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Abstract 

As the dominant component of the tumor microenvironment, cancer-associated fibroblasts (CAFs), play a vital role in 
tumor progression. An increasing number of studies have confirmed that CAFs are involved in almost every aspect of 
tumors including tumorigenesis, metabolism, invasion, metastasis and drug resistance, and CAFs provide an attrac-
tive therapeutic target. This study aimed to explore the feature genes of CAFs for potential therapeutic targets and 
reliable prediction of prognosis in patients with gastric cancer (GC). Bioinformatic analysis was utilized to identify the 
feature genes of CAFs in GC by performing an integrated analysis of single-cell and transcriptome RNA sequencing 
using R software. Based on these feature genes, a CAF-related gene signature was constructed for prognostic predic-
tion by LASSO. Simultaneously, survival analysis and nomogram were performed to validate the prognostic predictive 
value of this gene signature, and qRT–PCR and immunohistochemical staining verified the expression of the feature 
genes of CAFs. In addition, small molecular drugs for gene therapy of CAF-related gene signatures in GC patients were 
identified using the connectivity map (CMAP) database. A combination of nine CAF-related genes was constructed 
to characterize the prognosis of GC, and the prognostic potential and differential expression of the gene signature 
were initially validated. Additionally, three small molecular drugs were deduced to have anticancer properties on GC 
progression. By integrating single-cell and bulk RNA sequencing analyses, a novel gene signature of CAFs was con-
structed. The results provide a positive impact on future research and clinical studies involving CAFs for GC.
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Background
The latest statistics for GLOBOCAN 2020 showed 
that gastric cancer (GC) was the fifth most frequently 
diagnosed cancer, and the incidence is especially high 
in Eastern Asian countries, and it is extremely harm-
ful with mortality rate that ranks the fourth in cancer-
related death after lung cancer, colorectal cancer, and 
liver cancer [1, 2]. Following the successful applica-
tion of targeted therapy and immunotherapy in clinical 
practice, we present a novel strategy in advanced GC. 
However, the therapeutic efficacy did not achieve the 
desired improvement, which emphasizes the need to 
focus not only on the tumor cells themselves but also 
on the significance of the surrounding environment, 
the tumor microenvironment (TME), which comprises 
all nontumor cells and their noncellular components, 
such as the extracellular matrix (ECM) and soluble 
molecules [3]. The crosstalk between tumor cells and 
the TME directly influences tumor cell growth and can-
cer progression. Among the different nontumor cells, 
cancer-associated fibroblasts (CAFs) deserve special 
attention.

Activated fibroblasts, also defined as CAFs, have long 
been considered to coevolve with tumor cells as the dom-
inant component of the tumor stroma [4]. CAFs secrete a 
variety of cytokines, growth factors and chemokines that 
form fertile soil for the growth of tumor cells; for exam-
ple, CAFs secrete interleukin-6 (IL-6) or interleukin-11 
(IL-11), resulting in tumor progression and the devel-
opment of chemotherapeutic resistance [5–7]. In turn, 
tumor cells secrete numerous factors such as transform-
ing growth factor-β (TGF-β), epidermal growth factor 
(EGF) and C-X-C motif chemokine ligand 12 (CXCL12), 
which can activate and educate CAFs [8]. Accumulating 
studies have confirmed that CAFs are involved in almost 
every aspect of tumors, including tumorigenesis, metab-
olism, invasion, metastasis and drug resistance, and CAFs 
provide an attractive therapeutic target [9–11].

Notably, researchers are presently unable to achieve 
breakthroughs in developing viable therapies for CAFs 
owing to the highly dynamic heterogeneity of CAFs. 
Indeed, CAFs have diverse potential cellular origins, 
including resident fibroblasts, mesenchymal stem 
cells, adipocytes, epithelial cells, mesothelial cells and 
endothelial cells, and form various subpopulations in 
different tumor types [8, 10, 12]. Additionally, CAF het-
erogeneity could possibly be the result of a common 
precursor in cells at various stages of differentiation that 
have adopted distinct states based on signaling cues both 
inside and outside the TME. Currently, α-smooth mus-
cle actin (αSMA), fibroblast-specific protein 1 (FSP1), 
fibroblast activation protein (FAP), platelet-derived 
growth factor receptor-α (PDGFRα), PDGFRβ, discoidin 

