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Abstract 

Background  Conventional differential expression (DE) testing compares the grouped mean value of tumour sam‑
ples to the grouped mean value of the normal samples, and may miss out dysregulated genes in small subgroup of 
patients. This is especially so for highly heterogeneous cancer like Hepatocellular Carcinoma (HCC).

Methods  Using multi-region sampled RNA-seq data of 90 patients, we performed patient-specific differential expres‑
sion testing, together with the patients’ matched adjacent normal samples.

Results  Comparing the results from conventional DE analysis and patient-specific DE analyses, we show that the 
conventional DE analysis omits some genes due to high inter-individual variability present in both tumour and normal 
tissues. Dysregulated genes shared in small subgroup of patients were useful in stratifying patients, and presented 
differential prognosis. We also showed that the target genes of some of the current targeted agents used in HCC 
exhibited highly individualistic dysregulation pattern, which may explain the poor response rate.

Discussion/conclusion  Our results highlight the importance of identifying patient-specific DE genes, with its poten‑
tial to provide clinically valuable insights into patient subgroups for applications in precision medicine.
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Background
Hepatocellular carcinoma (HCC) is the most domi-
nant type of primary liver cancer and is one of the most 
important causes of cancer-related deaths globally [1]. 
HCC is an intricately complicated disease with aetiolo-
gies that include chronic viral hepatitis B/C, chronic 
cirrhosis from any cause, non-alcoholic fatty liver 
diseases, genetic dispositions, toxin exposures, and 
autoimmune liver diseases. The combination of these 
elements results in variations of the disease that have 
distinct molecular profiles across patients [2]. The use 
of systemic monotherapies in such a heterogenous can-
cer has shown limited efficacy; first line drugs such as 
Sorafenib and Lenvatinib have best overall response 
rates (BORR) of less than 20% [3], while the combina-
tion therapy atezolizumab and bevacizumab has mar-
ginally better BORR of 30% for patients with advanced 
HCC [4]. One of the challenges in developing therapies 
for HCC patients has lain in the diversity of the tumour.

Tumour diversity extends from the heterogeneity 
observed between patients (inter-individual heteroge-
neity) to the heterogeneity within tumours of individual 
patients (intra-tumoural heterogeneity). The challenge 
posed by cancer heterogeneity has prompted the adop-
tion of a multi-region sampling approach in several 
cancer studies [5, 6], including the prospective PLANet 
study which focused on elucidating intra-tumoural 
heterogeneity in HCC (NCT03267641). Genomics and 
immunomics analyses of multi-region tumour sampling 
have yielded new insights into both tumour heteroge-
neity and tumour evolution [7].

Much of cancer subtyping has currently been done 
based on phenotypic differences that arise from the 
inter-individual heterogeneity. Subtyping often involves 
identifying key genetic signatures or protein markers 
that can group patients based on the molecular profiles 
of their tumour tissues. Different molecular markers 
have been used to define tumour subtypes, such as the 
presence of surface markers or proteins [8], different 
immune cell population [9], or the expression level of 
selected marker genes [10]. The conventional approach 
in cancer subtyping and in broad cancer studies using 
RNA-seq typically involves identifying differentially 
expressed (DE) genes in the tumour tissues compared 
to the normal tissues. Many well-established statisti-
cal methods are available [11, 12] and their general 
approach is to fit a linear model for each gene and per-
form a statistical testing to select genes with distinct 
separation between the tumour and normal samples. 
These approaches successfully identify genes differ-
entially expressed across the cohort, but they may be 
less effective in detecting dysregulation in individual 
patients’ tumour. While outlier detection methods are 

sometimes used to identify genes with unusual expres-
sion in a subset of patients [13], individual patients are 
rarely the focus of analysis. This is often a necessity, 
as most studies are limited to a single tumour sample 
and a single normal sample per patient, or only include 
a subset of the patients’ normal tissues under the 
assumption that the adjacent normal tissues would be 
similar between patients.

In this study, our aim was to perform differential 
expression analysis per patient, to first identify dys-
regulated genes in each patient then identifying dys-
regulated genes in a subgroup of patients. We used the 
multi-region sampling data from the PLANet study 
(NCT03267641) to perform patient-level transcriptomic 
analysis by treating the multi-region samples as biologi-
cal replicates. The PLANet is a prospective cohort of 
patients with surgically resected HCC from which mul-
tiple samples were obtained from individual tumours 
as previously described [7, 14]. In addition to the previ-
ously published dataset which included 44 patients [14], 
we also report additional dataset from 46 patients that 
were collected and processed using the same pipeline. 
We hypothesized that per-patient analyses applied to all 
patients would identify more dysregulated genes in total 
than all-patients analysis, and that those genes unique 
to the per-patient analyses would highlight the inherent 
differences among patients. We compared conventional 
DE analysis, patient-specific analysis and downstream 
aggregation of patient-specific differential expression, 
revealing subgroup-specific DE genes that elude conven-
tional analysis. The subgroup-specific genes were then 
used to stratify patients into subgroups with differential 
prognosis. Patient-specific transcriptional dysregula-
tion identified from multi-region tumour sequencing has 
the potential to provide clinically valuable insights into 
patient subgroups for applications in precision medicine.

