
Bahmanyar et al. BMC Cancer         (2022) 22:1220  
https://doi.org/10.1186/s12885-022-10320-0

RESEARCH

Anticancer traits of chimeric antigen 
receptors (CARs)‑Natural Killer (NK) cells 
as novel approaches for melanoma treatment
Maryam Bahmanyar1†, Mohammad Kazem Vakil1†, Ghaidaa Raheem Lateef Al‑Awsi2, Seyed Amin Kouhpayeh3, 
Yaser Mansoori1, Behnam Mansoori1*, Ali Moravej1, Abdulbaset Mazarzaei4* and Abdolmajid Ghasemian1* 

Abstract 

Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel 
approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against 
recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells 
(lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logisti‑
cally cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and 
neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have 
several advantages over T cells in the application for therapies such as availability, unique biological features, safety 
profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host dis‑
ease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the 
tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and 
functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. 
Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunothera‑
pies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expand‑
ing and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the 
CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their 
efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME prepara‑
tion and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can 
also overcome therapy limitations.
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Background
Melanoma is among three skin cancers (squamous and 
basal cell carcinoma) with the highest metastatic poten-
tial and mortality rate [1, 2]. Although several drugs 
such as Ipilimumab (anti-CTLA-4) and Nivolumab (anti-
PD1) checkpoint antibodies are applied, a high number 
of patients still do not response to these agents [3, 4]. 
Chimeric antigen receptors (CARs) T cells have been 
applied for relapsed malignancies [5, 6]. Nonetheless, 
some limitations in autologous and allogeneic settings 
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are remained to be solved [7, 8]. Natural killer (NK) cells 
have several advantages over T cells in the application for 
therapies such as availability, unique biological features, 
safety profile, cost effectiveness and more prevalent exist-
ence in tissues [9–12]. In this method, personal cells are 
taken, engineered to synthesize specific receptors and 
expanded ex  vivo and infused into the same patient as 
immunotherapy. The extracellular part of CAR includes 
single chain antigen-specific variable light and heavy 
chain antibodies and the intracellular domain comprises a 
signaling molecule from the cell receptor. More advanced 
CAR molecules also contain co-stimulatory molecules 
(nanobodies, CD28, designed ankyrin repeat proteins or 
DARPins, 4-1BB or CD137, CD3ζ or cytokines) in the 
intracellular domain (Fig.  1). CAR T cells were initially 
employed against recurrent or refractory B cell malig-
nancies [13, 14]. However, advanced stages or pretreated 
patients have insufficient T cells (lymphopenia) amount 
for collection and clinically application.

Additionally, this process is time-consuming and logis-
tically cumbersome. Another limitation of this approach 
is toxicity and cytokine release syndrome (CRS) progress 
and neurotoxicity syndrome (NS) [8, 15, 16]. Considering 
these, circumventing of limitations can be accomplished 

using alternative CAR NK cells. As CD3-CD56+ innate 
lymphoid cells, NK cells play a substantial antimicrobial 
and anticancer role. Inadvertently, NK cells killing effect 
against transformed cells is independent of antigen prim-
ing, major histocompatibility complex molecules and 
target cells expression [17–19]. After insertion of CAR 
construct into the T or NK cell genome, it is expressed 
onto the cell surface. The cells are expanded and injected 
into the cancer patient. CAR can recognize the tumor 
cells and destruct them. Despite advantages of alternative 
CAR NK cells versus CAR T cells, few clinical trials have 
been performed with this regard. As the innate immune 
part, NK cells intrinsically recognize absence of human 
leukocyte antigen (HLA)-proteins which overcome 
escape mechanisms by cancer cells. Several studies have 
deciphered that CAR NK cell based anticancer therapies 
have been highly efficient and rapid with lower costs than 
those of CAR T cells against melanoma [20–24].

