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Abstract 

Background:  Single-cell RNA sequencing (scRNA-seq) enables the systemic assessment of intratumoral heteroge‑
neity within tumor cell populations and in diverse stromal cells of the tumor microenvironment. Gain of treatment 
resistance during tumor progression or drug treatment are important subjects of tumor-centric scRNA-seq analyses, 
which are hampered by scarce tumor cell portions. To guarantee the inclusion of tumor cells in the data analysis, we 
developed a prescreening strategy for lung adenocarcinoma.

Methods:  We obtained candidate genes that were differentially expressed between normal and tumor cells, exclud‑
ing stromal cells, from the scRNA-seq data. Tumor cell-specific expression of the candidate genes was assessed via 
real-time reverse transcription-polymerase chain reaction (RT-PCR) using lung cancer cell lines, normal vs. lung cancer 
tissues, and lymph node biopsy samples with or without metastasis.

Results:  We found that CEA cell adhesion molecule 5 (CEACAM5) and high mobility group box 3 (HMGB3) were reli‑
able markers for RT-PCR-based prescreening of tumor cells in lung adenocarcinoma.

Conclusions:  The prescreening strategy using CEACAM5 and HMGB3 expression facilitates tumor-centric scRNA-seq 
analyses of lung adenocarcinoma.

Keywords:  Single-cell RNA sequencing, Tumor-centric analysis, Tumor cell portions, Prescreening strategy, Lung 
adenocarcinoma
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Background
Tumor heterogeneity is responsible for treatment resist-
ance in cancer, involving outgrowth of pre-existing 
subclones or acquisition of resistance traits [1]. Sin-
gle-cell genomic analysis provides a systemic tool for 
studying tumor heterogeneity at both DNA and RNA 
levels [2]. While DNA-level intratumoral heterogene-
ity can be addressed by variant allele frequencies in bulk 

sequencing data, RNA or gene expression level heteroge-
neity requires single-cell methods because of its quantita-
tive nature. In early studies, large-scale single-cell RNA 
sequencing (scRNA-seq) analyses of cancer focused on 
the primary tumor landscape, depicting both tumor 
and microenvironmental cell populations [3, 4]. Current 
applications have shifted to comparative studies of dif-
ferent regions, conditions, and patients to gain clinical 
insights into treatment resistance and patient stratifica-
tion [5, 6], which substantiated the need for appropriate 
sample selection.

Lung adenocarcinoma is the major cancer type that 
benefits from molecular targeted therapies, includ-
ing tyrosine kinase inhibitors targeting the epidermal 
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growth factor receptor (EGFR) mutations or ALK, 
EMAP-like 4, and neurotrophic receptor tyrosine kinase 
fusions [7]. Patients harboring these somatic alterations 
and responding to targeted therapy eventually develop 
treatment resistance, and it is critical to understand the 
underlying mechanisms to achieve long-term survival 
[8]. For example, secondary EGFR mutations (T790M 
or C797S) confer resistance to EGFR-targeted tyrosine 
kinase inhibitors [9, 10]. Activation of the salvage signal-
ing pathway in MET, hepatocyte growth factor, AXL, Hh, 
and insulin-like growth factor 1 receptor also leads to 
resistance to EGFR-targeted therapies [11]. Study designs 
to compare before and after molecular targeted therapies 
or in responders and non-responders provide valuable 
opportunities to understand the mechanisms of treat-
ment resistance. One hurdle in such study designs is the 
absence of tumor cells in the specimens, which results in 
the exclusion of precious data [12]. Ensuring the presence 
of tumor cells before single-cell experiments can save 
time and resources.

Several strategies that determine the presence or pro-
portion of tumor cells may serve different purposes. First, 
histological evaluation of tissue sections is the standard 
diagnostic process for determining tumor type and stage 
[13]. Second, computational methods estimate tumor 
purity from genomic data at both the DNA and RNA lev-
els. For example, the ABSOLUTE [14] algorithm infers 
tumor purity and ploidy from somatic DNA alterations in 
whole-genome sequencing data. Purity and ploidy infor-
mation are critical for determining sub-clonal structures 
and tumor evolution. In comparison, the ESTIMATE 
[15] method uses gene expression data to infer tumor cel-
lularity and stromal/immune cell fractions. Third, flow 
cytometry or real-time polymerase chain reaction (PCR) 
can be used to monitor micrometastases [16] or mini-
mal/measurable residual disease during or after leukemia 
treatment [17]. The detection sensitivity of PCR-based 
methods is typically less than 0.01% [18], which is much 
higher than that of histological evaluation or genomic 
inference studies. The high sensitivity and simple exper-
imental procedure that can be incorporated into the 
scRNA-seq pipeline make the real-time PCR approach 
the preferred prescreening method.