Materials and methods
Patient recruitment and sample preparation
Our dataset includes 90 anonymized patients with 344 
tumour samples and 90 normal samples obtained from 
the ongoing PLANet cohort study (NCT03267641) 
(Additional file  1). The multi-region tumour samples 
were obtained from surgically resected liver tumour by 
harvesting a single slice through the capsule along one 
axis of the tumor and the normal sample were obtained 
from the adjacent normal liver tissue (≥ 2 cm away) from 
the tumor, as described in [7]. This prospective cohort is 
deeply phenotyped and does not harbour any treatment 
prior to resection. Material from each patient contains at 
least 2 tumour samples and 1 normal sample. All patients 
had HCC confirmed by histology and full clinical trajec-
tory for recurrence analysis.
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RNA‑seq data
All samples were prepared following the same proto-
cols as described in [7]. RNA-seq data was mapped to 
hg38 genome build [15] and GENCODE annotation [16] 
using STAR pipeline and the raw read counts quantified 
using RSEM were normalized using DESeq2 along with 
log2 transformation as described in [7]. RNA-seq data 
for Fig.  1G and RNA-seq data for gene count heatmap 
visualization in Fig. 2A and Fig. 2B were vst-normalized. 
RNA-seq data used for multi-layer perceptron (MLP) 
classification was Trimmed Mean of M-values (TMM) 
counts-per-million (CPM)-log normalization using the 
edgeR R package.

Differential gene expression analysis
Differential gene expression analysis was performed using 
the DESeq2 R package [12], and the genes were filtered for 
at least 1 count in 30% of the samples. For all-patients analy-
sis, the model matrix design included both the sample type 
(tumour vs normal) as well as the patient ID. For per-patient 
analysis, the model matrix design consisted of only the type 
of sample. Log-fold change shrinkage for both all-patients 
and per-patient analysis was formulated with the apeglm 
package. The model matrix design for the differential expres-
sion analysis between patients in PG0 and PG1 consists 
of the patient groups, interaction variable between patient 
group and nested patient, and interaction variable between 
patient group and sample type. Log-fold change shrinkage 
was obtained using the ashr package. Default parameters 
were used for the DESeq2. Genes were considered as differ-
entially expressed if the adjusted p-value is less than 0.05 and 
the absolute value of log2FoldChange is more than 1.

Gene set enrichment analysis with MSigDB gene sets
Gene set enrichment analysis was performed using the 
hypergeometric test with R base package. Gene sets were 
downloaded from MSigDB (REACTOME and CPG) v7.4. 
Gene sets were considered enriched if the false-discov-
ery-rate value was less than 0.05.

Co‑clustering & survival analysis
Co-clustering was performed using the blockcluster R 
package [17]. Survival analysis was performed using the 
survival and survminer R packages [18, 19]. All survival 

analysis p-values were obtained with the modified Peto-
Peto test. Disease-free survival analysis was done using 
recurrence-free survival days in our dataset, while pro-
gression-free interval (PFI) days were used for TCGA 
dataset, as recommended by TCGA guidelines.

Statistical testing
Association between PGs and clinical variables were 
performed using fisher’s exact or chi-squared independ-
ence tests for categorical variables and two-sided Wil-
coxon tests for continuous variables. All other statistical 
tests between two groups were one-sided Wilcoxon tests 
unless stated otherwise.

TCGA‑LIHC RNA‑seq data
The Cancer Genome Atlas-Liver Hepatocellular Car-
cinoma (TCGA-LIHC) data was downloaded using 
the TCGAbiolinks R package [20]. The RNA-seq data 
obtained was the HTSeq counts. Clinical variables were 
downloaded from the TCGA browser.

Data visualization
Data visualization was done using the following R pack-
ages: ggplot2 [21], gridExtra [22], cowplot [23], pheatmap 
[24], ggsignif [25], and ggpubr [26].

R & Python packages and libraries versions
All the analyses in R were performed using R version 
4.0.3. The R packages used were DESeq2 version 1.32.0, 
edgeR version 3.32.0, blockcluster version 4.5.0, survival 
version 3.2.7, survminer version 0.4.8, TCGAbiolinks 
version 2.18.0, ggplot2 version 3.3.2, gridExtra version 
2.3, cowplot version 1.1.0, pheatmap version 1.012, ggsig-
nif version 0.6.0 and ggpubr version 0.4.0. All Python 
analysis is performed using python version 3.8.2. The 
Python libraries used are torch version 1.5.0, sklearn ver-
sion 0.22.1. numpy version 1.18.1, pandas version 1.0.3, 
and csv version 1.0.

Assessment of fibrosis, steatosis and microvascular 
invasion
The fibrosis in the non-tumoural liver was staged accord-
ing to the meta-analysis of histological data in viral hepa-
titis (METAVIR) staging system from stages F0 to F4, 

(See figure on next page.)
Fig. 1  Per-patient analysis identified patient specific dysregulated genes. A: Data acquisition overview for multi-region RNA-seq data and clinical 
data of patients. B: Comparison between all-patients and per-patient DE analyses. C: Number of up-/down-regulated genes above a given DEPC 
threshold against different DEPC thresholds. DEPC cutoff for up-/down-regulated genes was determined based on two standard deviations. D: 
Visualization of the proportion of AP vs NAP genes in up-/down-regulated genes above the respective DEPC thresholds. E: Standard deviations of 
normal gene expression of AP genes against NAP genes. F: Overlayed density plots of tumour and normal gene expression of the top 50 AP/NAP 
genes with highest DEPC counts. G: Normalized gene expression and their respective log2FoldChange values from per-patient analysis of example 
genes (CDK1, CD24 & WNT5A). Only CDK1 was also found to be up-regulated in all-patients analysis. H: GSEA results for the 328 up-regulated NAP 
genes against the REACTOME (left) and CGP gene sets (right) from MSigDB. Top 10 enriched gene sets were shown
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Fig. 1  (See legend on previous page.)



