR] 3.12, 95% CI 1.45–6.72; P = 0.002; Fig. 3B). 
Similar results between type I and II were observed in 
early-stage patients (88.8% vs. 69.2%; HR 3.17, 95% CI 
1.39–7.22; P = 0.003; Fig. 3C).

Validation of risk-stratified groups based on MRI radiomics 
classifier
The AUC and Harrell’s C index of MRI radiomics classi-
fier for predicting 5-year OS were 0.664 and 0.623 (95% 
CI: 0.566–0.681) for all patients, and 0.667 and 0.622 
(95% CI: 0.559–0.686) for early-stage patients, respec-
tively. The 5-year OS predicted by MRI radiomics clas-
sifier was 87.8% for type I and 66.7% for type II in the 
whole group, and 88.9% for type I and 69.0% for type II 
in the early-stage group. The predicted OS was compa-
rable to the observed OS (Table 2). The calibration curve 
for the probability of 5-year OS showed good correla-
tion between the actual observation and the radiomics 

signature prediction in the whole group and early-stage 
patients.

Construction and validation of NRI-M model
The NRI-M model integrates MRI radiomics classifier 
into the NRI-defined clinical prognostic factors [19], 
and assigns one point-each to the type II MRI radiomics. 
Based on the NRI-M, the 5-year OS rates in the entire 
cohort were 90.5% for low-risk, 80.8% for intermediate-
low-risk, 69.6% for intermediate-high-risk, 63.4% for 
high-risk, and 22.7% for very high-risk groups (P < 0.001, 
Fig.  4A). The corresponding OS rates in early-stage 
patients were 90.5% for low-risk, 80.8% for intermediate-
low-risk, 71.5% for intermediate-high-risk, and 54.8% for 
high-risk group, respectively (P < 0.001, Fig. 4B).

The 5-year OS rates predicted by the NRI-M for the 
whole group in the low-, intermediate-low-, intermedi-
ate-high-, high-, and very high-risk groups were 90.9%, 
83.5%, 70.9%, 52.0%, and 28.8%, respectively. The pre-
dicted 5-year OS for early-stage patients in the low-, 
intermediate-low-, intermediate-high-, and high-risk 
groups was 90.4%, 82.9%, 70.8%, and 52.8%, respectively 
(Table  2). The calibration plot for the probability of 
5-year OS showed a good correlation between the actual 
observed outcome and the prediction by the NRI-M for 
all-stages (Fig. 4C) and early-stage patients (Fig. 4D).

Evaluation of NRI-M Model
The NRI-M model was evaluated by predictive accuracy, 
discrimination and predictive error. Compared with the 

Table 1  Patient characteristics stratified by the MRI radiomics signature in patients with all-stages and early-stage ENKTCL.
MRI radiomics signature

Total Type I Type II
Characteristic No. (%) No. (%) No. (%) P
All Stages (n = 176) 176 65 111

Gender, male 128 (72.7) 46 (70.8) 82 (73.9) 0.655

Age, > 60 years 26 (14.8) 10 (15.4) 16 (14.4) 0.861

B symptoms 82 (46.6) 22 (33.8) 60 (54.1) 0.009

ECOG score ≥ 2 10 (5.7) 1 (1.5) 9 (8.1) 0.094

Stage I–II 166 (94.3) 63 (96.9) 103 (92.8) < 0.001

PTI 126 (71.6) 23 (35.4) 103 (92.8) < 0.001

Elevated LDH 46 (26.1) 9 (13.8) 37 (33.3) 0.005

Primary site, nasal cavity 141 (80.1) 58 (89.2) 83 (74.8) 0.020

Stage I–II (n = 166) 166 63 103

Gender, male 121 (72.9) 45 (71.4) 76 (73.8) 0.740

Age, > 60 years 25 (15.1) 10 (15.9) 15 (14.6) 0.819

B symptoms 77 (46.4) 21 (33.3) 56 (54.4) 0.008

ECOG score ≥ 2 10 (6.0) 1 (1.6) 9 (8.7) 0.091

Stage II 65 (39.2) 3 (4.8) 62 (60.2) < 0.001

Elevated LDH 43 (25.9) 9 (14.3) 34 (33.0) 0.008

PTI 116 (69.9) 21 (33.3) 95 (92.2) < 0.001

Primary site, nasal cavity 134 (80.7) 56 (88.9) 78 (75.7) 0.037
Abbreviations: ENKTCL extranodal nasal-type NK/T-cell lymphoma, MRI magnetic resonance imaging, ECOG Eastern Cooperative Oncology Group, LDH lactate 
dehydrogenase, PTI primary tumor invasion.
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Table 2  The observed and predicted 5-year OS of the MRI-based radiomics signature and NRI-M in patients with all-stages and early-
stage ENKTCL.
Risk group No. (%) Observed

