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Abstract 

Background:  Evaluation of treated tumors according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria 
is an important but time-consuming task in medical imaging. Deep learning methods are expected to automate the 
evaluation process and improve the efficiency of imaging interpretation.

Objective:  To develop an automated algorithm for segmentation of liver metastases based on a deep learning 
method and assess its efficacy for treatment response assessment according to the RECIST 1.1 criteria.

Methods:  One hundred and sixteen treated patients with clinically confirmed liver metastases were enrolled. All 
patients had baseline and post-treatment MR images. They were divided into an initial (n = 86) and validation cohort 
(n = 30) according to the examined time. The metastatic foci on DWI images were annotated by two researchers in 
consensus. Then the treatment responses were assessed by the two researchers according to RECIST 1.1 criteria. A 3D 
U-Net algorithm was trained for automated liver metastases segmentation using the initial cohort. Based on the seg-
mentation of liver metastases, the treatment response was assessed automatically with a rule-based program accord-
ing to the RECIST 1.1 criteria. The segmentation performance was evaluated using the Dice similarity coefficient (DSC), 
volumetric similarity (VS), and Hausdorff distance (HD). The area under the curve (AUC) and Kappa statistics were used 
to assess the accuracy and consistency of the treatment response assessment by the deep learning model and com-
pared with two radiologists [attending radiologist (R1) and fellow radiologist (R2)] in the validation cohort.

Results:  In the validation cohort, the mean DSC, VS, and HD were 0.85 ± 0.08, 0.89 ± 0.09, and 25.53 ± 12.11 mm for 
the liver metastases segmentation. The accuracies of R1, R2 and automated segmentation-based assessment were 
0.77, 0.65, and 0.74, respectively, and the AUC values were 0.81, 0.73, and 0.83, respectively. The consistency of treat-
ment response assessment based on automated segmentation and manual annotation was moderate [K value: 0.60 
(0.34–0.84)].
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Conclusion:  The deep learning-based liver metastases segmentation was capable of evaluating treatment response 
according to RECIST 1.1 criteria, with comparable results to the junior radiologist and superior to that of the fellow 
radiologist.

Keywords:  Deep learning, RECIST 1.1 criteria, Liver metastases, DWI

Background
About 5% of newly diagnosed cancer patients pre-
sented with synchronous liver metastases and the 
presence of liver metastasis was associated with 
reduced survival [1]. Metastases in the liver are typi-
cally treated with systemic chemotherapy, ablation, 
and surgery, depending on the source and stage [2].

Radiological assessment of the treatment response 
is often a prerequisite to clinical decisions in cancer 
treatment [3]. Image-based evaluation, using either 
computed tomography (CT) or magnetic resonance 
imaging (MRI) images, can noninvasively visual-
ize the tumor during the treatment. Compared with 
CT, liver magnetic resonance imaging (MRI) is supe-
rior for hepatic metastasis evaluation [4, 5]. Diffu-
sion-weighted imaging (DWI)-related parameters 
are appealing as imaging biomarkers, and DWI alone 
might be used for tumor evaluation with excellent per-
formance [6].

Response Evaluation Criteria in Solid Tumor 1.1 
(RECIST 1.1) is accepted as a standard method and 
widely used clinical guideline for the evaluation of 
response and progress of solid tumors [7, 8]. The appli-
cation of the RECIST1.1 guideline involves a series 
of tumor size measurements, which is an important 
surrogate marker of therapeutic efficacy [9]. Consist-
ent and accurate measurements of the tumor size are 
essential with their direct impact on cancer treatment 
management.

However, performing RECIST measurement is a 
non-trivial task requiring a great deal of expertise and 
time by a highly trained radiologist. Multiple reports 
have indicated that the tumor size measurements are 
subject to intra- and interobserver variability, with 
various environmental factors causing the variability 
[10, 11]. To address these challenges, researchers have 
attempted to develop computer-aided systems to assist 
in lesion measurement through automated lesion seg-
mentation [12, 13].

