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Abstract 

Background:  This study aimed to use single-cell RNA-seq (scRNA-seq) to discover marker genes in endothelial cells 
(ECs) and construct a prognostic model for glioblastoma multiforme (GBM) patients in combination with traditional 
high-throughput RNA sequencing (bulk RNA-seq).

Methods:  Bulk RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) and The China Glioma 
Genome Atlas (CGGA) databases. 10x scRNA-seq data for GBM were obtained from the Gene Expression Omnibus 
(GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster 
identification. Key modules and differentially expressed genes (DEGs) were identified by weighted gene correlation 
network analysis (WGCNA). A non-negative matrix decomposition (NMF) algorithm was used to identify the different 
subtypes based on DEGs, and multivariate cox regression analysis to model the prognosis. Finally, differences in muta-
tional landscape, immune cell abundance, immune checkpoint inhibitors (ICIs)-associated genes, immunotherapy 
effects, and enriched pathways were investigated between different risk groups.

Results:  The analysis of scRNA-seq data from eight samples revealed 13 clusters and four cell types. After applying 
Fisher’s exact test, ECs were identified as the most important cell type. The NMF algorithm identified two clusters with 
different prognostic and immunological features based on DEGs. We finally built a prognostic model based on the 
expression levels of four key genes. Higher risk scores were significantly associated with poorer survival outcomes, low 
mutation rates in IDH genes, and upregulation of immune checkpoints such as PD-L1 and CD276.

Conclusion:  We built and validated a 4-gene signature for GBM using 10 scRNA-seq and bulk RNA-seq data in this 
work.
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Introduction
Due to its confined and locally aggressive growth, GBM 
is one of the most prevalent malignant tumors globally, 
with a significant morbidity and fatality rate [1]. It is also 
the most common primary intracranial tumor [2]. The 
prognosis of GBMs is dismal, with less than 5% of affected 
patients surviving > 5 years at the time of diagnosis. With 
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the research advancements, remarkable results have 
been achieved in exploring the molecular pathogenesis 
of glioma, such as isocitrate dehydrogenase (IDH) status 
[3] and O6-methylguanine DNA methyltransferase pro-
moter (MGMTp) methylation [4]. Diagnoses, categoriza-
tion systems, and precise therapy have all improved due 
to these findings. However, although IDH mutations help 
individuals with gliomas live longer, gliomas with IDH 
mutations are prone to frequent return [5]. Therefore, 
further research is essential for identifying new molecu-
lar targets, prognostic assessment work, and developing 
therapeutic options. Only four medications, including 
bevacizumab, temozolomide, lomustine, and carmustine, 
have been authorized by the US Food and Drug Adminis-
tration (FDA) to treat GBM [6]. Although these adjuvant 
drugs and surgical treatments have improved the prog-
nosis of glioma patients to some extent, the overall sur-
vival (OS) of patients is still very low [7], which is partly 
because the mechanisms of the tumor microenvironment 
and immune evasion are not fully understood and high-
grade gliomas are spatially and temporally heterogene-
ous. In addition, different cells have different mutational 
characteristics [4]. Most important is the blood-brain 
barrier (BBB), a dynamic interface between blood and 
brain tissue that selectively prevents the passage of sub-
stances. The effectiveness of antitumor chemotherapeu-
tic agents is hampered by the blood-brain barrier, which 
strictly regulates the homeostasis of the central nervous 
system [8].

In recent years, many studies have used traditional 
bulk RNA sequencing data to explore potential prognos-
tic markers for GBM and improve our understanding of 
tumorigenesis and progression. For example, a prognos-
tic model was developed based on 5 ferroptosis-related 
genes to predict survival and response to immunotherapy 
in GBM patients [9]. In addition, a prognostic model of 
GBM was also constructed based on three angiogenesis-
related bases [10]. However, these prognostic charac-
teristics are based on traditional RNA-seq, and because 
GBM is a highly heterogeneous tumor, these approaches 
cannot detect exact cellular and molecular alterations 
considering that bulk RNAseq mostly represents the 
“average” expression of all cells in the sample [11].

Endothelial cells (ECs) regulate vascular functions, 
such as permeability, endocytosis, and angiogenesis 
[12]. Abnormal vascular proliferation and vascular sys-
tem abnormalities are the most characteristic features 
of GBM [13]. Vascular abnormalities promote tumor 
cell invasion by inducing hypoxia, thereby exacerbat-
ing GBM progression [14]. In addition, GBM vascular 
leakage can lead to edema [15]. In the 1970s, Professor 
Folkman proposed that tumor growth and metastasis are 
dependent on angiogenesis [16]. Therefore, inhibition 

of angiogenesis can be a therapeutic strategy for tumor 
treatment. Meanwhile, ECs are key cellular components 
of the BBB, and abnormal vascular development in glio-
mas is associated with their unique gene expression [17]. 
In recent years, targeting pro-angiogenic genes for tumor 
treatment and prevention of tumor expansion has gained 
increasing interest among researchers [18].