Page 5 of 16Jeon et al. BMC Cancer          (2023) 23:118 	

based on histological evaluation of both haematoxylin 
& eosin (H&E) stained-slides and Masson Trichrome 
stained-slides (if available). Steatosis was graded based on 
the percentage of parenchymal involvement by macrove-
sicular steatosis from grades 0 to 3, based on histological 
evaluation of H&E stained slide. Microvascular invasion 
is defined as the presence of tumour cells within and 
adherent to the vessel wall, either covered by endothe-
lium or in a context of thrombus or fibrin, based on his-
tological evaluation of H&E stained slide.

Data preparation for MLP classification
Normalized RNA-seq data are paired such that each 
tumour sample is paired with the respective normal 
sample. Subsequently, taking the difference between 
the tumour and normal gene expression, we obtained 
the Tumour-Normal-Difference (TND) data. While the 
original number of NAP genes we selected was 328, we 
only selected 327 genes as our training features. This is 
to ensure that the training features are coherent between 
our dataset and the TCGA-LIHC dataset. For the training 
data, each training instance of a patient is labelled with the 
PG that the patient belongs to. For example, if Patient X 
has 3 tumour samples and 1 normal sample, we can obtain 
3 TND training instances and the 3 training instances are 
labelled with the PG that Patient X belongs to.

MLP classification model
The MLP model is built using PyTorch. The model con-
sists of 4 hidden linear layers, of which, the first 3 layers 
utilize Kaiming initialization and relu activation, and the 
last layer uses Xavier initialization and softmax activa-
tion. The model also uses stochastic gradient descent 
(SGD) optimization with a learning rate of 0.01 and 
momentum of 0.9, and cross-entropy loss for training. 
The training is performed across 500 epochs with a batch 
size of 32. The training–testing ratio is 7:3.

Classification and prediction results
We performed 1000 trials of the MLP classification task. 
For each trial, the dataset derived from our RNA-seq 
counts is randomly split into the training and testing set. 
Using the testing set, we can calculate the classification 
accuracy of the MLP model for each trial. Subsequently, 

we then used the model to predict the label (PG) for 
each instance of TND data derived from the TCGA-
LIHC data. Across the 1000 trials, we observed that the 
predicted labels of the same instance may vary. To test 
if the predictions of a single instance are random, we 
performed the chi-square goodness of fit test. First, we 
assumed that the single instance can be clustered into 
any of the 3 PGs (PG0, PG1, and PG2) with equal prob-
abilities. This means that we would expect to see pre-
dicted labels of the instance to be approximately 333 for 
all 3 PGs over the 1000 trials. Then, we compared the 
observed label counts to the expected label counts using 
the chi-square goodness of fit test. If the false-discovery 
rate p-value of this test is less than 0.05, we assume that 
the predictions are non-random. We then determined 
the predicted label of the instance to be the label with 
the highest standard residual. All of the 48 patients were 
classified into the 3 PGs (27 patients in PG0, 19 patients 
in PG1, and 2 patients in PG2).

Results
Multi‑region sequencing allows the identification 
of patient‑specific dysregulated genes
In this study, we performed RNA sequencing on multi-
ple regions of the tumour and the adjacent normal from 
surgically resected HCC (shown in Fig.  1A). In a con-
ventional all-patients differential expression (DE) analy-
sis (all-patients analysis), tumour samples are grouped 
together and compared to the group of normal samples 
to identify tumour-related dysregulated genes. By design, 
genes that are consistently up- or down-regulated across 
samples – with distinct group mean values and small var-
iance – get selected as differentially expressed between 
the two groups of samples. In our per-patient DE analysis 
(per-patient analysis), tumour samples from one patient 
are compared to the respective normal sample of the 
same patient, allowing the identification of dysregulated 
genes specific to the patient. Figure  1B summarizes the 
differences between the two approaches.

Aggregation of per‑patient analysis captures most 
conventional differential expression
Using conventional all-patients analysis, we obtained 
2056 up-regulated and 4836 down-regulated genes in 

Fig. 2  Patient stratification using patient-specific expression changes. A: Left—Normalized gene expression of the 328 NAP genes for all samples. 
The samples are first grouped by the sample type and ordered within each sample type. Right—Log2FoldChange matrix of the 328 NAP genes 
based on per-patient DE analysis. B: Left—Categorical matrix of the NAP genes based on per-patient DE analysis. Right – Co-clustered categorical 
expression changes heatmap, generated after applying co-clustering to the categorical matrix on the left. All rows in all of the above mentioned 
four heatmaps, and the columns in the three patient expression changes heatmaps (A right, B left, B right) are based on hierarchical clustering of 
the categorical expression changes heatmap (B, left). C: Left—Disease-free (Recurrence-free) plot of patients in PG0 and PG1 using the clinical data 
of the patients. Right—Progression-free Kaplan–Meier plot of patients classified as PG0 and PG1 from the TCGA-LIHC cohort, using the model built 
on our data. More details shown in Fig. S3A

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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the tumour samples compared to the adjacent normal 
samples (Additional file  2). Gene set enrichment analy-
sis (GSEA) of the up- and down-regulated genes showed 
enrichment of cell cycle-related gene sets among up-reg-
ulated genes, and enrichment of complement cascade-
related gene sets among down-regulated genes (refer to 
Fig. S2A, Additional file 3).