Therefore, in this study, we proposed a deep learn-
ing-based liver metastases segmentation method to 
assess the treatment response on DWI images accord-
ing to the RECIST1.1 criteria. The objective of this 
study was to assess the feasibility and accuracy of the 
automated treatment response assessment by compar-
ison between different reading levels of radiologists.

Materials and methods
Study design
This study was approved by the local institutional review 
board and informed consent was waived according to its 
retrospective design. The study population included the 
initial cohort and validation cohort. The initial cohort 
(2017.1–2020.12) was used to develop the deep learn-
ing-based liver and liver metastases segmentation algo-
rithms. The validation cohort (2021.1–2022.3) was used 
to validate the performance of the segmentation models 
and their accuracy in treatment response assessment of 
hepatic metastasis.

Patient enrollment
Two hundred and three patients with histologically con-
firmed primary cancer (colorectal cancer, gastrointesti-
nal cancer, pancreatic cancer, and so on) who underwent 
curative treatment of liver metastases were included in 
this study between Jan 2017 and Mar 2022. All patients 
underwent abdominal MRI before the start (base-
line) and after the end of at least one-circle treatment 
(post-treatment).

According to the RECIST1.1 criteria, only patients with 
measurable disease at baseline MRI should be included 
in protocols. Hence, 23 of the 203 patients were excluded 
because of no measurable liver metastasis (the largest 
diameter of the lesions < 1  cm). In addition, 45 patients 
were excluded due to the interval of post-treatment 
abdominal MRI to the beginning of treatment being 
less than one week; and nine patients were excluded for 
the inadequate image quality. Finally, 116 patients who 
had undergone at least two scans for follow-up assess-
ment after liver metastases treatment were analyzed 
(Fig. 1). Demographic and clinical features of the enrolled 
patients were acquired from the electronic informa-
tion system, including gender, age, number of meta-
static lesions, location of primary cancer, and treatment 
methods.

MRI acquisition
Abdominal MRI scans were performed using one of the 
three 3.0 T magnet scanners (Achieva, Philips Health-
care; Discovery MR750, GE Healthcare; Intera, Philips 
Healthcare) with body phased-array coils. The follow-
ing sequences were performed as the liver MRI proto-
col: (1) axial respiratory-triggered T2-weighted imaging 
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(T2WI) with fat suppression turbo spin-echo sequence; 
(2) axial in- and opposed-phase T1-weighted imaging 
(T1WI) of gradient echo sequence; (3) axial DWI of 
single-shot echo-planar sequence with automatically 
generated apparent diffusion coefficient (ADC) maps; 
and (4) axial multiphase dynamic contrast-enhanced 
(DCE) T1WI sequence. Detailed scanning parameters 
of T2WI, DWI and DCE are listed in Table 1.

Manual annotation of liver and liver metastases
The annotation of the liver and the liver metastases foci 
were performed using an open-source software platform 

(ITK-SNAP, version3.6.0-RC1; http://​www.​itksn​ap.​org). 
Under the supervision of a board-certified radiology 
expert (with more than 20 years of reading experience), 
a radiology resident with three years of reading experi-
ence evaluated all MRI examinations and, section by sec-
tion manually annotated the liver and liver metastases 
on DWI images. Areas containing air, obvious vascular 
structures, and artifacts were avoided.

The reference standard for liver metastases was a his-
tological result, or the metastatic lesions were proved by 
clinical comprehensive information (employing imag-
ing, serum tumor markers, and the follow-up outcome). 

Fig. 1  The flowchart of patient enrollment

Table 1  Parameters of the main MRI sequences

DCE Dynamic contrast-enhanced, DWI Diffusion weighted imaging, T1WI T1-weighted imaging, T2WI T1-weighted imaging

Parameters Achieva, Philips Discovery GE Intera, Philips

Sequences T2WI DWI DCE T2WI DWI DCE T2WI DWI DCE

Repetition time (ms) 2640 4250 6.7 2520 4000 3.9 2765 4959 7.5

Echo time (ms) 100 76 2.4 95 60 2.0 87 78 2.4

Flip angle (degree) - - 10 - - 13 - - 13

Field of view (mm) 280 × 220 280 × 220 400 × 400 250 × 200 250 × 200 450 × 360 250 × 200 250 × 200 450 × 350