In this study, we aimed to develop a sample selection 
strategy for lung adenocarcinoma for tumor-centric 
analysis of scRNA-seq data. First, target gene selection 
was achieved using public scRNA-seq data, by cell type 
specification and differentially expressed gene analysis 
focusing on tumor cells. We then tested the candidate 
gene expression using real-time PCR in lung cancer cell 
lines, normal vs. tumor tissues, and lymph nodes with 
or without metastasis. Among the four candidate genes, 
CEA cell adhesion molecule 5 (CEACAM5) and high 

mobility group box 3 (HMGB3) distinguished the tumor 
from normal tissues and recapitulated tumor cellularity 
in single-cell transcriptome data. Based on these results, 
we recommend sample prescreening using multigene 
real-time PCR for beta-actin (ACTB), CEACAM5, and 
HMGB3 to ensure the presence of tumor cells.

Methods
Human specimens
The present study was reviewed and approved by the 
Institutional Review Board (IRB) of the Samsung Medical 
Center (SMC, Seoul, Korea) (IRB no. 2010–04–039-052). 
The individuals in this manuscript have given written 
informed consent. Tumor, distant normal lung, and nor-
mal lymph node tissues were obtained during conserving 
surgery at the SMC from seven patients diagnosed with 
lung cancer. Metastatic lymph nodes were collected from 
patients with lung cancer using endobronchial ultra-
sound and bronchoscopy. A total of 14 samples were col-
lected and immediately snap-frozen in liquid nitrogen or 
dissociated.

Human cancer cell lines
The human non-small cell lung cancer (NSCLC) cell 
lines A549 (CCL-185), NCI-H2228 (CRL-5935), HCC827 
(KCLB70827), HCC1588 (KCLB71588), NCI-H854 
(KCLB90854), HCC1833 (KCLB 71833) and HCC1195 
(KCLB71195) were purchased from American Type Cul-
ture Collection (Manassas, VA, USA) and Korean Cell 
Line Bank (Seoul, Korea). Each cell line was cultured 
in the Roswell Park Memorial Institute-1640 medium 
(22400–089; Gibco, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (16000–044; Gibco, 
Waltham, MA, USA) at 37 °C in 5% CO2.

RNA extraction and cDNA synthesis
Total RNA was extracted from the samples using the 
Qiagen RNeasy mini kit reagent (74104; Qiagen, Hilden, 
Germany), according to the manufacturer’s instructions. 
The quantity and quality of extracted RNA were assessed 
using a NanoDrop 2000 spectrophotometer (Thermo Sci-
entific, Wilmington, DE, USA). cDNA was synthesized 
with an appropriate amount of RNA using the ReverTra 
AceTM qPCR RT Kit (TOFSQ-101; TOYOBO Co., Ltd., 
Osaka, Japan), according to the manufacturer’s recom-
mendations. After RNA denaturation at 65 °C for 5 min, 
1 μg of total RNA was diluted in 10 μL of reaction mixture 
containing 2 μL 5X RT buffer, 0.5 μL enzyme mix, 0.5 μL 
Primer mix, and water. The reaction mixture was incu-
bated at 37 °C for 15 min. The cDNA product was further 
diluted four-fold with RNase-free water and used directly 
for real-time PCR.
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The amplified cDNA samples were obtained in the 
library preparation step using Chromium Single Cell 5′ 
Library & Gel Bead Kit v1.1 (scRNA-Seq) [19] and Chro-
mium Single Cell 3′ Library & Gel Bead Kit v3 (snRNA-
Seq), according to the manufacturer’s recommendations.