domain-containing receptor 2 (DDR2), insulin-like 
growth factor-binding protein 7 (IGFBP7), caveolin‐1 
(CAV1), CD90 (Thy1), tenascin‐C (TNC), periostin 
(POSTN), podoplanin (PDPN), decorin (DCN), desmin, 
vimentin and integrin β1 are considered activated CAF 
markers, and no single specific biomarker can catego-
rize the whole CAF population or distinguish CAFs from 
all other cell types [8, 10, 13, 14]. As a result, identifying 
CAFs is extremely difficult and poses a huge challenge for 
targeted treatment of CAFs.

Additionally, the exploration of the prognostic value 
of CAFs is also an important reference for individual-
ized treatment, and numerous studies have attempted 
to validate CAFs as potential pathological indicators 
of tumor prognosis. In this regard, αSMA serves as a 
hallmark of prognostic factors. Immunohistochemi-
cal (IHC) staining analysis of hepatocellular carcinoma 
(HCC) patients shows a significantly shorter disease-
free survival rate in patients with tumors overexpress-
ing α-SMA [15, 16], and the same negative correlation 
was shown in colorectal cancer (CRC) and breast can-
cer [17, 18]. Furthermore, the differential expres-
sion signatures of specific genes in CAFs can be used 
as prognostic tools. In CRC research, Alexandre et  al. 
revealed that high expression levels of the 4-gene signa-
ture identify patients with poor prognosis in the CAF 
cluster [19]. Zou et  al. also reported a 12-gene signa-
ture of CAFs and its high expression was significantly 
correlated with pathological and increased clinical 
events of tumor progression of HCC [20]. However, 
these CAF-related signatures do not overlap, which 
presents the same nonspecificity concern in the appli-
cation of CAFs. Therefore, further clarification of the 
relationship between CAFs and prognosis and its value 
in predicting survival will also accelerate the transition 
from basic CAF research to clinical application. There-
fore, the exploration of new biomarkers of CAFs will be 
of significance.

In this study, we aimed to identify the gene signature of 
CAFs in GC by performing an integrated analysis of sin-
gle-cell RNA sequencing (scRNA-seq) and transcriptome 
RNA sequencing (RNA-seq) with data from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO). Based on CAF-related genes, we constructed a 
risk score for prognostic prediction by LASSO, and the 
analysis revealed that the risk score can be an independ-
ent prognostic factor. Then, we established a nomogram 
model to perform quantitative scores derived from the 
risk score and other clinicopathological features. In addi-
tion, we aimed to identify promising small molecular 
drugs for gene therapy of CAF-related gene signatures in 
GC patients.
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Materials and methods
Data acquisition
We downloaded the expression matrix of 414 GC and 
36 normal gastric samples, and 387 GC samples con-
tained overall survival (OS) data. The clinical informa-
tion included age, gender, pathologic stage, grade and 
fraction genome altered, which were procured from the 
UCSC Cancer Genomics Browser. As a validation set, 
the GSE62254 dataset including 300 GC samples was 
downloaded, simultaneously containing OS informa-
tion generated via the GPL570 platform. In addition, we 
downloaded the single-cell transcriptome expression 
profiles of 158,641 cells in 40 samples (29 GC samples 
and 11 normal samples) from GSE183904 via the GEO 
database.

Estimation of immune infiltration
The Microenvironment Cell Populations-counter (MCP-
counter) package has been applied to study the cellu-
lar composition of the microenvironment [21], which 
uses the gene expression matrix to produce the scores 
of immunocytes and stromal cells [22]. Therefore, the 
mRNA data were translated into nontumor cell infiltra-
tion levels within the TME using the MCP-counter pack-
age of R software.

Processing of single‑cell RNA‑seq data
We generated a “Seurat” object based on the tran-
scriptome sequencing data of 158,641 cells using the 
“Seurat” package [23]. The top 2000 genes with highly 
variable features accounting for cell-to-cell differences 
were identified by variance analysis and subjected to 
data scaling and centering. These variable genes were 
further used for principal component analysis (PCA) 
with linear dimensionality reduction. The top 35 prin-
cipal components (PCs) were applied for graph-based 
clustering (res = 0.4) to identify distinct groups of cells. 
The cell clusters were visualized based on the “UMAP” 
method of dimensionality reduction. Clusters were 
annotated through the “SingleR” package based on the 
reference gene list of 713 samples from the “HumanPri-
maryCellAtlasData” function [24].