NK cells and cancer
NK cells are a versatile component of the innate immu-
nity, divided into two cytokine-producing CD56bright and 
CD56dimCD16+ cells [25]. These cells constitute only 
5–15% of total NK cells and contain innate ability to 

Fig. 1  Detailed effects of CAR construct in signaling; the CAR construct includes first, second and third generations with gradual improvement of 
function. Various signals from CAR molecules lead to the NK cell activation, cytotoxicity, cytokine production, survival and proliferation
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recognize transformed cells [26–28]. NK cells have vari-
ous stimulatory and inhibitory receptors playing a criti-
cal role in the elimination of infected, stressed, foreign 
and cancer cells by activating other immune cells such 
as dendritic cells, B cells and T cells and production of 
pro-inflammatory cytokines [26, 29–31]. These cells have 
various inhibitory and activator receptors. NK cells pro-
duce indispensable levels of INFγ and in NK cells defi-
cient conditions, cure from several tumor cell lines has 
been difficult [32, 33]. Moreover, pre-activated murine 
NK cells combined with radiotherapy has more efficiently 
decreased cancer cells [34]. In melanoma patients, NK 
cells have been existed in peripheral blood as well as in 
tissues with variable results. However, CD56bright and 
CD56dim NK cells subsets may remain without alterations 
in metastatic melanoma patients blood, but their func-
tion may be impaired such as in degranulation, and pro-
duction of IFNγ and NKG2D [35]. The clinical outcome 
of several tumors has been associated with NK cells pri-
mary infiltration and activation. CD57 + KIR+CD56dim 
NK cells as entirely mature and effector cells play an 
important role in melanoma cells combating [36, 37]. 
In lymph nodes, NK cells with high level expression of 
NKp46, CD16, NKG2D, NKp44, DNAM-1 and NKp30 
has been found [38–40]. The efficacy of NK cells based 
therapies against solid tumors in controversial [41, 42]. 
One strategy was to electroporation of these cells with 
two receptor-specific mRNA constructs (CXCR-1 and 
NKG2D) into the tumor microenvironment (TME) of 
peritoneal ovarian cancer xenografts in mice [43, 44]. 
As antibody-dependent cytotoxic cells, NK cells interact 
with α-CTLA-4 antibody which in turn activate these 
cells [45, 46]. A recent clinical trial on 29 late stage (III/
IV) melanoma patients unraveled that NK cells subsets 
were similar in rate among healthy and patients and 
demonstrated low rate of CD56bright NK cell subsets in 
treated melanoma patients [35]. Low CD56bright NK cell 
frequency in melanoma patients treated with Ipilimumab 
was considered as a good result of survival. These cells 
inhibit the T cell responses via CD38, perforin, CD11a 
and IFNγ [47, 48]. Importantly, immune cells such as NK 
cells may deplete in nutrients and exhaust for efficient 
anticancer cytotoxicity in the TME. Indeed, various mel-
anoma cells lines response diversely to NK cell-mediated 
killing due to the diverse expression of various proteins 
[49]. Hence, providing required nutrients is necessary. In 
addition to the cytotoxicity against melanoma cells, NK 
cells promote their recruitment via High Mobility Group 
Box-1 (HMGB1) protein [50]. Melanoma cells mainly 
express NKG2D and DNAM-1 ligands but not ULBPs 
or nectin-2, which suggests that NK cells are activated 
via these receptors against melanoma [51, 52]. Other 
receptors such as MHC class I chain related-proteins A 

(MICA) and B (MICB) or MICA/B, NKp30, NKp44, and 
NKp46 have been also expressed in melanoma cell lines 
[53, 54]. Lower number of CD56bright NK cells in stage IV 
of melanoma can be a prognostic factor and a biomarker. 
Notably, the NK cells number and activity is affected in 
the TME, paving the way for developing novel approaches 
by enhancing their maturation and functionality.

Immune escape mechanisms by melanoma cells
In the primary stage of cancer, various immune cells 
participate in the elimination of melanoma cells, how-
ever, high plasticity of tumor cells leads to immune eva-
sion [55, 56]. A mutation in v-raf murine sarcoma viral 
oncogene homolog (BRAF)-E600 gene occurred in 
about 40–50% of melanoma patients causes resistance 
to monotherapy [57, 58]. In spite of expression of several 
ligands for NK cells by various cancer cells, melanoma 
cells escape responses via cytokines production, immu-
nosuppressive cells activation, lower MHC expression 
and creation of hypoxic tumor microenvironment [59–
61]. Various inhibitory ligands such as HLA-E, galectin 
− 9, PD-L1, CD155 and CD 112 are expressed by mela-
noma cells [62–66]. Furthermore, immunosuppressive 
cytokines and molecules such as adenosine, indoleam-
ine 2,3-dioxygenase (IDO), matrix metalloproteinases 
(MMPs), vascular endothelial growth factor (VEGF), 
arginase-1 (ARG-1), IL-10 and tumor growth factor-β 
(TGF-β) are employed to inactivate the NK cells [67–69]. 
The hypoxic conditions created by melanoma cells alter 
the immune cells activities by expression of HIF-1α. 
These conditions cause [70, 71] the autophagy induction 
in the NK cells and mitigates their responses to cytokines 
such as IL-2, IL-12, IL-15 and IL-21, thereby inhibit-
ing natural cytotoxicity triggering receptors (NCRs) 
and NKG2D NK cells activating receptors. Hypoxia also 
alters the expression of cancer cells ligands.