In comparison, across the results of the per-patient 
analyses performed on 90 patients and using the same 
criteria to select differentially expressed genes, the aver-
age number of up-regulated genes in each patient was 
1726 (standard deviation (s.d.) = 168). The average num-
ber of down-regulated genes was 1698 (s.d. = 980). About 
90% (1851 out of 2056) up-regulated genes from the all-
patients analysis were captured by the union set of up-
regulated genes across the per-patient analyses. Similarly, 
85% (4126 out of 4836) of the down-regulated genes from 
the all-patients analysis were captured by the union set 
of down-regulated genes across the per-patient analyses.

We defined the Differentially Expressed Patient Count 
(DEPC) for a gene as the number of patients in which the 
gene is up- or down-regulated based from per-patient 
analyses (up-regulated DEPC: Additional file  4, down-
regulated DEPC table: Additional file  5). As all-patients 
analysis would capture genes consistently up- or down-
regulated across the cohort, we expected the DE genes 
discovered in all-patients analysis to show high values of 
DEPC. To test this hypothesis, we divided DE genes from 
per-patient analyses into two groups: those also identi-
fied in the all-patients analysis (AP genes), and those not 
identified in all-patients analysis (NAP genes). Wilcoxon’s 
one-sided test reveals that in both up- and down-regu-
lated cases, DEPC values of AP genes were significantly 
higher than NAP genes (DEPC-UP p-value < 2.2E-16; 
DEPC-DN p-value < 2.2E-16). This shows that indeed, 
all-patients analysis is limited to identifying dysregu-
lated genes that are shared by large proportion of patients 
based on the much higher DEPC values of AP genes 
compared to NAP genes. The 205 up- and 710 down-
regulated genes from the all-patients analysis that were 
missed by the per-patient analyses did now show any 
specific shared functions in GSEA analysis. The GSEA 
results excluding these genes also did not yield noticeably 
different results (refer to Fig. S2B).

To identify dysregulated genes in patient subgroups 
of different sizes, we used DEPC values as thresholds. A 
high DEPC threshold identifies dysregulated genes that 
are shared in large subgroups of patients, while a low 
DEPC threshold limits the identification to dysregulated 
genes shared in small subgroups of patients. A higher 
proportion of the high DEPC threshold genes would be 
part of the all-patient analysis, as those genes are com-
monly dysregulated across many of the patients. Indeed, 

the higher the DEPC threshold, the more of the up- and 
down-regulated genes from per-patient analyses were 
also picked up by all-patients analysis (shown in Fig. 1C). 
This was shown by the increasing proportion of the blue 
bars with increasing DEPC. Another interesting observa-
tion was that overall, there were higher numbers of NAP 
genes from up-regulated genes compared to the down-
regulated genes.

We decided on a DEPC threshold value in order to 
identify dysregulated genes that were still part of the 
shared cancer gene modules, while retaining the patient 
specificity. We first computed the mean DEPC values 
for up-regulated and down-regulated genes separately. 
Setting a threshold of two standard deviations above 
the mean DEPC values led to the DEPC thresholds for 
the up-regulated and down-regulated genes of 27 and 
34 respectively (shown in Fig.  1C). We obtained 887 
up-regulated genes and 938 down-regulated genes from 
per-patient analyses above these thresholds. In these up-
regulated genes, we observed that only 63.0% (559) of 
them were AP genes and 36.9% (328) were NAP genes 
(Fig. 1D). In contrast, most (99.9%) of the down-regulated 
genes with high DEPC were also discovered in the all-
patients analysis. Our results show that per-patient anal-
ysis can detect genes that are up-regulated in a subgroup 
of patients yet missed by conventional all-patients analy-
sis. Moreover, the results suggest that certain up-regu-
lated HCC-related genes may be specific to subgroups of 
HCC patients, whereas most of the downregulated HCC-
related genes are commonly shared across HCC patients. 
This is further supported by the larger proportion of AP 
genes from down-regulated genes than from the up-regu-
lated genes in Fig. 1C, indicating that regardless of DEPC 
values, more of the down-regulated genes are commonly 
repressed genes across patient tumours.

Conventional all‑patients analysis omits HCC 
subgroup‑specific genes due to high inter‑individual 
variability
Conventional all-patients analysis missed some genes 
captured by aggregated per-patient analysis with high 
DEPC. We postulated that interpatient gene expression 
variability within normal samples may contribute to this 
difference. In all-patients analysis, genes with high inter-
patient expression variability among normal samples 
would be less readily detected as differentially expressed. 
Those same genes may be captured, however, in per-
patient analysis or aggregation of per-patient analysis to 
identify patient subgroups, indicating that these genes 
may still be potential cancer signature genes.

We investigated this in two ways. To assess whether he 
individuality of the samples indeed affects the differen-
tial expression testing, we generated density plots of the 
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expression values of the top 50 AP genes and the top 50 
NAP genes with the highest DEPC values (Fig. 1F). There 
was a clear distinction between the expression values of 
the top 50 AP genes in the tumour and adjacent normal 
samples (Fig. 1F, top). In contrast, the top 50 NAP genes 
showed highly heterogeneous baseline normal expression, 
without any clear distinction between the tumour and 
adjacent normal samples (Fig. 1F, bottom). This observa-
tion was further supported by the 387 NAP genes show-
ing significantly higher standard deviations of expression 
values in the normal samples, compared to those of the 
559 AP genes (p-value < 2.2E-16; Fig.  1E). These results 
suggest that the high inter-individual variability may be 
a contributing factor to why these genes were omitted by 
the conventional analysis even though these genes were 
up-regulated in more than 30% of the patients.