Risk assessment model construction and evaluation
In the creation of innovative clinical prediction models, 
the least absolute shrinkage selection operator (LASSO) 
regression model is typically utilized [25]. Based on the 
gene signature generated by LASSO, we calculated the 
risk score for each patient by applying the following 
formula:

βi refers to the coefficients of each gene; i represents 
the expression value of the gene; and n is the number of 
genes selected.

Clinical value of the risk assessment model
The samples were divided into high-risk and low-risk 
groups by the threshold of median score, and the high- 
and low-risk groups were further analyzed for differential 
expression with human leukocyte antigens (HLA) and 
immune checkpoints.

A nomogram was constructed to calculate an indi-
vidual’s probability of OS by using the package “rms” of 
R software. In the nomogram, the samples were scored 
according to the risk assessment model and clinical indi-
cators. The final sum of the scores was expected to be the 
corresponding 1-, 3-, and 5-year survival probability. The 
calibration curve was drawn by comparing the predicted 
probability of the nomogram with the Kaplan–Meier esti-
mate of the observed survival probability.

Gene set enrichment analysis (GSEA)
To further research the potential mechanism between 
diverse risk groups (median value), we performed GSEA 
[26]. GSEA was performed to find enriched terms that 
were predicted to have a correlation with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway in C2 
(“c2.cp.kegg.v7.4.symbols”) [27]. P < 0.01 and FDR (false 
discovery rate) q < 0.05 were considered to indicate statis-
tical significance.

Identification of potential small molecule drugs
The connectivity map (CMAP) database (http://​www.​broad​
insti​tute.​org) was used to predict potential drugs that may 
reverse or induce the biological states of GC based on the 
differentially expressed genes (DEGs). The DEGs were sub-
mitted to the CMAP database to search for small molecular 
drugs that could be used for GC treatment. The enrichment 
scores ranged from –1 to 1. A negative score suggested that 
the drug could be beneficial for GC treatment.

Validation of the gene signature expression
The human gastric mucosa epithelial cell line (GES-1) 
and six GC cell lines (AGS, HGC-27, MKN-45, SGC-
7901, MGC-803 and BGC-823) were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) or Roswell Park 
Memorial Institute (RPMI) 1640 medium with 10% fetal 
bovine serum following the recommended conditions of 

Risk score =

n

i=1

βi ∗ i

http://www.broadinstitute.org
http://www.broadinstitute.org
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cell culture. Total RNA was extracted by using TransZol 
Up, and cDNA was synthesized and mixed with primers 
(Supplementary Table S1), and placed on the machine 
following the manufacturer’s protocols. The relative 
expression of the gene signature mRNA was analyzed 
by the 2−ΔΔCt method with glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as the internal reference gene.

Twenty pairs of GC tissues and matched adjacent 
normal tissues were proceeded to validate the expres-
sion of the gene signature mRNA in the same opera-
tional and statistical manner as described above.

The protein expression levels of the gene signature were 
compared between normal and malignant tissues with The 
Human Protein Atlas (HPA: https://​www.​prote​inatl​as.​org/).

Statistical analysis
All statistical analyses were performed by using R 
4.0.2. The “limma” package was used to analyze the 
DEGs between tumor and normal samples. The “Sur-
vival” package was used to assess the association of 
each gene with survival. The Survival predictive accu-
racy of the risk assessment model was assessed based 
on a time-dependent ROC curve analysis, and sur-
vival rates were calculated using the Kaplan–Meier 
method. The significance of differences between 
survival curves was determined using the log-rank 
test. Student’s t-test was used to determine the sta-
tistical significance of the differences. P values were 
two-tailed.