Sources for NK cells expanding
Seeking and finding those suitable sources for NK 
cells obtainment and expansion is important. NK cells 
are derived from peripheral blood mononuclear cells 
(PBMCs), umbilical cord blood (UCB), bone marrow 
(BM) (healthy or patient-derived), induced pluripo-
tent stem (iPS) cell and immortalized NK cell lines [72]. 
NK-92 cell line is a proper source for convenient and 
sufficient expanding of NK cells [73]. Additionally, high 
cytotoxicity and safety of NK-92 cells (irradiated before 
clinical use) has been verified in preclinical and clini-
cal studies. These cells also lack NKp44 and NKp46 NK 
cells activating receptors [74, 75]. Other NK cell lines 
such as KHYG-1, NKL, NKG, NK-YS, NK-L, NK 3.3, 
EP3138905A1 and YT have been applied for expanding 
[76, 77]. K562 cell line with increased activity has also 
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been developed [78, 79]. A wide anticancer cytotoxic-
ity has been observed using CAR NK cells derived from 
KHYG-1 cells [80]. Due to the probability of activation 
and proliferation of regulatory cells, proper procedure for 
NK cells expanding seems essential. In addition, geneti-
cally modified NK cells to improve their function, per-
sistence and capacity include introduction of genes into 
NK cells (IL-2 and IL-15 coding genes), CARs, NKG2A 
inhibitory receptor downregulation, viral transduction, 
transfection and mRNA electroporation [81, 82]. Regard-
ing clinical trials, Anti-CD33 CAR NK cells for acute 
myeloid leukemia (NCT02944162, PMID: 28054442), 
Allogeneic anti-CD19 CAR NK cells for CD19 + Leuke-
mia (NCT02892695, PMID: 28054442), ROBO1 CAR NK 
cells for Solid tumor expressing ROBO1 (NCT03940820) 
and allogeneic anti-MUC1 CAR pNK cells for MUC1-
positive solid tumor (NCT02839954) have been 
performed.

Immunotherapies using NK cells
NK cells have infiltrated in various cancers differently. 
Targeting CTLA-4 and PD-1 checkpoint inhibitors 
(CPIs) have affected the function of T cells and NK cells 
in cancer treatment [83–85]. CD56dim NK cells express 
PD-1 as a differently expressed ligand on the NK cells 
[86]. Those NK cells expressing PD-1 can improve func-
tionality (cytotoxicity and granzyme + perforin produc-
tion) following PD-1 blockade [87, 88]. Interestingly, NK 
and CD8+ T cells cooperate in melanoma and tumors 
cells. Blockade of other inhibitory receptors such as KIR, 
NKG2A, T cell immunoglobulin and mucin domain-
containing protein 3 (TIM-3) and T cell immunorecep-
tor with Ig and ITIM domains (TIGIT) have been also 
demonstrated [89, 90]. Hence, activated NK cells release 
granzyme B and perforin. Other therapies have included 
cytokine (IL-2, IL-15) therapy, oncolytic viruses and 
specific antibodies (Figs. 2 and 3) [91, 92]. CD16 recep-
tor plays a substantial role in NK cells activity. However, 
variations in allotype of CD16 lead to different affin-
ity of antibodies for appropriate antibody dependent 
cell cytotoxicity (ADCC) induction of NK cells [93–95]. 
Bispecific and Trispecific Killer Cell Engagers (BiKE and 
Trike, respectively) are emerging and promising immu-
notherapies for efficient ADCC by NK cells [96, 97]. 
BiKEs include two single chain variable fragments (scFvs) 
of antibody each specific for CD16 or antigen connected 
by a flexible linker. TriKEs have an additional antigen 
specific chain or cytokine (IL-15). IL-15 has higher effi-
ciency and lower toxicity than IL-2 for NK cells activa-
tion [98, 99]. Furthermore, TriKEs are more efficient in 
NK cells activation and effector function (cytotoxicity 
and interferon gamma/INFγ and tumor necrosis factor 
alpha/TNFα production) [100]. However, not all cancer 