We also tested whether the per-patient analysis was 
dependent on the correct pairing between normal and 
tumour samples. Because per-patient analysis uses fewer 
samples than all-patient analysis, and because each per-
patient analysis is limited to a single adjacent normal 
sample, it is conceivable that the per-patient analysis 
generates artifacts. We wanted to ensure that the patient 
subgroups were not just artefacts of the sample size limi-
tations. We repeated the per-patient and DEPC analysis 
with 100 random permutations of adjacent normal sam-
ple labels (Fig. S1). The correct pairing identified more 
dysregulated genes unique and specific to each patient 
(and shared between less than 5 patients). Larger DEPC 
values of permuted pairings picked up more dysregula-
tion, and the permuted analysis began to resemble the 
all-patients analysis, in which samples were not paired.

We then examined three known cancer-associated 
genes – CDK1, E2F3, and CD24 – from the 887 genes 
(Fig. 1G). CDK1 is a cell-cycle gene that is up-regulated 
in HCC tumours [27] and was one of the AP genes in 
our analysis. CDK1 was consistently up-regulated across 
most of the patients, with a clear distinction between the 
expression values in tumour and adjacent normal sam-
ples (Fig. 1G, top). On the other hand, E2F3 and CD24, 
which are also commonly dysregulated in cancer [28, 
29] were classified as NAP genes in our analysis as they 
were up-regulated in at least 30% of the patients but were 
not identified by the all-patients analysis. The expres-
sion values of these two genes showed that indeed, even 
though some patients’ samples showed a clear distinc-
tion between normal and adjacent tumour samples, the 
dysregulation pattern was not shared across all patients 
(Fig. 1G, middle and bottom). Furthermore, even though 
E2F3 and CD24 were up-regulated in some patients, 
other patients showed down-regulation of these genes. 
They are examples of cancer-associated genes that exhibit 

high levels of patient and subgroup specificity, which our 
per-patient analyses managed to identify.

Patient‑specific differentially expressed genes with high 
DEPC scores are associated with metabolism, proliferation, 
and known cancer modules
To understand the known functions and mechanisms 
of the patient subgroup-specific differentially expressed 
genes, we performed GSEA on the 328 NAP genes 
against two groups of gene sets, namely the gene sets 
from REACTOME and CGP sets from MSigDB (Fig. 1H, 
Additional file  6) [30]. Many of the enriched REAC-
TOME gene sets (Fig. 1H, left) were related to lipid and 
fatty acid metabolism, as well as cholesterol homeosta-
sis. The results indicate that a subset of patients’ tumours 
showed significant changes in the metabolism of lipids, 
possibly reflecting the metabolic variability among the 
patients’ liver tissues. The results also hinted at sub-
group-specific activation of cancer pathways, evident 
from many of NAP genes belonging to WNT signalling 
and proliferation gene sets (Fig.  1H, left). The GSEA 
results against the CGP gene sets also revealed that there 
are significant overlaps between these NAP genes and 
curated liver cancer genes (Fig. 1H, right). These results 
indicate that the differential activation of these NAP 
genes across the patients might be useful in identification 
of HCC subgroups.

Patient‑specific transcriptomic profiles reveal novel HCC 
patient subgroups with a strong correlation to recurrence
Based on the earlier observations, we hypothesized that 
the pattern of patient-specific gene expression changes 
could be useful in identifying patient subgroups associ-
ated with different recurrence trajectories. Unlike con-
ventional cancer subtyping analysis which identifies 
patients with relatively high/low expression of some can-
cer signature genes, we shifted the focus to whether or 
not the subgroup-specific genes were dysregulated in a 
patient’s tumour compared to the patient’s normal tissue.

Using the 328 NAP genes, we first generated the fold-
change matrix based on the per-patient analyses results 
(Fig.  2A, right). We further simplified the matrix and 
generated the categorical matrix with 3 values – -1, 0, or 
1 – representing the down-regulation, no change, or up-
regulation of the gene in the tumour samples compared 
to the patient’s normal samples respectively (Fig.  2B, 
left). Some noticeable patterns of gene activation in sub-
groups of patients emerged (Fig. 2B, left), which were not 
obvious with the starting normalized gene count matrix 
(Fig. 2A, left). The categorical data were then subjected to 
co-clustering analysis, producing 3 patient groups (PGs) 
(Fig. 2B, right).
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We investigated the patient groups produced by the 
co-clustering analysis (42 patients in PG0, 36 patients in 
PG1, and 12 patients in PG2). We focused on PG0 and 
PG1 since patients in PG2 mostly showed no changes 
across all genes. Patients in PG1 have significantly more 
up-regulated genes than patients in PG0 (p-value: < 2.2E-
16), suggesting that patients in PG1 generally show more 
up-regulation in these subgroup-specific DE genes than 
patients in PG0.