Matrix size 156 × 180 156 × 180 280 × 180 256 × 256 256 × 256 288 × 192 240 × 240 240 × 240 320 × 200

Section thickness (mm) 4 4 3 5 5 3 4 4 2

Intersection gap (mm) 1 1 0 1 1 0 1 1 0

b-values (s/mm2) - 1000 - - 1400 - - 1400 -

http://www.itksnap.org
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The typical imaging appearances of liver metastases 
involved: hyperintense on high b-value DWI images; 
moderately hyperintense to the surrounding liver paren-
chyma on T2WI images; hyper-vascular or peripherally 
enhanced on DCE T1WI images. The metastatic lesions 
were annotated on the DWI images, covering all tumor 
areas, including areas of necrosis and fibrosis. The target 
lesions were recognized by the two radiologists and were 
measured to assess the treatment responses according to 
RECIST 1.1 criteria.

Model development of liver and liver metastases 
segmentation
The segmentation framework consisted of two compo-
nents: liver segmentation and metastases segmentation 
from the liver region. A deep learning-based 3D U-Net 
was first developed to automatically perform liver seg-
mentation in both the baseline and the follow-up MRI 
scans, then followed by a second step with a 3D U-Net 
for liver metastases segmentation within the segmented 
liver mask (Fig. 2).

Regarding the model development of liver segmen-
tation, 86 patients with were randomly divided into 
either the training (n = 52), validation (n = 17), or test-
ing (n = 17) datasets with a ratio of 6:2:2 in the ini-
tial cohort. All the input images of DWI were unified 

and resized to 224 × 224 × 64 (z, y, x) before training 
to maintain the optimal image features, and z-score 
intensity normalization was applied to all images. 
Skewing (angel: 0–5), shearing (angel: 0–5) and trans-
lation (scale: -0.1,0.1) of the images were applied for 
data augmentation. The training was carried out over 
300 epochs using an Adam Optimizer with a learning 
rate of 0.01, a batch size of 2, and a dice loss function. 
During model development, other hyperparameters 
(such as weight initialization and dropout for regu-
larization) were randomly selected and automatically 
executed.

The volume of interest in the liver predicted by the 
liver segmentation model was used as the mask for the 
liver metastases segmentation. The model development 
parameters and network configurations for metasta-
ses segmentation were the same as the liver segmenta-
tion model. Both the CNNs were coded by Python3.6, 
Pytorch 0.4.1, Opencv, Numpy, and SimpleITK, and 
trained on the GPU NVIDIA Tesla P100 16G.

Treatment response assessment
The outcomes of the treatment response assessment 
came from four sources, i.e., the reference standard, the 
automatic, and the two radiologists. They assessed the 
images according to RECIST 1.1 criteria [14], including 

Fig. 2  The flowchart of model development and evaluation
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complete response (CR), partial response (PR), stable dis-
ease (SD), and progressive disease (PD).

The reference standard of treatment response assess-
ment was given by the radiologists who made the man-
ual annotations. The automatic assessment was given 
by the model. It was based on the automated segmenta-
tion of liver metastases on DWI images, the diameters 
of the lesions were calculated and the assessments were 
then given by a rule-based program. On the baseline 
DWI images, the lesions with the longest diameter of 
more than 10 mm were regarded as measurable. Up to 5 
the largest of the measurable lesions were chosen as the 
target lesions. On the post-treatment DWI images, the 
number of the target lesions was calculated and com-
pared with that of the baseline images. The increase in 
the number of target lesions indicated the appearance 
of new lesions (classified as PD). The sum of the longest 
diameters of a maximum of five target lesions in each 
patient was computed on baseline and post-treatment 
DWI images, and the percentage change of the total 
length between lesions on post-treatment and baseline 
DWI was computed for treatment response assessment.

In addition, two radiologists with different levels of 
experience (an attending radiologist [R1] and a fel-
low radiologist [R2] with 8- and 4  years’ experience in 
abdominal imaging, respectively) independently meas-
ured the maximum diameter of the target metastases and 
evaluated the treatment response with access to the full 
examinations according to the RECIST 1.1criteria.