Fig. 1  Identification of the feature genes for modeling A, B The relationship between the abundance of fibroblasts and OS in the TCGA and 
GSE62254 dataset. C Dimensionality reduction and cluster analysis. All cells were clustered into 25 clusters. D Annotate cell types according to 
known cell markers. All cells were annotated into 8 cell types. E The status of disease in each cell. All cells were divided into normal and tumor cells. 
F The volcano plot of DEGs in the TCGA dataset

https://www.proteinatlas.org/
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Results
Identification of the feature genes for modeling
To explore the TME in GC patients, we conducted non-
tumor cell infiltration analysis using the MCP-counter 
package and examined the connection between cell 
abundance and OS in TCGA and GSE62254 datasets. 
We noticed that the higher the abundance of fibroblasts 
was, the poorer the survival of patients (Fig. 1A-B). Sub-
sequently, we performed scRNA-seq profiling to identify 
CAF-related marker genes. The top 10 genes that were 
significantly differentially expressed in the cell samples 
were discovered using variance analysis (Figure S1). The 
genes that were strongly related in each component were 
screened using the principal component analysis (PCA) 
approach. Figures S2-3 show a heatmap and dot plot of 
the top 30 significantly correlated gene.

The first 35 PCs represented the main deviations 
of the cells (Figure. S4). According to the “UMAP” 

algorithm and “SingleR”, 158,641 cells were aggre-
gated into 25 clusters and 8 cell types, respectively 
(Fig. 1C-E). As the cutoff criteria was P value = 1.0E-
5, a total of 10,640 DEGs between GC tissue of 9822 
fibroblasts and normal tissue of 3138 fibroblasts were 
identified.

In the TCGA dataset, 10,091 DEGs between GC 
samples and normal samples were obtained by differ-
ential analysis, including 1093 downregulated genes 
and 8998 upregulated genes (Fig. 1F). We regarded the 
DEGs that had a consistent downregulated/upregu-
lated trend with the single-cell results as the stable 
fibroblast-associated DEGs. Additionally, by survival 
analysis, 6389 prognosis-related genes were obtained. 
From the intersection of the stable CAF-related DEGs 
and the prognosis-related genes, a total of 280 feature 
genes overlapped for further modeling (supplementary 
Table S2).

Fig. 2  Construction and validation of the prognostic signature. A, B A 9-gene risk assessment model was constructed by the LASSO Cox regression 
model. C, D The Kaplan–Meier survival plots of high-risk and low-risk groups in the TCGA and GSE62254 dataset. E, F The ROC curves of the 
prognostic signature in 1-, 3-, and 5-year survival in the TCGA and GSE62254 dataset
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A 9‑gene risk assessment model for predicting OS
We obtained a gene signature containing 9 genes by 
reducing the dimensionality of these 280 feature genes 
with the LASSO Cox regression model (Fig. 2A-B). Then, 
Cox analysis was performed on the 9 genes to construct 
a risk assessment model. The coefficient of each gene 
was obtained (supplementary Table S3). Survival analy-
sis based on the median risk score showed that survival 
time was significantly shorter in the high-risk group than 
in the low-risk group (Fig. 2C). Simultaneously, we stud-
ied the differences in the abundance of the two groups. 
We found that patients in the high-risk group also had 
a higher abundance of fibroblasts, which was consistent 
with our previous results. Then, ROC curves were drawn 
to verify the risk assessment model, and the AUC values 
of 1-, 3- and 5-year survival were 0.670, 0.661 and 0.729, 
respectively (Fig.  2E). In addition, we further validated 
the model with the GSE62254 dataset (Fig. 2D, F).

Risk score as a good differentiator and an independent 
prognostic factor
The differential expression of human leukocyte antigens 
(HLA) and immune checkpoints in the high- and low-
risk groups was analyzed in the TCGA dataset (Fig. 3A-
B) and the GSE62254 dataset (Fig. 3C-D). we could find 
significant differences in the relevant targets between the 
high- and low-risk groups.

Univariate and multivariate Cox regression analyses 
were performed in the TCGA dataset, and the risk score 
was significantly associated with OS in univariate Cox 
regression analysis (HR = 2.135, 95% CI = 1.506–3.026, 
P < 0.001; Fig. 3E). Likewise, multivariate analysis showed 
that the risk score was an independent prognostic indica-
tor in GC (HR = 2.218, 95% CI = 1.559–3.156, P < 0.001; 
Fig. 3F).