By performing Kaplan Meier survival analysis, we 
observed that patients in PG1 have shorter recurrence-
free survival after surgical resection compared to patients 
in PG0 (p-value < 0.05) (Fig.  2C, left). This supports our 
hypothesis that patient stratification based on the patient 
subgroup-specific activated genes yields clinically rel-
evant grouping that was not detectable from the absolute 
level of expression values. Subsequently, we examined if 
the patients in PG0 and PG1 were different in terms of 
their clinical profiles (Table  1). The clustering in PG0 
and PG1 showed significant association with sex, the 
degree of fibrosis, chronic hepatitis B status, prothrom-
bin time and alpha fetoprotein levels (AFP). Patients in 
PG1 also have significantly higher prothrombin time 
reflecting their poorer liver function, and higher level of 
AFP reflecting poor tumour differentiation, than patients 
in PG0. Fig. S3 showed that none of these variables, by 
themselves, had any effect on the differential prognosis 
we observed between the two PGs. This suggests that the 
patient grouping we obtained can separate the patients 
into the two differential prognosis groups and is inde-
pendent of the clinical variables we obtained.

To further validate the prognostic value of the patient 
subgroups, we obtained RNA-seq data from TCGA-
LIHC and utilized a machine learning approach, as seen 
in Fig. S4A, to stratify the patients into their respective 
PGs. Machine learning was used because of the lack of 
biological replicates for the TCGA patients, and to uti-
lize the paired sample gene counts instead. Across the 
1000 trials from the data, the machine learning model 
achieved a mean accuracy of 90.73% with a standard 
deviation of 3.44% (Fig. S4B). Survival analysis reveals 
that the TCGA-LIHC patients classified into PG1 are 
more likely to recur than the TCGA-LIHC patients clas-
sified into PG0 (p-value < 0.05) (Fig. 2C, right). Therefore, 
this supports the results we obtained from our data and 
strengthened the evidence that these subgroup-specific 
activated genes are useful for patient stratification.

Overall differences in the expression profiles 
between the patient groups with different recurrence rates
Comparing the RNA-seq data of the tumour samples 
between PG0 and PG1 revealed that there were 863 
down-regulated and 377 up-regulated genes in PG1 

patients compared to the PG0 patients (Additional 
file 7). There were not only more down-regulated genes 
than up-regulated genes in PG1, but also a higher 
degree of dysregulation in the down-regulated genes 
than the up-regulated genes (Fig.  3A). We selected a 
few example genes differentially expressed between the 
two patient groups and compared them to the log2Fold-
Change values from the per-patient analyses (Fig. 3C). 
These plots showed significant differences in the log-
2FoldChange values between patients in PG0 and PG1, 
with the overall gene expression changes broadly in line 
with the DE analysis.

The down-regulated genes showed significant over-
laps with the lipid metabolism related and complement 
cascade gene sets (Fig. 3B, top, Additional file 8). Since 
the patients in PG1 show less activation in these genes 
than patients in PG0, the down-regulation of these 
genes be associated with recurrence. This finding is in 
keeping with the literature on known HCC prognostic 
markers. Low expression of lipid metabolism-related 
genes such as APOC3, CYP2A6, and CYP2C8 were 
indeed associated with lower recurrence-free survival 
(RFS) in HCC [31, 32]. Similarly, the repression of the 
complement cascade-related factors such as CFHR1 
was associated with worse RFS [33]. We also investi-
gated specific genes, such as MFSD2A and AKR7A3, 
that showed high degree of down-regulation in PG1 
patients compared to the PG0 patients (Fig.  3A). The 
down-regulation of these genes has been linked to 
poorer survival [34, 35] and our results here suggests 
that they may also be linked to poor RFS.

The up-regulated genes in PG1 patients were largely 
related to the neuronal system, GPCR signalling, and 
extracellular matrix organisation (Fig. 3B, bottom, Addi-
tional file  8). We validated these results against cur-
rent literature. For example, high expression of PLCB1, 
a gene that is in both the neuronal system gene set and 
GPCR signalling gene set, has been reported to be associ-
ated with poorer RFS [36]. Other example genes such as 
CCR6 and CXCL5, which are involved in the GPCR sig-
nalling gene set, are also associated with poorer RFS [37, 
38]. In the extracellular matrix organisation gene set, the 
high expression of two example genes such as COL24A1 
and SPP1 have been shown to be associated with higher 
recurrence rate [39, 40].

Lastly, we observed another example gene, ACSL4, 
which has garnered a lot of attention in the field of HCC 
in recent years. ACSL4, long chain acyl-CoA synthetase, 
has been shown to be able to stabilize c-Myc expres-
sion and promote tumour cell proliferation and tumour 
progression in HCC, and patients with high expression 
of ACSL4 have poorer RFS [41]. Additionally, ACSL4 
has also been proposed to be a predictive biomarker of 
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Table 1  Chi-square/Fisher’s exact/Wilcoxon test of clinical variables against the patient clusters PG0 and PG1

* For fibrosis stage, a post hoc Fisher’s exact with Bonferroni correction was performed. Only stage 2 vs stage 3 was significant with p-adjusted value of 0.036