5-year OS (%)
P Predicted

5-year OS (%)
All Stages (n = 176)
MRI radiomics signature 0.002

Type I (Favorable) 65 (36.9) 87.2 87.8

Type II (Unfavorable) 111 (63.1) 67.3 66.7

NRI-M < 0.001

Low-risk (0–1) 53 (30.1) 90.5 90.9

Intermediate-low-risk (2) 37 (21.0) 80.8 83.5

Intermediate-high-risk (3) 47 (26.7) 69.6 70.9

High-risk (4) 28 (15.9) 63.4 52.0

Very high-risk (≥ 5) 11 (6.3) 22.7 28.8

Stage I–II (n = 166)
MRI radiomics signature 0.004

Type I (Favorable) 63 (38.0) 88.8 88.9

Type II (Unfavorable) 103 (62.0) 69.2 69.0

NRI-M < 0.001

Low-risk (0–1) 53 (31.9) 90.5 90.4

Intermediate-low-risk (2) 37 (22.3) 80.8 82.9

Intermediate-high-risk (3) 45 (27.1) 71.5 70.8

High-risk (≥ 4) 31 (18.7) 54.8 52.8
Abbreviations: OS overall survival, MRI magnetic resonance imaging, NRI nomogram-revised risk index, NRI-M MRI radiomics-based NRI, ENKTCL extranodal nasal-
type NK/T-cell lymphoma

Fig. 3  MRI-based radiomics signature and survival after classification. A heatmap generated by unsupervised spectral clustering of extracted radiomic 
features, applied to stratify patients into type I and type II; B the overall survival (OS) curve for all patients; C the OS curve for early-stage patients. HR, 
hazard ratio
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NRI and the MRI radiomics classifier, the NRI-M model 
had better levels of accuracy for predicting OS. The AUC 
of NRI-M for predicting 5-year OS (0.748, 95%CI 0.654–
0.842) for all patients was higher than that of the NRI 
(0.736, 95%CI 0.641–0.832) or the MRI radiomics classi-
fier (0.664, 95%CI 0.575–0.752; P = 0.013, Fig. 5A). Simi-
larly, for early-stage patients, the AUC of NRI-M (0.717, 
95%CI 0.616–0.819) for predicting 5-year OS was higher 
than that of the NRI (0.699, 95%CI 0.597–0.802) or 
radiomics classifier (0.667, 95%CI 0.577–0.758; Fig.  5B). 
Moreover, the tAUC of the NRI-M model between 12 
and 84 months was consistently higher than the MRI 
radiomics classifier and the NRI model in the whole 
group (Fig. 5C) and in the early-stage patients (Fig. 5D). 
Moreover, the Harrell’s C-index of the NRI-M of the 
whole group (0.740, 95%CI: 0.667–0.814) and early-stage 
patients (0.729, 95%CI: 0.649–0.810) was higher than that 
of the NRI (0.737, 95%CI: 0.664–0.810; 0.727, 95% CI: 
0.648–0.807) and MRI radiomics classifier (0.623, 95%CI: 
0.566–0.681; 0.622, 95%CI: 0.559–0.686).

The performance of NRI-M model was assessed by 
calculating prediction error over time in the entire and 
early-stage patients. In the whole group, the NRI-M IBS 
(0.142) of the 5-year OS was lower than that of the NRI 
(0.144) and MRI radiomics classifier (0.156). Similarly, 
in the early-stage patients, the IBS (0.140) of the NRI-M 
was also lower than that of the NRI (0.142) and the MRI 
radiomics classifier (0.146). The corresponding predic-
tion error curves of all models were shown in the whole 
group (Fig.  5E) and early-stage patients (Fig.  5F). The 
results suggest that the NRI-M have better discrimina-
tion and accuracy for all-stages and early-stage patients.