cells express antigens and therefore, expression of virus 
antigens by BiKE and Trike constructs will be promising 
for melanoma cells targeting. Talimogene laherparepvec 
(T-VEC) is a herpes simplex virus-1 (HSV-1) applied 
against melanoma cells [101, 102]. These antigens are not 
expressed by human cells, hence utilization of BiKE and 
Trike for their expression is promising as safer and more 
efficient immunotherapy. CAR NK cells recognize tumor 
antigens not only by CAR, but also through their own 
receptors. Indeed, a balance of inhibitory or provoking 
signals determines the NK cell function. The enhance-
ment of safety and efficacy of CAR NK therapy can be 
achieved through some strategies such as integration of 
suicide genes and silencing NK inhibitory receptors (IL-4 
and IL-7 receptor) [103, 104]. CAR NK cells have some 
limitations in terms of expanding and transducing NK 
cells from donors to achieve clinical response. Obtaining 
high number of NK cells can be achieved by feeder-free, 
bovine serum-free protocol [105]. CAR NK cells have 
shown proper anticancer effect by lower level production 
of INFγ and TNFα. Nevertheless, clinical efficacy and 
infusion persistence within TME is still low using CAR 
NK cells monotherapy against solid tumors despite suf-
ficient safety.

Combinatorial strategies against melanoma using NK cells
There is a scarcity of data regarding CAR NK cell-based 
combination therapies for the melanoma. CAR NK cell 
therapy has unraveled great breakthrough for the treat-
ment of cancers, however, its efficacy is limited for solid 
tumors. Hence utilizing combination therapies with 
chemical anticancer drugs is warranted. Regarding mela-
noma, no previous combination therapies of CAR NK 
cells and chemical agents has been investigated. It was 
demonstrated that synergistic use of OV-IL15C plus epi-
dermal growth factor (EGFR)-CAR NK cells was able to 
suppress glioblastoma (GBM) cells and also enhanced 
the infiltration of NK and CD8+ T cells [106]. Another 
study exhibited that EpCAM-CAR NK-92 cells and 
Regorafenib could synergistically prohibit the colorectal 
cancer cells in vitro and in vivo exhibiting a significantly 
higher efficacy than monotherapy using CAR NK cells. 
Additionally, Bortezomib- modified oncolytic viruses 
(OV) combined with the NK cell infusion therapy exhib-
ited more efficient anticancer effects [107, 108].

Limitations of NK cells‑based immunotherapies
The requirement for cytokine support for NK cells acti-
vation is an important limitation for successful clinical 
therapy despite their benefits for long-term low toxicity 
[26, 109]. In addition, the use of IL-2 and IL-15 cytokines 
for the proliferation of NK cells is associated with toxicity 
and neutropenia. Moreover, IL-2 activates the regulatory 
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T (Treg) cells which inhibit the NK cells activation [110]. 
To overcome this problem, IL-2-diphteria toxin and 
lymphodepleting agents have been applied prior to the 
infusion of NK cells [111]. Furthermore, TME leads 
to inhibition of NK cells by some factors such as Tregs, 
MDSCs, tumor growth factor-β (TGF-β), CD20, HLA-
E, galactin-9 and CD8 [31, 112–114]. It was exhibited 
that viral transduction leads to higher NK cells apoptosis 
compared to the CAR T cells.