Real‑time quantitative PCR
Real-time PCR was performed in a 96-well reaction plate 
(HSP9601; Bio-Rad Laboratories, Hercules, CA, USA) 
sealed with an adhesive film (MSB1001; Bio-Rad Labora-
tories, Hercules, CA, USA). Expression analysis of gene of 
interest (GOI) was performed using the Bio-Rad CFX96 
Touch system and PrimeTime Gene Expression Master 
Mix (1055770; IDT, Coralville, IA, USA) with a prede-
signed primer and probe mix (Supplementary Table  1). 
Real-time PCR was performed according to the manu-
facturer’s instructions. All PCR were run in duplicate, 
and a non-template control was used for each run. Raw 
real-time PCR data were analyzed using CFX Manager 
3.1, (1845000; Bio-Rad Laboratories, Hercules, CA, USA; 
https://​www.​bio-​rad.​com/​ko-​kr/​sku/​18450​00-​cfx-​manag​
er-​softw​are?​ID=​18450​00) and PCR replication efficiency 
and CT numbers were obtained for each reaction. Raw 
data were transformed into a standard input format for 
plotting. Microsoft Excel was used to calculate the mean 
Cq, ΔCq, ΔΔCq, fold change, and log(fold change + 1): 
ΔCq = Cq GOI – Cq ACTB, ΔΔCq = ΔCq GOI – Normal group 
ΔCq value within the same batch. Relative fold change 
was determined using 2-ΔΔCT.

Acquisition and analyses of single‑cell and bulk RNA‑seq 
data
Raw unique molecular identifier (UMI) gene-cell-bar-
code matrix derived from single-cell RNA sequencing 
data from patients with lung adenocarcinoma and their 
cell identity was downloaded from the National Center 
for Biotechnology Information Gene Expression Omni-
bus database (GSE131907) [19]. The UMI count for genes 
in each cell was log-normalized using the NormalizeData 
function of the Seurat R package [20].

RNA sequencing data for 1019 human cancer cell 
lines were obtained from the Cancer Cell Line Encyclo-
pedia (CCLE) depmap portal (https://​depmap.​org/​por-
tal/​downl​oad/) [21]. Expression levels were normalized 
as (log2 RPKM + 1), where RPKM represents reads per 
kilobase of transcript per million mapped reads for the 
genes in each sample.

RNA sequencing data from lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) 
samples were obtained from The Cancer Genome Atlas 
(TCGA) data portal (https://​portal.​gdc.​cancer.​gov/) [22]. 
This dataset included 533 primary tumor and 59 normal 
samples from TCGA LUAD and 502 primary tumor and 

49 normal samples from TCGA LUSC. Expression levels 
were quantified as (log2 FPKM-UQ + 1), where FPKM-
UQ refers to the upper quartile fragments per kilobase 
per million mapped reads for genes in each sample. Vio-
lin plots of gene expression for tumor and normal sam-
ples were generated using the geom_violin function of the 
ggplot2 R package.

Selection of tumor‑specific genes
Significantly expressed genes for early-stage lung tumor 
(tLung), late-stage lung tumor (tL/B), and metastatic 
lymph node (mLN) compared to normal lung (nLung) 
were identified using the FindMarkers function (default 
parameters) of the Seurat package. Genes that were dif-
ferentially expressed in each sample group were listed 
using the FindAllMarkers function (default parameters) 
in the Seurat package. The Wilcoxon rank-sum test with 
Bonferroni correction was used to calculate the sig-
nificance of differences. We selected genes with log fold 
change > 0.25, p-value < 0.01, and adjusted p-value (Bon-
ferroni) < 0.01, considering the fraction of expressing cells 
(> 25% of cells in either cell group, denoted as pct).

All methods were performed in accordance with the 
relevant guidelines and regulations.

Results
Schematic to identify genes for tumor prescreening
Single-cell RNA sequencing data generated from nor-
mal or tumor tissues of patients with lung adenocarci-
noma [19] were used to identify target genes indicative 
of tumor cell presence or proportions. For tumor-cen-
tric analysis, we extracted gene expression data only 
for malignant cells present in the tumor and compared 
them with normal epithelial cells (Fig.  1). Malignant 
cells are derived from various sources, including primary 
lung tumors (tLung and tL/B), metastatic lymph nodes 
(mLN), or brain metastases (mBrain). Normal epithe-
lial cells were obtained from distant normal tissues of 
patients with tumors (nLung). We applied two analytical 
strategies to increase the specificity of the prescreening 
target genes to determine the extent of tumor cells. First, 
pairwise comparisons between tumor and normal sam-
ple groups (tLung vs. nLung, tL/B vs. nLung, and mLN 
vs. nLung) focused on genes upregulated in tumor cells 
compared with normal epithelial cells. Second, multi-set 
comparisons among all sample groups scanned genes 
specifically expressed in each tumor group. Among the 
genes with statistical significance in both comparisons, 
candidates were refined to test for the presence of tumor 
cells by real-time PCR. The expression profiles of can-
didate genes were also checked using RNA-seq data for 
cancer cell lines (CCLE) [21] and lung cancer patients 
(The Cancer Genome Atlas, TCGA) [22]. This approach 

https://www.bio-rad.com/ko-kr/sku/1845000-cfx-manager-software?ID=1845000
https://www.bio-rad.com/ko-kr/sku/1845000-cfx-manager-software?ID=1845000
https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://portal.gdc.cancer.gov/
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provides genes exhibiting tumor cell-specific expression, 
allowing for the prescreening of samples harboring lung 
cancer cells.