Discussion
Because of the disease rarity and heterogeneity of 
ENKTCL, any attempt to establish a clinic-biologic prog-
nostic model is challenging. To our knowledge, this is the 
first study to demonstrate the prognostic effect of MRI 
radiomics signature in ENKTCL and validate the NRI-M 
model that incorporates MRI radiomics signature and 

Fig. 4  Construction and validation of the NRI-M model. The NRI-M model was developed with integration of MRI radiomics classifier into the NRI. A the 
overall survival (OS) after stratification by the NRI-M for all patients; B the OS after stratification by the NRI-M for early-stage patients; C the calibration curve 
of the NRI-M for all patients; D the calibration curve of the NRI-M for early-stage patients. MRI, magnetic resonance imaging; NRI, nomogram-revised risk 
index; NRI-M, NRI plus multi-modal MRI radiomics signature; AUC, area under the curve
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Fig. 5  Comparison and evaluation of NRI-M model by predictive accuracy, discrimination and predictive error. A the ROC curve of NRI-M, NRI and MRI-
Radiomics for all patients; B the ROC curve of NRI-M, NRI and MRI-Radiomics for early-stage patients. C the tAUC curve for all patients; D the tAUC curve 
for early-stage patients; E the prediction error curve for all patients; F the prediction error curve for early-stage patients. MRI, magnetic resonance imaging; 
NRI, nomogram-revised risk index; NRI-M, NRI plus multi-modal MRI radiomics signature; ROC, receiver operating characteristic; tAUC, time-dependent 
area under curve
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NRI-defined clinical factors for risk stratification under 
the current treatment strategies. Patients with type II 
classifier tended to have more adverse clinical features 
and unfavorable prognosis than those with type I. The 
NRI-M was validated as a useful tool to predict survival 
and stratify ENKTCL patients. Comparison of the mod-
els’ performance showed that the NRI-M was superior 
to the original NRI or MRI radiomics classifier in terms 
of discrimination, predictive accuracy, and clinical deci-
sion guidance in the all-stages or early-stage cohort. The 
results suggested that NRI-M has a good prognostic and 
predictive ability and provides the basis for clinical trial 
design and clinical decision-making improvement.

Continuous optimization of risk stratification is impor-
tant for the treatment decision-making and improve-
ment of prognosis in ENKTCL [5, 17–19]. Non-invasive 
functional imaging such as MRI or PET, routinely used 
in ENKTCL, plays an important role in the diagno-
sis, treatment guidance, and monitoring and can fur-
ther evaluate the biological characteristics of the tumor. 
Given traditional image interpretation is often subjec-
tive or qualitative, MRI-based radiomics analysis has 
become important to quantitatively investigate the asso-
ciation between medical imaging signature and clini-
cal endpoints. The MRI-based radiomics classifier in 
this study yielded a significant association with OS and 
clinical features and exhibited good performance in pre-
dicting OS in both the entire and early-stage cohorts of 
ENKTCL patients. Compared with patients with type 
I, patients with type II MRI radiomics had significantly 
higher adverse prognostic factors such as B symptoms, 
advanced-stage, elevated LDH, PTI, poor performance 
status, and primary extra-UADT sites, clearly indicating 
aggressive biological behavior with a greater probability 
of progression or relapse.

The easy-to-use NRI model with incorporation of 
clinical prognostic factors was initially introduced by 
the China Lymphoma Collaborative Group (CLCG) to 
stratify patients with all-stages or early-stage ENKTCL 
[5, 19], and to better guide treatment decision and sur-
veillance for early-stage disease [5, 14, 26]. Risk- and 
response-adapted therapy, involving radiotherapy with or 
without chemotherapy for low-risk groups and upfront/
early radiotherapy and non-anthracycline-based chemo-
therapy (radiotherapy followed by chemotherapy or ≤3 
cycles of brief chemotherapy followed by radiotherapy) 
for intermediate- and high-risk groups, is a viable and 
effective strategy for early-stage ENKTCL [14]. Another 
prognostic model with integration of blood circulat-
ing EBV-DNA estimated the survival of patients with 
ENKTCL in the modern chemotherapy era [18, 27]. 
Although several molecular biomarkers have been asso-
ciated with risk of disease mortality [28–30], a clinical-
radiomics model that could be used for risk-adapted 