Construction of the nomogram and calibration curves
We constructed the nomogram by combining the risk 
score with other clinicopathological risk factors. The 
nomogram showed that our risk score was the most 
important factor among the various clinical parameters 
(Fig. 4A). In addition, calibration curves revealed that the 
predicted and actual survival rates were well matched at 
1-, 3-, and 5-years (Fig. 4B-E).

The risk assessment model had a favorable prognostic 
prediction in patients with different clinical characteristics
The risk score was used to predict the OS of the patients 
according to age, gender, pathologic stage, grade and 
altered fraction genome. We could see that the survival 
time of the high-risk group was obviously shorter than 
that of the low-risk group in each group (Fig.  5A-J). 
Therefore, we could use the risk assessment model to 

predict the OS of patients in clinical practice, providing 
a strong reference for doctors to adjust the treatment 
promptly.

GSEA and small molecular drug screening
We performed differential expression analysis between 
the high- and low-risk groups according to the median 
risk score. A total of 5803 DEGs, including 439 down-
regulated DEGs and 5364 upregulated DEGs, were finally 
identified using the screening criteria: P value < 1E-5 
(Fig. 6B). We used the GSEA method to analyze a whole-
genome dataset of GC samples between the different risk 
groups to further understand the molecular mechanism. 
GSEA analysis using c2 as a reference gene set revealed 
that biological processes of ECM receptor interaction, 
focal adhesion, gap junction, cell adhesion molecules 
cams and cytokine receptor interaction were significantly 
related to the high-risk group (Fig. 6A).

All the DEGs related to risk score were divided into 
upregulated and downregulated groups, which were 
uploaded to the CMAP database. Three small molecular 
drugs with anticancer properties on GC progression were 
identified (enrichment score < 0 and p < 0.0001): genistein, 
adiphenine and biomycin (Supplementary Table S4). The 
chemical structures of these drugs are shown (Fig. 6C).

Validating the Expression of nine Genes
We used quantitative reverse transcription PCR (qRT–
PCR) assays to compare the expression of the gene sig-
nature in GC cell lines and normal cell line. Different 
differential expression can be found in different cell lines, 
and the results are detailed in Fig. 7. The mRNA levels of 
GLT8D1, NRP1, PPP1R26, SERPINE1, TMSB15A and 
ZFYVE27 showed high expression overall, and AARSD1 
was highly expressed only in HGC-27, MGC-803 and 
BGC-823 cells, yet GPX3 and OLFM3 were significantly 
lower in GC cell lines. Again, as shown in Fig. 8, there is 
a significant difference in the relative expression levels of 
these genes in tumor tissue and matched adjacent normal 
tissues. In addition, immunohistochemical staining was 
performed to confirm the protein expression of the gene 
signature using the HPA online site. We compared the dif-
ferential expression of seven target genes in normal and 
malignant tissues, except for TMSB15A and OLFM3. The 
degree of staining for GPX3 and PPP1R26 was stronger in 
normal tissues than in cancer tissues; on the other hand, 
ZFYVE27 showed the opposite trend (Fig. 9).

Discussion
Emerging clinical applications of targeted therapy and 
immunotherapy underscore the importance of the 
TME, the complex regulatory network of which poses 
great challenges to therapeutic efficacy. In light of the 
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dominant sector in the TME and its functional het-
erogeneity, CAFs have gradually become an intense 
area of research. On the one hand, it is important for 

further exploration of tumor mechanisms in CAFs to 
develop more novel therapeutic targets, but the predic-
tion of prognosis is also a vital part of clinical decisions. 

Fig. 3  The clinical value of this signature. The boxplot of differences in human leukocyte antigens and high- and low-risk groups in the TCGA and 
GSE62254 dataset A, C. The boxplot of differences in checkpoints and high- and low-risk groups in the TCGA and GSE62254 dataset B, D. Forest plot 
of prognostic signature and clinical risk factors, the univariate Cox regression analysis in the TCGA dataset E and the multivariate Cox regression 
analysis F 
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Fig. 4  The construction of nomogram. Nomograms for predicting the OS in the TCGA dataset A. Calibration curves of nomograms for predicting 
the OS of 1-, 3-, and 5-year B-D. The ROC curves of the prognostic signature combined with clinical information in 1-, 3-, and 5-year survival in the 
TCGA dataset E 
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However, the specific markers and origin of CAFs remain 
controversial. In this study, by integrated single-cell and 
RNA sequencing analysis, a novel signature in GC was 
developed to identify feature genes of CAFs.