Tumor cell‑specific gene selection in lung cancer
Following the schematics, we first listed the genes differ-
entially expressed between malignant cells of the tumor 
(tLung, tL/B, and mLN) and normal epithelial cells 
(nLung) (Fig. 2A). Sets of 701, 1215, and 1173 genes were 
identified as significantly dysregulated in tumors (tLung, 
tL/B, and mLN, respectively) (Supplementary Table  2). 
Among them, 599 genes were significantly upregulated 
in tumor cells in at least two tumor groups compared to 
those in normal cells (Fig. 2B). Next, in the comparisons 
of multiple sample groups, we identified 3120 dysregu-
lated genes specific to each sample group (Fig. 2C; Sup-
plementary Table  2). We selected CEACAM5, HMGB3, 
plasminogen activator urokinase (PLAU), and argini-
nosuccinate synthase 1 (ASS1) genes that were consist-
ently denoted as the top-ranked upregulated genes in 

both comparisons. The association of lung cancer with 
selected tumor cell-specific genes, except ASS1, has been 
supported by previous studies. CEACAM5 levels have 
been suggested to serve as prognostic determinants [23, 
24] and have been correlated with metastatic lymph node 
tumor burden [16]. HMGB3 expression was detected in 
circulating tumor cells in the peripheral blood of patients 
with lung cancer [25]. PLAU has been established as a 
prognostic marker for patients with lung cancer [26]. 
Tumor cell-specific expression of the selected genes was 
confirmed at the raw expression level (UMI) (Fig.  2D). 
These genes were overexpressed in tumor cells, with 
slight variations and low expression levels in all normal 
samples (Fig. 2E).

Target genes for the prescreening of tumor cells must 
have specific expression at cellular resolution. Prescreen-
ing using whole tumor tissue can be ambiguous if the 
gene is also expressed in the tumor stroma or in infil-
trating immune cells. Therefore, the expression levels of 
candidate genes were compared between the cell types 

nLung, tLung
tL/B, mLN,

mBrain (15,423 cells
from 10 samples)

tLung vs. nLung mLN vs. nLung

Selection of significantly
expressed genes in tumors

Tumor prescreening targets

CEACAM5, HMGB3, ASS1, PLAU

Early-stage lung tumor
tLung (6,352 cells
from 11 samples)
nLung (3,703 cells
from 11 samples)

Late-stage lung tumor
tL/B (6,400 cells
from 4 samples)

nLung (3,703 cells
from 11 samples)

Metastatic lymph node
mLN (2,961 cells
from 7 samples)

nLung (3,703 cells
from 11 samples)

Expression matrix on malignant and
normal epithelial cells

Cell line-based profiling
Cancer Cell Line Encyclopedia (CCLE)

Experimental validation (real-time PCR)

- Lung cancer cell lines
(Mixed with normal cells)

- Lung cancer patient samples
(tLung vs. nLung / mLN vs. nLN)

Patient sample-based profiling
The Cancer Genome Atlas (TCGA)

Compare two groups Compare multiple groups

Multiple groupstL/B vs. nLung

scRNA-seq data of LUAD (N Kim et al.)

Fig. 1  Tumor-centric single-cell analysis to identify candidate genes for tumor prescreening. Flow chart summarizing single-cell transcriptome 
analysis strategies to identify genes for tumor prescreening
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Fig. 2  Identification of tumor-cell specific genes. A Venn diagram of up- and down-regulated genes for early-stage lung tumor (tLung), late-stage 
lung tumor (tL/B), and metastatic lymph node (mLN) compared to normal lung (nLung). B Expression map of 599 genes that were up-regulated 
in two or more tumor groups. Expression values scaled by z-transformation were used to a draw heatmap with limits of − 2.5 to 2.5. C Expression 
map of the top 100 genes upregulated for each sample group. Labels indicate the top-ranked and candidate genes. Expression values scaled by 
z-transformation were used to draw a heatmap with limits of − 2.5 to 2.5. D Expression plot of candidate genes for sample groups at the unique 
molecular identifier (UMI) level. Dot represents the UMI value for each single cell. Two-tailed Student’s t-test was performed. ***p-value < 0.001 
and **p-value < 0.01. E Dot plot of candidate genes for each sample. Color indicates the average expression level. Size indicates the fraction of 
expressing cells
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in each sample group (Fig. 3; Supplementary Fig. 1). The 
CEACAM5, HMGB3, and ASS1 genes were specifically 
expressed in tumor cells from the tumor sample groups 
(tLung, tL/B, mLN, and mBrain). PLAU expression was 
detected not only in tumor cells, but also in fibroblasts 
and myeloid cells. These results indicate that CEACAM5, 
HMGB3, and ASS1 are more reliable candidates than 
PLAU for the prescreening of tumor cells.