Statistical analysis
The “mean ± standard deviation (SD)” values are used for 
the description of continuous variables with normal dis-
tribution. Descriptive statistics of the categorical data are 
presented with “n (%)”. The independent t-test and Chi-
square test were applied to determine the difference of 
continuous (age, lesion size, lesion volume, and ADC val-
ues) and categorical variables (gender, location of the pri-
mary tumor, etc.), respectively, in the initial cohort and 
validation cohort. In the testing dataset and validation 
cohort, the evaluation metrics used for the liver and liver 
metastases segmentation included the overlap-based 
metric [Dice similarity coefficient (DSC)], the volume-
based metric [volumetric similarity (VS)], and the spatial 
distance-based metric [Hausdorff distance (HD)] [15].

Receiver operating characteristics (ROC) curve and 
area under the curve (AUC) were used to assess the 
accuracy of treatment response assessment. The kappa 
statistics were applied for the consistent evaluation 
of treatment response in both initial and validation 
cohorts. A P-value less than 0.05 was treated as signifi-
cant. Statistical analysis was performed with MedCalc 

(version 14.8; MedCalc Software, Ostend, Belgium) and 
R version 3.4.1.

Results
Study population
In this study, 116 eligible patients with liver metasta-
ses were included. These patients were divided into 
two cohorts according to scanning time: 86 patients 
(48/86 male, 38/86 female, mean age 60  years, range 
32–82 years) constituted an initial cohort; and 30 patients 
(19/30 male, 11/30 female, mean age 60  years, range 
35–72  years) constituted the validation cohort. 37% of 
the patients (32/86) and 20% of the patients (6/30) exhib-
ited more than five liver target lesions in the two cohorts, 
respectively. The baseline characteristics of the enrolled 
patients are shown in Table  2. It showed no significant 
differences between the initial and validation cohorts 
regarding demographic and clinical characteristics.

Treatment protocol
The treatment protocols of all patients for liver metas-
tases were followed systematically. Fifty-four patients 
(46.55%) received chemotherapy only, 15 patients 
(12.93%) received surgery/ radiofrequency ablation 
only, and 47 patients (36.21%) received a combination 
of surgery/RFA and chemotherapy. Five chemotherapy 
protocols were included in this study: Cetuximab + FOL-
FOX (n = 36; 35.64%); Bevacizumab + XELIRI (n = 29; 
28.71%); Etoposide + carboplatin + natalizumab (n = 20; 
19.80%); Bevacizumab + Xeloda (n = 10; 9.90%); Gemcit-
abine + albumin + paclitaxel (n = 6; 5.94%).

In addition, all patients had received at least one course 
of post-treatment MRI examination for liver metasta-
ses in both initial and validation cohorts. In the initial 
cohort, 55 patients had one post-treatment examina-
tion, 15 patients had two post-treatment examinations, 
9 patients had three post-treatment examinations, 3 
patients had four post-treatment examinations, 1 patient 
had five post-treatment examinations, 2 patients had 
seven post-treatment examinations and 1 patient had 
nine post-treatment examinations; in the validation 
cohort, 29 patients had one post-treatment examina-
tion, 1 patient had two post-treatment examinations. The 
detailed examination protocol was shown in Table 3.

Assessment of liver and liver metastasis segmentation
Seventeen patients with 47 abdominal MRI scans total 
and 30 patients with 61 abdominal MRI scans were ana-
lyzed in the testing dataset and validation cohort, respec-
tively. As shown in Fig.  3 and Table  4, the mean DSC, 
VS and HD for the automatic liver segmentation are 
0.95 ± 0.16, 0.98 ± 0.01, 14.39 ± 5.15  mm in the testing 
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dataset and 0.97 ± 0.04, 0.97 ± 0.04, 13.39 ± 7.47  mm in 
the validation cohort (Fig. 3a-c). The mean DSC, VS and 
HD for the automatic liver metastases segmentation are 
0.87 ± 0.07, 0.94 ± 0.06, 22.67 ± 13.83  mm in the testing 
dataset and 0.85 ± 0.08, 0.89 ± 0.09, 25.53 ± 12.11  mm 

in the validation cohort (Fig. 3d-f ). In a subgroup analy-
sis, the segmentation results between patients with more 
than five target lesions or not were compared, which 
showed no significant difference in both the testing data-
set and validation cohort.