Single-cell RNA-seq (scRNA-seq) is nowadays used as 
a new technology for sequencing genes in different cell 
types that can provide a more in-depth understanding of 
cell-specific information. Given the advantages of single-
cell sequencing, markers of GBM endothelial cells can 
be identified by integrating scRNA-seq and conventional 
RNA-seq and then can be used to construct prognostic 
models of GBM patients with external validation cohorts 
to verify their risk stratification ability. Herein, we 
explored potential neoangiogenic pathways in GBM after 
controlling for phenotypic differences between ECs of 
GBM and normal brain tissue ECs at the single-cell level. 
Finally, through the constructed 4-gene signature, we 
observed the prognostic and immunological character-
istics of different risk subgroups of the population. Our 
findings provide deeper insights into the characteristics 
of ECs in GBM and potential prognostic biomarkers to 
design rational treatment regimens and optimized drugs.

Materials and methods
Raw data acquisition
We downloaded 10X of scRNA-seq data from the 
GSE162631 dataset, with 10,446, 11,821, 15,352, 16,750, 
21,415, 15,008, 13,653 and 15,122 cells per sample. Due 
to the large number, we extracted one-tenth of these 
cells for subsequent studies, such as pathways and cel-
lular communication. A large number of RNAseq data, 
mutation data, and clinicopathological features of 
TCGA-GBM were downloaded from the UCSC Xena 
website. In addition, we downloaded normal brain tissue 
expression data for GTEx from the UCSC Xena website 
(https://​xena.​ucsc.​edu/). The final externally validated 
gene expression profiles and clinical data of patients with 
GBM were obtained from the China Glioma Genome 
Atlas (CGGA) data portal (http://​www.​cgga.​org.​cn/). 
Detailed clinical characteristics of patients in the TCGA 
and CGGA databases are summarized in Table S1.

scRNA‑Seq data processing and analysis
The 10× scRNA-seq data were processed as follows: (1) 
R package “Seurat” was used to convert the 10× scRNA-
seq data into Seurat objects [19, 20]; (2) original counts 
were checked for quality by calculating the proportion 
of mitochondrial or ribosomal genes and eliminating 
cells with low quality; (3) after quality control, “Find-
VariableFeatures” function was used to screen the top 
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2000 highly variable genes; (4) based on 2000 genes for 
principal component analysis (PCA), uniform manifold 
approximation and projection (UMAP) [21] was used for 
dimensionality reduction and cluster identification; (5) 
using the “Find All Markers” function, log2 [Foldchange 
(FC)] was set to 0.3 and min, and pct was set to 0.25 to 
identify markers in different clusters; (6) the “SingleR” 
package was used for clustering annotations to iden-
tify different cell types [22]. In addition, the R package 
“ReactomeGSA” [23] was used to perform functional 
enrichment analysis of the identified hub cell types. We 
used the “analyze_sc_clusters” function to perform the 
enrichment analysis and extracted the results by “path-
ways”. The “monocle” package [24] scans cell trajectories 
and pseudotime distributions and reduces dimensional-
ity using the “DDRTree” approach. Next, we calculated 
the contribution of genes to cell growth by using the 
BEAM statistical approach, and the top 100 genes were 
chosen for display. Cell-cell communication analysis and 
network visualization were finally performed using the 
“CellChat” [25] and “patchwork” software packages.

Identification of key co‑expression modules using WGCNA
Weighted gene co-expression network analysis 
(WGCNA, weighted correlation network analysis) is a 
systems biology method for identifying gene relationship 
patterns across samples. In the present study, we used the 
‘WGCNA’ package in R to construct an expression data 
map of TCGA-GBM differential genes, which we then 
used to identify gene sets that vary synergistically in the 
GBM cohort and to identify biomarker genes based on 
gene set endogeneity and the association between gene 
sets and phenotypes. The appropriate soft threshold 
(power) for the TCGAGBM cohort was determined using 
the function “pickSoftThreshold”. Next, aij = |Sij|β (aij: 
adjacency matrix between gene i and gene j, Sij: similar-
ity matrix, which is obtained by Pearson correlation of all 
gene pairs, β: soft power value) was used to calculate the 
matrix composed of weighted correlation values between 
genes and genes, i.e., the adjacency matrix. Finally, a hier-
archical clustering dendrogram of dissimilarity (1-TOM) 
matrix was produced to compute the correlation between 
modules, where modules with strong correlation coef-
ficients were selected as candidates for correlation with 
clinical features, and further analysis was performed. 
Studies with a more detailed description of the WGCNA 
method have been reported [26].