Real‑time PCR screening of lung cancer for tumor 
cell‑specific gene expression
To confirm the expression of candidate genes in lung 
cancer specimens, we initially applied real-time RT-
PCR (Supplementary Table  1) to the lung cancer cell 
lines A549, H2228, HCC827, HCC1195, HCC1588, 
and HCC1833 which were selected based on the CCLE 
(Supplementary Fig. 2A). Recapitulating the CCLE data, 
relatively high PLAU expression and low CEACAM5 
expression were detected in H2228 cells (Supplemen-
tary Fig.  2B). HCC827 and HCC1833 cells expressed 
high levels of CEACAM5 (Supplementary Fig.  2C). 
To assess expression changes according to the tumor 
cell ratio, we spiked the cDNAs of H2228 cell line into 
those of normal lung tissues (Supplementary Fig.  2D). 
In the assessment of HMGB3, PLAU, and ASS1, the 
PCR products increased gradually with increasing 

amounts of H2228 cDNAs up to 60–80% and plateaued. 
Similarly, addition of HCC1833 cDNAs increased the 
CEACAM5 signal (Supplementary Fig. 2E).

After the cell line test, we used non-small cell lung 
cancer (NSCLC) patient samples and compared target 
gene expression between the tumor and distant nor-
mal tissues (Fig. 4A). CEACAM5 and HMGB3 showed 
significant differences in expression between the two 
groups, and PLAU and ASS1 showed slightly higher 
expression in tumor tissues, but the difference was not 
statistically significant. Differential expression between 
the tumor and normal samples was confirmed in vari-
ous sample preparation stages and methods (Fig.  4B-
D). Similarly, a difference in the expression levels of 
CEACAM5 and HMGB3 was observed in lymph node 
samples with or without metastasis (Fig.  4E). Pairwise 
comparisons of matched normal and tumor samples 
provided clearer decision criteria for tumor cell positiv-
ity. Without a matched normal sample, tumor positivity 
was determined for samples with > 10% tumor cell con-
tent (Supplementary Table 3). To apply the prescreen-
ing process as a single-tube reaction, we performed 
multiplex RT-PCR analyses using CEACAM5, HMGB3, 
and ACTB probes with different fluorescence dye for-
mats, which resulted in consistent tumor-specific 
detection (Fig. 4F).

Fig. 3  Expression of candidate genes in cell types. Dot plot of candidate genes for cell types in each sample group. Color indicates the average 
expression level. Size indicates the fraction of expressing cells
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Altogether, these results suggest that real-time PCR 
screening of CEACAM5 and HMGB3 can be used to con-
firm the presence of tumor cells in lung adenocarcinoma 
specimens of both tissue and lymph node origin, as well 
as in cDNAs and single-cell or nuclear RNA sequencing 
libraries.

Validation of tumor‑specific gene expression using public 
datasets
To further investigate whether the expression levels 
predicted the proportion of tumor cells, we calculated 
the correlation between gene expression levels meas-
ured by real-time PCR and the percentage of tumor 

Fig. 4  Real-time polymerase chain reaction (PCR) screening of prescreening candidates in lung tumor samples. A Box plot of candidate gene 
expression in tumor (T39, T36, T43, T23, T35, T44) and normal (N39, N36, N43, N23, N35, N44) lung samples. CEA cell adhesion molecule 5 (CEACAM5) 
and high mobility group box 3 (HMGB3) have two data points for samples T43 and N43, respectively. P-value was calculated by Wilcoxon rank sum 
test using geom_signif function of ggplot2 package. B Expression levels of candidate genes in three tumor and three normal lung samples with 
individually synthesized cDNAs as template DNA. C, D Expression levels of CEACAM5 and HMGB3 in four tumor and four normal lung samples with 
cDNAs synthesized for C single-cell RNA sequencing (scRNA-seq) or D single-nucleus RNA sequencing (snRNA-seq). E Expression levels of candidate 
genes in metastatic (EBUS123) and normal (LN06) lymph node samples. F Gene expression levels of CEACAM5 and HMGB3 in human samples (four 
paired normal and tumor tissues) and cell line (H2228) were analyzed using the multiplex system
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cells obtained from single-cell sequencing data [19] 
(Fig.  5A). Overall, the four candidate genes showed 
a positive association, yet the correlation coefficient 
was small, likely because of the large variation in cel-
lular expression levels. Among them, HMGB3 expres-
sion showed the highest correlation with the tumor cell 
proportion.