Table 2  Main baseline demographics and clinical characteristics of patients in the cohorts

ADC Apparent diffusion coefficient

Initial cohort Validation cohort P value

Characteristics Training dataset
(n = 52)

Validation dataset
(n = 17)

Testing dataset
(n = 17)

P value Total
(n = 86)

(n = 30)

Age(y) 61 ± 10 58 ± 11 59 ± 11 0.737 60 ± 11 59 ± 10 0.592

Gender [N (%)] 0.398 0.071

    Male 21(40.38%) 10 (58.82%) 7 (41.18%) 38 (44.19%) 19 (63.33%)

    Female 31(59.62%) 7 (41.18%) 10 (58.82%) 48 (55.81%) 11 (36.67%)

Location of the primary tumor [N 
(%)]

0.992 0.135

    Rectal cancer 10 (19.23%) 4 (23.53%) 2 (11.76%) 16 (18.60%) 8 (26.67%)

    Colon cancer 16 (30.77%) 5 (29.41%) 6 (35.29%) 27 (31.40%) 7 (23.33%)

    Breast cancer 8 (15.38%) 2 (11.76%) 2 (11.76%) 12 (13.95%) 3 (10.00%)

    Renal cancer 4 (7.70%) 1 (5.88%) 1 (5.88%) 6 (6.98%) 5 (16.67%)

    Prostate cancer 3 (5.77%) 0 (0.00%) 2 (11.76%) 5 (5.81%) 0 (0.00%)

    Small bowel cancer 3 (5.77%) 1 (5.88%) 1 (5.88%) 5 (5.81%) 3 (10.00%)

    Lung cancer 2 (3.85%) 2 (11.76%) 1 (5.88%) 5 (5.81%) 4 (13.33%)

    Others 6 (11.54%) 2 (11.76%) 2 (11.76%) 10 (11.63%) 0 (0.00%)

Number of target lesions [N (%)] 0.345 0.006

    1 14 (26.92%) 2 (11.76%) 6 (35.29%) 22 (25.58%) 8 (9.30%)

    2 7 (13.46%) 4 (23.53%) 1 (5.88%) 12 (13.95%) 4 (4.65%)

    3 4 (7.69%) 2 (11.76%) 0 (0.00%) 6 (6.98%) 10 (11.63%)

    4 6 (11.54%) 3 (17.65%) 5 (29.41%) 14 (16.28%) 2 (2.33%)

     ≥ 5 21 (40.38%) 6 (35.29%) 5 (29.41%) 32 (37.21%) 6 (6.98%)

Baseline lesion size (cm) 6.6 7.0 5.6 0.813 6.5 4.7 0.126

Baseline lesion volume (cm3) 308.51 214.70 55.83 0.801 240.02 61.37 0.615

ADC value of baseline lesion 
(mm2/s)