CAR NK cells therapies against melanoma
There is a scarcity of data regarding the applications 
of CAR NK cells against melanoma (Fig.  3). Given the 
success of CAR NK cells in hematological cancer, their 
application in solid tumors is warranted. Solid tumors 
develop resistance against drugs and escape immune 
cells. CAR NK cells CD7-CAR NK-92MI and dCD7-CAR 

NK-92MI cells have outlined efficient anti-cancer effects 
in vitro and in vivo against T-leukaemia cell lines [115]. 
Moreover, CAR.CD19-CD28-zeta-2A-iC9-IL-15-trans-
duced HLA-mismatched CB NK cells were applied for 
patients with CD19+ B-lymphoid malignancies [116]. 
CAR NK cells have been also employed against mye-
loma, lymphoma, ovarian cancer, glioblastoma, colorec-
tal cancer, breast cancer, lung cancer, pancreatic cancer, 
glioma, prostatic and gastric cancer [31, 117–119]. Pre-
vious CAR NK cell therapies against melanoma have 
targeted GPA7 and CD276 (B7-H3) using NK-92 as 
the NK cell source [24, 28]. Additionally, the vectors 
included lentivirus and retrovirus. Additionally, the CAR 
construction has been His-tag and F (ab)2 and HLA-
A2TM + CD3ζ. The CAR NK cell therapies are still in 
primary stages and combination therapies with adoptive 
cell therapies and immune checkpoint inhibitors (ICKs) 

Fig. 2  Various therapeutic approaches to enhance the anticancer effects of NK cells; allogenic NK cells are developed for infusions, and genetically 
modified NK cells which include those for homing (CXCR4, CCR7), for activation (NKG2D-DAP10, scFV and endoplasmic NKG2A), for proliferation 
(mbIL-15) and for tumor retargeting (CAR-NK cells)
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will be promising. One limitation of CAR NK cell ther-
apy is their short life span for irradiation before infusion 
which unable them for multiplication in vivo. Anti-CD19 
car NK cells were applied for chronic lymphocytic leuke-
mia and lymphoma in Phase I clinical trial. NK-92 cells 
targeting Her2 in solid tumors (NCT04050709), Indeed, 
NK cells need cytokine support for persistence in the 
body. Additionally, lack expression of natural cytotoxic-
ity receptors (NCRs) and CD16, tumorigenesis of NK-92 
cells and stroke risk include concerns about the CAR 
NK cells application [120]. CAR NK cells low penetra-
tion into the TME is also a limitation [121]. NK cells only 
develop memory cells against viruses not for cancer [9].

Future prospects
The improvement of CAR NK cells in terms of prepa-
ration, stability and lifespan and penetration into the 
TME is necessary for efficient application for approval 
of them in cancer therapy. Novel CAR macrophages 
which abundantly infiltrate into the TME is promising 
for solid tumor therapy. Combination therapies using 
CAR NK cells and chemotherapy can also overcome 
limitations.

Conclusion
The transforming of NK cells into potent tumor killing cells 
is crucial in melanoma treatment owing to high immuno-
genicity of melanoma cells. NK cells are versatile multi-
functional immune cells which efficiently participate in 
anticancer activities in cooperation with CD8+ and CD4+ 
T cells. The therapeutic failure of CAR T cells in the TME 
is mainly due to the lack of CAR T cells specific tumor 
antigens which inhibit these cells. CAR NK cells have 
advantages over CAR T cells in terms of natural cytotoxic 
capacity, lack of off-target toxicity, low costs, ready avail-
ability and convenient antitumor activation by antigens 
both dependent and independent of MHC molecules. Short 
life span of CAR NK cells is advantageous for on-target/
off-tumor toxicity. NK cells can be independent of the host 
specific HLA genotype. However, in solid tumors, their 
efficacy remains to be fully understood. Viral transduction, 
transfection, mRNA electroporation and feeder-free and 
bovine serum-free protocol can enhance the efficacy of NK 
cells anticancer effects. Combination therapy using immune 
checkpoints and CAR NK cells can be promising for more 
efficient cancer therapy. The anti-KIR (lirilumab) and anti- 
NKG2A (monalizumab) drugs are safer than anti-PD-1 anti-
body and thereby can be used in combination with the CAR 
NK cells for melanoma treatment.

Fig. 3  NK cells cancer immunotherapy enhancement via receptors modification; NKG2A: natural killer cell group 2 member A, KIR: Killer cell 
immunoglobulin-like receptors, TIGIT: T cell immunoreceptor with Ig and ITIM domains, PVRIG: PVR Related Immunoglobulin Domain Containing, 
TIM-3: T cell immunoglobulin and mucin domain-containing protein 3, LAG-3: Lymphocyte Activating 3, DNAM-1: DNAX Accessory Molecule-1, 
NCR: Natural Cytotoxicity Triggering Receptor 1
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