Next, we examined the lung cancer cohort from 
TCGA [22] to determine differential expression of the 
four genes between normal and tumor at the bulk tis-
sue level. As shown in Fig.  5B, CEACAM5 and ASS1 
were specifically expressed in the lung tumor samples. 
HMGB3 transcripts were not detected in any of the 
samples, and PLAU expression was not significantly 
different between the normal and tumor tissues. These 
data demonstrate the variation in sensitivity and speci-
ficity among the different gene detection and sample 
preparation methods. Taken together, the detection of 
CEACAM5 and HMGB3 by real-time PCR was suitable 
for sample prescreening before single-cell or nuclear 
sequencing experiments requiring the presence of 
tumor cells.

Discussion
The power of single-cell RNA sequencing has made this 
technique a mainstream tool in cell biology to study 
normal development and differentiation processes, and 
to define cellular alterations in diseases. There is a need 
for versatile data generation for hypothesis testing and 
appropriate sample selection; however, proper guide-
lines are not available. During the experimental design 
process, we encountered a situation in which the tumor 
cell content was too low to perform a tumor-centric data 
analysis.

To study a tumor subpopulation using a single-cell 
genomics approach, choices can be made on whether to 
sort and enrich the target population or to perform all-
inclusive analysis after ensuring tumor cell presence [27]. 
Both approaches have their own merits, the latter requir-
ing no prior knowledge for sorting and allowing infer-
ence of cellular interactions between the tumor cells and 
the support cells in the tumor microenvironment [28]. 
Cellular composition in the tumor microenvironment 
and communication with tumor cells changes over time 
during tumor progression, metastasis, and treatment 

Fig. 5  Tumor-specific expression of candidate genes in single-cell and bulk RNA-seq data. A Correlation of candidate genes (left) and HMGB3 
(right) between expression levels measured via real-time PCR and the percentage of tumor cells from scRNA-seq in tumor lung samples. N = 7 for 
CEACAM5 and HMGB3, N = 3 for ASS1 and PLAU. B Violin plots of CEACAM5, ASS1, and PLAU for tumor and normal samples from The Cancer Genome 
Atlas (TCGA) lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)
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resistance. Therefore, the unsorted study design ensur-
ing tumor cell presence in the microenvironmental con-
text helps to elucidate disease-associated alterations of 
the tumor and support cell interactions, which could be a 
good target for therapeutic intervention.

As a prescreening strategy to ensure tumor cell inclusion in 
lung adenocarcinoma, we selected four genes showing tumor 
cell-specific gene expression from publicly available scRNA-
seq data and adopted real-time PCR on cDNAs or RNA 
sequencing libraries of the study objects. The simplicity and 
reliability of real-time PCR make it the preferred prognostic 
gene expression testing platform for early-stage breast can-
cer [29]. During candidate gene expression testing for lung 
cancer, we found unexpected discrepancies between scRNA-
seq and real-time PCR results. These discrepancies may be 
explained by the different dynamic ranges of each gene detec-
tion method [30], individual cell or population level meas-
urements, and cell- vs. tissue-level gene expression analysis. 
Since the aim of this study was to develop a sample selection 
strategy for single-cell or nuclear RNA sequencing analy-
sis, CEACAM5 and HMGB3, which showed the best results 
in cell-level data, were selected as the final target genes. The 
use of this sample selection strategy will facilitate the efficient 
design of tumor-centric single-cell/nucleus genomic analyses.

Conclusions
To guarantee tumor-centric analysis of lung cancer, we 
selected tumor cell-specific genes from the scRNA-seq 
data and performed real-time PCR to distinguish sam-
ples with or without tumor cell presence. We suggest 
CEACAM5 and HMGB3 as prescreening markers for 
single-cell or nuclear sequencing experiments.
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