1.1 1.2 1.2 0.903 1.1 1.0 0.090

Table 3  The MRI examination protocols

Initial cohort Validation cohort

Time of MRI No. patients No. lesions Total of MRI 
scans

No. patients No. lesions Total 
of MRI 
scans

Baseline 86 676 86 30 132 30

1st post-treatment 86 651 172 30 138 60

2nd post-treatment 31 245 203 1 9 61

3rd post-treatment 16 106 219 - - -

4th post-treatment 7 56 226 - - -

5th post-treatment 4 24 230 - - -

6th post-treatment 3 16 233 - - -

7th post-treatment 3 14 236 - - -

8th post-treatment 1 7 237 - - -

9th post-treatment 1 7 238 - - -
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Accuracy of the treatment response assessment
Seventeen patients with 31 pairs of abdominal MRI 
scans and 30 patients with 31 pairs of abdominal MRI 
scans were analyzed in the testing dataset and validation 
cohort, respectively. The response assessment results in 
the testing dataset and validation cohort are shown in 
Fig. 4 using a confusion matrix. According to the confu-
sion matrix, the accuracies of R1, R2 and automated seg-
mentation-based response assessment were 0.64 (95%CI: 
0.47–0.79), 0.54 (95%CI: 0.38–0.71), and 0.74 (95%CI: 
0.57–0.87) in the testing cohort (P values: R1vs. R2: 0.001; 
R1 vs. automated segmentation: 0.001; R2 vs. automated 

segmentation: 0.025) and 0.77 (95%CI: 0.60–0.89), 0.65 
(95%CI: 0.47–0.79), and 0.74 (95%CI: 0.57–0.87) in the 
validation cohort (P values: R1vs. R2: 0.001; R1 vs. auto-
mated segmentation: 0.051; R2 vs. automated segmenta-
tion: 0.001). Figure 5 showed the ROC plots in the testing 
dataset and validation cohort, and the AUC values of R1, 
R2, and automated segmentation-based assessment were 
0.73, 0.64, and 0.83, respectively, in the testing dataset, 
and 0.81, 0.73, 0.83, respectively, in the validation cohort. 
Example results of the treatment response assessment 
based on manual and automated segmentation are shown 
in Fig. 6.

Fig. 3  Notched box plots of the segmentation results in the testing dataset and validation cohort. a-c the DSC, VS, and HD of liver segmentation; 
d-f: the DSC, VS and HD of liver metastases segmentation. DSC: Dice similarity coefficient; HD: Hausdorff distance; VS: Volumetric similarity

Table 4  The segmentation results of liver and liver metastases in the testing dataset and validation cohort

DSC Dice similarity coefficient, VS Volumetric similarity, HD Hausdorff distance

Testing dataset Validation cohort

Target Lesions < 5 Target Lesions ≥ 5 P value all Target Lesions < 5 Target Lesions ≥ 5 P value all

Liver segmentation

    DSC 0.95 ± 0.02 0.95 ± 0.02 0.976 0.95 ± 0.16 0.97 ± 0.04 0.96 ± 0.04 0.116 0.97 ± 0.04

    VS 0.98 ± 0.01 0.98 ± 0.01 0.465 0.98 ± 0.01 0.98 ± 0.04 0.97 ± 0.04 0.122 0.97 ± 0.04

    HD (mm) 15.34 ± 5.54 13.15 ± 4.43 0.635 14.39 ± 5.15 12.98 ± 7.51 14.30 ± 7.52 0.617 13.39 ± 7.47

Liver metastases segmentation

    DSC 0.88 ± 0.07 0.88 ± 0.08 0.433 0.87 ± 0.07 0.86 ± 0.09 0.84 ± 0.09 0.836 0.85 ± 0.08

    VS 0.94 ± 0.05 0.94 ± 0.06 0.477 0.94 ± 0.06 0.90 ± 0.10 0.88 ± 0.09 0.814 0.89 ± 0.09

    HD (mm) 20.11 ± 14.93 25.99 ± 11.78 0.065 22.67 ± 13.83 23.81 ± 12.86 26.31 ± 9.48 0.081 25.53 ± 12.11



Page 8 of 12Liu et al. BMC Cancer         (2022) 22:1285 

Consistency of the treatment response assessment
As shown in Table  5, the agreement of treatment 
response assessment based on automated segmenta-
tion and reference standard was moderate [K value: 0.51 
(0.23–0.79)] in the testing dataset and in the validation 

cohort [K value: 0.60 (0.34–0.84)], which were approxi-
mately equal to the agreement between R1 and refer-
ence standard [K value: testing dataset: 0.48 (0.21–0.74); 
validation cohort: 0.63 (0.43–0.84)]but higher than the 
agreement between R2 and reference standard [K value: 

Fig. 4  The confusion matrix of the response assessment results with respect to reference standard. R1: attending radiologist; R2: fellow radiologist