Variable PG0 PG1 P-value significance

N 42 36

Sex Female 4 10 0.043 *

Male 38 26

Ethnicity Chinese 31 20 0.363

Filipino 3 1

Indian 1 2

Indonesian 1 1

Malay 2 2

Thai 2 7

Others 2 3

Significant Alcohol Consumption Yes 11 9 0.683

No 23 17

Unknown 8 10

Child’s Pugh score A 41 36 1.000

B 1 0

Diabetes Yes 17 12 0.636

No 25 24

Tumour Multiplicity Yes 7 8 0.588

No 35 28

Fibrosis Stage 0 14 6 0.010* **

1 3 4

2 1 9

3 11 4

4 9 11

Microvascular Invasion Yes 12 17 0.110

No 30 19

Edmondson Grade 1 5 2 0.058

2 26 15

3 11 17

4 0 2

Steatosis 0–5% 20 23 0.268

5–33% 14 11

33–66% 3 0

Overall Survival Alive 36 25 0.110

Dead 6 11

Tumour Stage TNM V8 I 25 17 0.216

II 13 10

III 4 9

Recurrence status Yes 24 14 0.125

No 18 22

HBV Status positive 23 29 0.030 *

negative 19 7

HCV Status positive 4 2 0.681

negative 38 34

Max. Tumour Diameter (cm) 6.84 ± 4.94 6.35 ± 3.93 0.876

Albumin (g/L) 40.95 ± 4.32 41.3 ± 3.55 0.751

Bilirubin (umol/L) 13.73 ± 4.57 13.12 ± 5.68 0.348

AST (U/L) 50.65 ± 36.2 50.23 ± 52.29 0.854

ALT (U/L) 50.47 ± 53.97 33.86 ± 19.92 0.196

Alkaline Phosphatase (U/L) 108.85 ± 53.44 125.41 ± 121.7 0.943

Prothrombin Time (secs) 10.91 ± 0.96 11.55 ± 1.35 0.025 *

Platelets (× 10^9) 232.82 ± 89.59 239.14 ± 71.48 0.344

AFP (ng/ml) 1925.1 ± 9012.17 4362.23 ± 11,826.79 0.023 *

Recurrence-free survival days 675.76 ± 462.37 521.72 ± 433.32 0.132
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sorafenib sensitivity for HCC patients [42]. This suggests 
that the patient grouping from this analysis may have 
translational value in predicting sorafenib sensitivity. 
Overall, the above results reaffirm that our patient sub-
grouping indeed captures known, as well as potentially 
novel, prognostic markers.

Patient‑specific gene dysregulation may explain the low 
response rates of current HCC therapeutic treatments
Another advantage of the per-patient analysis is that we 
can define the proportionality of activation/repression 

of specific genes across the patients. This is an impor-
tant feature when considering the marginal BORR of 
current systemic therapies for unresectable HCC. That 
only a limited proportion of patients showed dysregula-
tion in purported drug target genes may help understand 
the low drug efficacy. Here, we focus on tyrosine-kinase 
receptors inhibitors: the two most common first-line 
drugs (Sorafenib, Lenvatinib) and two second-line drugs 
(Ramucirumab, Cabozantinib).

Across these 4 drugs, the BORR ranges from 1–24%, 
with most of the clinical trials showing that BORR of 

Fig. 3  Transcriptomic differences between PG0 and PG1 patients’ tumour tissues. A: Volcano plot of log2FoldChange values against -log adjusted 
p-value of differentially expressed genes between patients in PG0 and PG1 (adjusted p-value cut-off: 0.05, log2FoldChange absolute cut-off: 1). B: 
Top 10 enriched gene sets with genes that are down- regulated (top)/ up-regulated (bottom) in PG1. C: Log2FoldChange plots from per-patient 
analysis with example genes that are down-regulated (left)/ up-regulated (right) in PG1. Log2FoldChange barplots are ordered by ascending order 
for each gene (patient orders are not the same across different example genes)
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these drugs are less than 10% [3]. Since these drugs 
only work for a small proportion of the HCC patients, 
we investigated the patient-specific dysregulation of the 
drugs’ targets. The common and main target of these 4 
drugs is the vascular endothelial growth factor receptor 
2 (VEGFR2) [43–46]. However, in our patient-specific 
transcriptomic profiles, we found that only 12% of the 
patients showed upregulation in VEGFR2 and 16% of the 
patients displayed down-regulation in VEGFR2 (Fig. 4A, 
Table  2). Since these drugs inhibit VEGFR2, they may 
have limited efficacy when VEGFR2 is not overexpressed 
in the tumours. The small proportion of patients with 
overexpressed VEGFR2 may explain the low response 
rate of these drugs.

Other families of tyrosine kinase receptors that are 
HCC drug targets include platelet-derived growth factor 
receptors (PDGFRs), and fibroblast growth factor recep-
tors (FGFRs) [43–46]. We observed that these receptors 

are only overexpressed in small proportions of patients 
ranging from 2% in FGFR1 to 24% in VEGFR1 (Fig. 4B-
D, Table 2). Some of these receptors are under-expressed 
in a number of patients. Notably, our all-patients analy-
sis showed down-regulation of PDGFRA, FGFR1 and 
FGFR2. The low proportion of patients showing overex-
pression of these receptors is in keeping with the poor 
BORRs of these current HCC drugs.

Discussion/conclusion
The ability to derive patient-specific differential tran-
scriptomic profiles is a powerful tool. While conventional 
DE analysis is useful in the overall description of the 
changing transcriptomic landscape, it lacks the granular-
ity to identify patient and subgroup-specific dysregulated 
genes. In this study, we show that patient innate differ-
ences at the normal baseline hinders the conventional 
approach from picking up patient-specific DE genes. 