CAFs, as the absolute dominant component of the 
tumor stroma, secrete various components that par-
ticipate in constituting and remodeling the ECM. We 
observed that the higher the abundance of fibroblasts 
was, the poorer the survival of patients with GC. The 
reason for this may be that the dense ECM forms a 
physical barrier that promotes tumor progression and 
prevents drug penetration [28]. As with the results of 
our analysis, fibroblast content can be utilized to pre-
dict prognosis, which has been validated in numerous 
tumors [29–33]. In particular, there is a highly aggressive 
subtype of GC with a very poor prognosis –scirrhous 

gastric cancer (SGC), which is characterized by rapid 
infiltration and proliferation of tumor cells with exten-
sive stromal fibrosis [34]. In this fibrotic TME of SGC, 
researchers explored the biological behavior by con-
structing SGC cell lines and mouse models [35], gradu-
ally depicting the crosstalk between tumor cells and 
CAFs [34, 36].

CAFs have been demonstrated to promote migration 
and EMT in GC by activating the JAK2/STAT3 signal-
ing pathway through the secretion of IL-6 [5], as well 
as activation of the ERK1/2-SP1-ZEB2 pathway via the 
secretion of IL-33 [37]. Other factors induced by CAFs, 
such as IL-11, IL-22, IL-17a, FGF9, TGFβ1, lumican, 
LOXL2, SDR1 and CXCL12, are also involved in the 
migration and invasion of GC [38–40]. Likewise, CAF-
derived galectin-1 and HGF can promote angiogenesis, 

Fig. 5  Independent prognostic analysis of the risk assessment model and different clinical characteristics. The Kaplan–Meier survival plots of 
patients with age > 65 and ≤ 65 A, B; Males and females C, D; Stage I-II and Stage III-IV E, F; tumour grading G1-2 and G3-4(G, H); High-fraction 
genome altered Low-fraction genome altered I, J 
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supporting the progression of GC [41, 42]. Acquired 
drug resistance severely affects patient treatment prog-
nosis. Numerous studies have shown that CAFs play an 

important role in mediating drug resistance [43]. CAFs 
can regulate drug resistance via the secretion of the IL-
11-mediated gp120/JAK/STAT3/Bcl2 pathway [7], and 

Fig. 6  Gene set enrichment analysis and Connectivity map analysis. A The upregulated KEGG pathways of top 5 between high-and low-risk groups. 
B The volcano plot of DEGs between high-and low-risk groups. C The chemical structures of three small molecule drugs
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activate the PI3K/AKT signaling pathway by generat-
ing IL-8, which causes NF-B activation and cisplatin 
resistance [44]. In addition, Yang et al. found that CAFs 
can promote chemoresistance by mediating VEGF/
NRP2 signaling via CXCL12 secretion [45]. Emerg-
ing evidence has demonstrated that CAFs can also 
affect tumor progression and drug resistance by form-
ing extracellular vesicles (EVs). Studies have shown 
that CD9-positive exosomes generated from CAFs can 
be taken up by SGC cells, which promote cancer cell 
migration and invasion by activating the MMP2 sign-
aling pathway [46]. Similarly, exosomal circ_0088300 
derived from CAFs promotes GC malignancy by acti-
vating miR-1305/JAK/STAT1 [47], and annexin A6 in 

CAF-EVs induces drug resistance via activation of β1 
integrin-FAK-YAP [48]. Nonetheless, CAF-derived exo-
somal miRNA-34 and miRNA-139 could inhibit the 
progression of GC [49, 50]. Collectively, the mystery 
of the diverse biological functions of CAFs is gradually 
being unraveled, for which we will also further explore 
the value of their clinical application.