Fig. 5  Receiver operating characteristic curves (ROC) for the therapy response assessment. a attending radiologist (R1) in the testing dataset; b 
fellow radiologist (R2) in the testing dataset; c automated segmentation-based assessment in the testing dataset; d R1 in the validation cohort; e R2 
in the validation cohort; f automated segmentation-based assessment in the validation cohort
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testing dataset: 0.30 (0.11–0.40); validation cohort: 0.45 
(0.20–0.69)]. In addition, compared with the moderate 
agreement between R1 and R2 [K value: testing dataset: 
0.58 (0.33–0.84); validation cohort: 0.55 (0.32–0.78)], 
the agreement was improved to substantial between R1 
and automated segmentation-based assessment [K value: 
testing dataset: 0.85 (0.70–1.00); validation cohort: 0.74 
(0.53–0.96)].

Discussion
In this study, our results showed that the deep learning-
based 3D U-Net can be trained to segment liver and 
liver metastases on DWI images and could subsequently 
reflect treatment response accurately according to the 
RECIST 1.1 in patients with liver metastases. The accu-
racy of the automated segmentation-based assessment 
was 0.74 in the validation cohort, and the AUC achieved 
0.83. The output was comparable to an attending radiolo-
gist’s measurement but superior to a fellow radiologist.

The effects of therapies on patients with liver metas-
tases are commonly evaluated with long and frequent 
imaging follow-ups. Measurement of size is a key ele-
ment of MR interpretation as well as therapeutic deci-
sion-making. Reproducible measurements of size and 
optimization of them are therefore important. Several 
recent studies have shown that the size-based RECIST 
1.1 criteria provide an accurate measure of response to 
targeted cancer therapy and which has been widely used 
in most clinical trials [16]. However, there has been some 
concern that RECIST may significantly underestimate 

Fig. 6  Example results of the treatment response assessment on DWI image. a liver metastasis from breast cancer in a 55-year -old female 
patient who was classified as having stable disease based on the manual liver metastasis segmentation but having partial response based on 
the automated liver metastasis segmentation; b liver metastases from rectal cancer in a 67-year-old male patient who was classified as showing 
progressive disease on the basis of manual and automated liver metastases segmentation

Table 5  The agreement of treatment response assessment

R1: an attending radiologist with 8 year’s reading experience; R2: a fellow 
radiologist with 4 year’s reading experience

Testing dataset Validation cohort

R1 vs. reference standard 0.48 (0.21–0.74) 0.63 (0.43–0.84)

R2 vs. reference standard 0.30 (0.11–0.40) 0.45 (0.20–0.69)

Automated segmentation vs. 
reference standard

0.51 (0.23–0.79) 0.60 (0.34–0.84)

R1 vs. R2 0.58 (0.33–0.84) 0.55 (0.32–0.78)

R1 vs. Automated segmentation 0.85 (0.70–1.00) 0.74 (0.53–0.96)

R2 vs. Automated segmentation 0.46 (0.20–0.72) 0.50 (0.24–0.75)
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or overestimate the disease progress due to poor agree-
ment between observers on tumor quantity [17]. 
Therefore, an objective and accurate quantitative meas-
urement of the lesions on both baseline and post-treat-
ment examinations has practical value for full playing to 
improve the performance of RECIST.

An algorithm based on deep learning was proposed in 
this study for segmenting the metastatic lesion and cal-
culating the size of the tumor to overcome the limita-
tions of manual tumor response assessment. Through 
reliable measurements of hepatic metastases, deep 
learning-based quantification might improve RECIST 
criteria performance. The application of deep learning-
based algorithms for accurate and efficient organ and 
tumor segmentation has been widely reported, for exam-
ple, myocardium segmentation [18], ventricle segmen-
tation [19] and brain metastases segmentation [20, 21]. 
Many specified algorithms have been developed for liver 
and liver lesions segmentation [14, 22, 23]. Given that the 
main purpose of this study is to explore the application 
value of the deep learning model in the actual clinical 
practice, instead of exploring a new segmentation model. 
Therefore, in this study, we selected the traditional and 
classic 3D U-Net [24] model for liver and liver metastases 
segmentation, for which with stable segmentation per-
formance. The 3D U-Net algorithm has previously been 
proven to achieve excellent segmentations of liver metas-
tases [25], which is similar to our results.