Fig. 4  Many HCC drug target tyrosine kinases receptors show variable expression changes across different patients. A: Normalized gene expression 
and their respective log2FoldChange values from per-patient analysis of VEGFR2. B-D: Log2FoldChange barplots from per-patient analysis of VEGFRs 
(B), PDGFRs (C) and FGFRs (D). Patient orders are not the same across A, B, C and D 
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Our results highlight the importance of considering the 
variability in patients’ normal tissues, while emphasising 
the value of using multi-region samples and per-patient 
analysis. With this analysis, we can derive patient-specific 
DE genes and their respective transcriptomic profiles. 
Although the patient-specific transcriptomic profiles 
may have limited immediate impact in understanding the 
tumour biology of HCC, they are imperative to the devel-
opment of personalized cancer therapeutics.

Aggregating the results of patient-specific DE genes 
also enables us to identify subgroup-specific DE genes, 
which are missed out by the conventional analysis. 
Referring the subgroup-specific DE genes to the CGP 
gene sets from MSigDB, we discovered that these genes 
have significant overlap with 2 gene sets [10, 47], which 
describe a stem-cell HCC subtype and a proliferation 
subclass respectively. This suggests that the subgroups 
we derived may be linked to these subclasses. We also 
observed that patients in PG1, which have more up-
regulated proliferation-related genes, have elevated 
AFP compared to patients in PG0. This is in line with 
the result of Chiang et al. [10], where they also showed 
higher AFP in the proliferation subclass. The significant 
overlap of our subgroup-specific genes between these 
two gene sets suggests that our study and the two stud-
ies are describing the same subclass (PG1). However, 
our analysis provides a more comprehensive picture of 
this proliferation-related subclass. Both studies rely on 
specific genes or molecular signatures and mutational 
profiles to determine the subclass. In contrast, our 

data-driven stratification is not limited to conventional 
sets of molecular signatures and is free from literature 
bias. Moreover, our stratification strategy is much more 
flexible and may yield different results if we were to 
modify the DEPC threshold.

We were able to link differential prognosis to the 
newly discovered subgroups and observe similar results 
using a machine-learning approach on TCGA-LIHC 
data. This minimizes any potential bias that may be 
present in our dataset. The clinical correlation with 
disease recurrence presented in both datasets validates 
our unique approach to identify HCC subgroups. The 
DE analysis between PG0 and PG1 identified multiple 
prognostic markers that are supported by the current 
literature. This proves that our methodology is valuable 
in identifying HCC prognostic subgroups that relies 
on either clinical parameters, histological and immu-
nological hallmarks, or specific gene signatures and 
biomarkers. These conventional approaches only cap-
ture a narrow perspective of the tumour biology with 
selective indicators whereas our method shows a much 
wider range of known and potential indicators that can 
help to elucidate HCC progression.

The per-patient analysis also provides insights into 
the poor BORRs of current targeted agents used in 
HCC. We showed that the target genes of current 
agents are only overexpressed in a limited propor-
tion of patients, which may explain why the response 
to treatment is also limited to a subset of patients: 
patients whose tumours lack overexpression or show 

Table 2  Per-patient results for target genes of Sorafenib, Lenvatinib, Cabozantinib, and Ramucirumab. ([43–46])

Gene Down-
regulated DEPC

Up-regulated 
DEPC

Down-regulated in all-
patients analysis

Up-regulated in all-
patients analysis

Targeted by

VEGFR2/KDR 15 11 No No Sorafenib, Lenvatinib, Ramu‑
cirumab, Cabozantinib

VEGFR1/FLT1 7 22 No No Sorafenib, Lenvatinib, Cabozantinib

VEGFR3/FLT4 14 3 No No Sorafenib, Lenvatinib, Cabozantinib

FLT3 11 5 Yes No Sorafenib

PDGFRA 37 0 Yes No Lenvatinib

PDGFRB 3 21 No No Sorafenib

FGFR1 31 2 Yes No Lenvatinib

FGFR2 34 7 Yes No Lenvatinib

FGFR3 20 6 No No Lenvatinib

FGFR4 4 14 No No Lenvatinib

KIT 1 9 No No Sorafenib, Lenvatinib

RET 28 2 Yes No Sorafenib, Lenvatinib, Cabozantinib

AXL 32 0 Yes No Cabozantinib

MET 3 10 No No Cabozantinib

BRAF 1 5 No No Sorafenib

RAF1 1 1 No No Sorafenib
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under-expression of these targets may not be appro-
priate for these agents. We wish to highlight that the 
dysregulation may differ between different receptors: 
a patient may show, for example, down-regulation in 
VEGFRs but up-regulation in FGFRs. Our results reaf-
firm the complexity of the landscape of tyrosine kinase 
receptors dysregulation in HCC. Since the majority 
of the patients showed no significant dysregulation of 
these receptor genes, these patients may be more suited 
for non-tyrosine kinase-based therapy options.

In this paper, we developed a novel analysis pipeline 
that expands from the conventional norm of DE analy-
sis and showed that by leveraging multi-region sampling, 
patient-specific analysis confers a better ability to identify 
subgroup-specific gene dysregulation and subsequent 
patient stratification with prognostic value. Additionally, 
the patient-specific analysis provides a potential frame-
work for understanding poor BORRs of current HCC 
systemic therapies. This patient-specific approach will 
serve as a steppingstone to help researchers understand 
the molecular subtypes in HCC and their clinical trajec-
tories, and aid clinicians as they pivot towards precision 
oncology and personalized cancer therapeutics.
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