In this study, we performed scRNA-seq profiling to 
reveal the fibroblast subset and identify CAF-related 
marker genes. A total of 280 feature genes were obtained 
with the intersection of the stable CAF-related DEGs 
and the prognosis-related genes. By LASSO Cox regres-
sion, we successfully constructed and validated a novel 
9-gene CAF-related signature to predict the prognosis 

Fig. 7  Relative mRNA expression levels of the prognostic genes in GC cell lines and the human gastric mucosa epithelial cell line (GES-1) using 
qRT–PCR. A: for AARSD1; B: for GLT8D1; C: for GPX3; D: for NRP1; E: for OLFM3; F: for PPP1R26; G: for SERPINE1; H: TMSB15A; I: for ZFYVE27
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of GC, and the signature was confirmed as an independ-
ent predictor of OS by univariate and multivariate Cox 
regression analyses. Most of these CAF-related genes are 
associated with tumorigenesis and cancer progression, 
including GLT8D1 [51], GPX3 [52], NRP1 [53], PPP1R26 
[54], SERPINE1 [55], and TMSB15A [56]. Of these, we 
focused on SERPINE1, one of the genes upregulated 
in this gene signature, which encodes plasminogen 
activator inhibitor-1 (PAI-1). Studies confirm that its 
overexpression is involved in the progression and unfa-
vorable outcomes in various cancers [55]. Sakamoto 

et al. proved that PAI-1 from CAFs stimulated esopha-
geal squamous cell carcinoma (ESCC) cell migration 
and invasion through contact with LRP1 via phospho-
rylation of Akt and Erk1/2 [57]. Furthermore, CAFs 
induced M2 polarization in macrophages by secreting 
CXCL12, which in turn induced PAI-1 secretion and 
enhanced the malignant behavior of HCC [58]. As a 
result, the gene signature we constructed can serve as 
a target reference for CAFs in tumor research. How-
ever, the detailed mechanisms in GC warrant further 
investigation.

Fig. 8  Relative mRNA expression levels of the prognostic genes in GC tissues using qRT–PCR. A: for AARSD1; B: for GLT8D1; C: for GPX3; D: for NRP1; 
E: for OLFM3; F: for PPP1R26; G: for SERPINE1; H: TMSB15A; I: for ZFYVE27
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Subsequently,  we tried to discover promising small 
molecular drugs for gene therapy of CAF-related gene 
signatures in GC patients. Traditional Chinese herbal 
extracts have been demonstrated to be effective in slow-
ing the progression of GC. For example triptonide, a 
small molecule (MW358) extracted from Tripteryg-
ium wilfordii  Hook F, efficiently inhibits development 
and metastasis by blocking the oncogenic Notch1 
and NF-B signaling pathways [59]. Wang et  al. discov-
ered that several natural products inhibit CAF activ-
ity in a series of investigations. By rectifying aberrant 
microRNA expression, astragaloside IV and treponil 
restricted the malignancy-promoting capacity of CAFs 
[60, 61]. In contract, Paeoniflorin suppressed the malig-
nancy of CAFs by decreasing its IL-6 secretion [62]. In 
this study, we screened three small molecular drugs for 
the treatment of CAFs. The one with the most signifi-
cant p value is the one we are interested in, Genistein 
is a phytoestrogen and a naturally occurring chemical 
constituent found primarily in legumes. It has antican-
cer properties, and studies have shown that by targeting 
distinct biological processes, it can suppress the growth 
of various cancer cells [63]. In regard to GC research, 
genistein inhibits tumor cell proliferation by suppress-
ing cancer stem cell-like properties and inducing G2/M 
arrest [64, 65], as well as improving chemotherapy sen-
sitivity by inhibiting ERK1/2 activity [64]. Nevertheless, 

the practical application of these potentially therapeutic 
small molecule compounds requires further exploration 
and validation.

Conclusions
We identified a novel CAF-related gene signature for 
GC by integrating single-cell and bulk RNA sequencing 
analysis, and these differentially expressed genes might 
become valuable prognostic and therapeutic targets. We 
also validated them by multiple approaches and suc-
cessfully screened genistein, adiphenine and viomycin 
as potential therapeutic drugs for the treatment of GC 
patients. However, further studies are still needed to vali-
date the specific mechanisms and effectiveness of these 
differential genes and therapeutic drugs in GC.
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Fig. 9  Immunohistochemistry staining of prognostic genes extracted from the HPA database in GC and normal stomach tissue
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