In this study, we obtained satisfied liver metastases seg-
mentation with a high DSC of 0.87 ± 0.07 in the testing 
dataset and 0.85 ± 0.08 in the validation dataset, which 
seems higher than the semi-automatic liver metasta-
ses segmentation on CT images performed by Eugene 
Vorontsov (DSC values of 0.14, 0.53, and 0.68 for the 
metastatic lesion smaller than 10  mm, 10–20  mm, and 
larger than 20 mm) [12].

Two reasons may be attributed to this. First, to segment 
liver metastases automatically, we developed a two-step 
deep learning-based 3D U-Net. The combination of the 
two 3D U-Nets could lead to efficient liver metastases by 
excluding the interference factors outside the liver, such 
as the bowel. Second, we chose DWI images as the input 
images for the segmentation model development. The 
signal intensity of metastatic lesions is very high com-
pared with the surrounding liver parenchyma, and the 
lesion borders can be defined with exceptional precision 
when the vessel signal is suppressed.

In addition, high intraclass correlation coefficients 
among different radiologists for metastasis size measure-
ment on DWI images have been reported compared with 
other sequences. Lestra et al. [9] compared different MRI 
sequences on the dimension measurement variability of 
liver metastases and concluded that DWI might be the 

most reliable MR sequence for monitoring size variations. 
Sankowski et al. [26] found that there was no significant dif-
ference between enhanced T1WI and DWI for the detec-
tion of liver metastases. Lavelle et  al. [27] found that the 
reference standard and DWI showed an excellent agree-
ment according to the RECIST evaluation. This is also the 
reason why the DWI sequence was selected in this study.

The precise automated segmentation of liver metasta-
ses lays a strong foundation for the subsequent RECIST 
1.1 assessment. In the validation cohort, based on the 
automated segmentation of liver metastases, 24/31 pairs 
of examinations were correctly classified according to 
the RECIST criteria with an accuracy of 0.74 and AUC 
of 0.83, the consistency to manual segmentation-based 
assessment was moderate [K value: 0.60 (0.34–0.84)]. The 
results were superior to that of a fellow radiologist and 
comparable to that of a junior attending radiologist when 
measuring the same pairs of 31 scans. Among the 7 pairs 
of examinations mistakenly classified, 3 PD cases were 
defined as SD, 2 SD cases as PR, and 2 PR cases as PD. 
Reasons for these mistakes included a poor performance 
in tumor segmentation, errors in the selection of measur-
able targets, and intercurrent diseases.

Moreover, in this study, the accuracy and consistency of 
the response assessment in the testing dataset are lower 
than those of the validation cohort for both the radiologists 
and the deep learning-based model. The reason may be 
that the ratio of patients with more than 5 target lesions in 
the testing dataset was significantly higher than that in the 
validation cohort as shown in Table 2. This may indicate 
that the number of target lesions will affect the accuracy of 
treatment response assessment. However, restricted by the 
limited retrospective data, further subgroup analysis of the 
effect of number on assessment was not conducted here.

There were several limitations of our study. Firstly, 
our study has a limited sample size. Although the deep 
learning-based model provided satisfactory results for 
assessing tumor response in the testing and validation 
cohort, data from multiple centers and different centers 
are urgently needed to assess the robustness and repro-
ducibility. Secondly, limited by the data size, subgroup 
analyses divided by the location of primary cancer, the 
number of target lesions, and the scanning vendors were 
not performed. Lastly, the whole data set was based on 
only one set of radiologists’ manual segmentations. Sev-
eral independent manual segmentations of liver and liver 
metastases by different radiologists would be required to 
study the variability between and within observers.

In conclusion, using the deep learning-based liver 
metastases segmentation and the rule-based program 
could evaluate therapy response according to RECIST 1.1 
criteria, with comparable results to the junior radiologist 
and superior to the fellow radiologist.
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