treatment approaches has not been specifically addressed 
in ENKTCL. In this study, we further verified that the 
NRI-M incorporating MRI-based radiomics signature 
into the NRI is a powerful predictor for OS, establish-
ing five prognostic groups. The NRI-M model showed an 
overall superior predictive capacity and better utility for 
clinical decision-making than either NRI or MRI-based 
radiomics classifier alone. Low-risk patients with 0–1 risk 
factors in the NRI-M generally have favorable prognoses 
with 5-year OS rate of approximately 90%. Intermediate-
risk patients with 2–3 risk factors have unfavorable prog-
noses with the 5-year OS of 70–81%. However, high- and 
very high-risk patients with ≥ 4 risk factors have worse 
outcomes, leading to a 5-year OS of 20–60%. The NRI-M 
can help identify high-risk or very high-risk disease 
upfront and enable innovative systematic therapy. In con-
trast, the identification of low-risk patients with favor-
able prognosis is equally important as such patients could 
be considered for de-escalated systematic therapy in the 
setting of curative radiotherapy. In addition, interme-
diate-risk early-stage patients would benefit from more 
effective systematic therapy when combined with radio-
therapy [11].

The strengths of this study include the normalization 
of MRI signal-intensity and radiomics features, unsu-
pervised clustering, combination of clinical factors and 
radiomics signature, and current standard treatment. 
First, the data were obtained from high-quality medical 
imaging, and normalization was applied to build a real-
istic radiomics signature. To obtain objective and reliable 
data and eliminate useless features, MRI feature selec-
tion was performed before clustering, and then an unsu-
pervised spectral clustering method was used to stratify 
patients with ENKTCL. The unsupervised clustering has 
provided better stability in patient stratification and pre-
diction than conventional radiomics feature extraction 
techniques [24]. Second, we believe that the results of this 
exploratory research to build the radiomics signature and 
prognostic model have combined clinical factors with 
radiomics signature for patients with ENKTCL to address 
the gap in knowledge. Pretreatment risk stratification 
using radiomics data could provide beneficial informa-
tion to physicians that would enable them to deliver 
treatment tailored to each patient’s individual risk, with-
out further radiation exposure. Moreover, the patients 
primarily treated with current standard treatment strate-
gies improved the reliability of the conclusions.

The study limitations include the lack of external vali-
dation, other biological data and genomic variables, the 
analysis of different delineation algorithms, and the com-
parison of feature selection algorithms. First, we only 
conducted internal verification. Expansion of recent data 
of our institution or external institution for further analy-
sis could evaluate the NRI-M model more accurately. 
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Second, genomic or molecular biomarker information 
such as EBV-DNA is not included [30]. However, the 
NRI-M has shown the advantages of combining clini-
cal factors with omics, providing a basis for integrating 
a more comprehensive clinicopathology and multi-omics 
risk model in the future [28–30]. Third, manual segmen-
tations were performed in this study. Compared with 
semi-automatic segmentation, it is time-consuming and 
not always feasible on large datasets. Manual segmenta-
tion by different people does have certain subjectivity. 
However, as reported in a study [31]: “Radiologists can 
flexibly inhibit targets manually resulting in highly accu-
rate segmentations”. Further comparisons can be made 
by comparing manual and semi-automatic segmentation 
to see how much change will occur in the final results. 
Finally, the well-established feature selection algorithms, 
such as the LASSO and hybrid methods [32, 33], were 
not compared in this study. The comparison of these 
algorithms will show a number of interesting and use-
ful results and suggests promising directions for future 
research in this area. The matRadiomics, a novel and 
complete radiomics framework, may simplify and opti-
mize the whole comparison process [34].

Conclusions
In summary, the NRI-M model shows better prognos-
tic discrimination and stratification than either MRI 
radiomics signature or NRI alone. It facilitates the estab-
lishment of a more comprehensive clinic-biologic risk 
model and the design of prospective clinical studies in 
patients with ENKTCL.
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