Sample clustering based on non‑negative matrix 
decomposition algorithm
Non-negative matrix decomposition (NMF) can be used 
to classify GBM patients into different subtypes: first, the 
sample is clustered using the R package “NMF” package, 

after which patients are classified into different subtypes 
based on parameters such as copulas and dispersions. 
Finally, a consensus heat map is generated based on the 
above optimal number of clusters to observe the distri-
bution characteristics among different subtypes. Then, 
we also explored the relationship between different sub-
groups and OS. In addition, the MCP counter algorithm 
was used to estimate the infiltration of immune cells 
between different subgroups. Finally, we investigated the 
association between subpopulations and the six immune 
subtypes reported in previous studies [27].

Identification of DEGs and functional enrichment analysis
Differential expression analysis of DEGs was performed 
for the TCGA cohort and different subgroups using the 
R software “limma” package with | log2FC |>1.0 and 
FDR < 0.05 as thresholds. In addition, we performed 
GSEA using Gene Set Enrichment Analysis (GSEA) soft-
ware 4.1.0 (http://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp) 
to identify significantly enriched pathways between the 
low- and high-risk groups. P < 0.05 and FDR < 0.25 were 
considered thresholds for statistical significance. Results 
were visualized by the “gridExtra”, “grid” and “ggplot2” R 
software packages. In addition to this, functional enrich-
ment analysis was performed by the “clusterProfiler” 
package in the R software, including the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Gene Ontol-
ogy (GO) analysis.

Prognostic model construction and validation
The 169 GBM samples with survival information from 
the TCGA dataset were used as the training set for con-
structing the prognostic risk model, and the 388 GBM 
samples with survival information from the CGGA 
dataset were used for external validation. The r package 
“sva” was also used to eliminate batch effects between 
the TCGA and CGGA data and build an accurate model. 
Next, we matched the differential gene mRNA expression 
profiles from the TCGA-GTEx cohort to the WGCNA 
results.

Lasso Cox regression analysis was performed using 
the “glmnet” R package to minimize over-fitting prog-
nostic characteristics and narrow down the genes that 
could predict OS. Multivariate Cox regression analysis 
was used to analyze the genes discovered using the Lasso 
method. The expression of each gene and the accompa-
nying regression coefficients were used to create risk 
scores for each patient, and risk models for important 
genes were built in the TCGA cohort by weighting the 
estimated cox regression coefficients [28]. The risk score 
formula was Ʃ (ð × Expi), where ð was the corresponding 
regression coefficient and Expi represented the expres-
sion value of each gene. Based on the risk score formula, 
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patients were divided into low-risk and high-risk groups 
using the median risk score as the cut-off point. The opti-
mal cut-off point for survival analysis was determined 
using the ‘survcutpoint’ function in the R package ‘sur-
vminer’. A log-rank test was used to evaluate the dif-
ference in survival rates between the two groups, and 
Kaplan-Meier (K-M) survival curves were plotted.

In addition, the nomogram model was created using 
the R package “rms”.The receiver operating characteristic 
(ROC) curve was completed using the R package “sur-
vival ROC” and the corresponding area under the ROC 
curve (AUC) was measured to assess the sensitivity and 
specificity of the relevant characteristics.

Mutation landscape, immune cells infiltration, and immune 
checkpoint between high‑ and low‑risk groups
Two waterfall plots were generated using the ‘oncop-
lot’ function in the R package ‘maftools’ to explore the 
detailed mutations between the high-risk and low-risk 
groups. Each glioma sample’s immune and stromal frac-
tion were assessed using the R package ‘ESTIMATE’, 
which indicates how many immune and stromal compo-
nents are present in vivo. The tumor-infiltrating immune 
cells dataset was downloaded from TIMER 2.0 (http://​
timer.​cistr​ome.​org). TIMER, CIBERSORT, quantTIseq, 
MCP-counter, xCELL, and EPIC algorithms were also 
compared. In addition, we investigated the correlation 
between risk scores and immune checkpoint genes and 
tumor mutational load (TMB), which were visualized 
using the R software ‘ggplot2’ package.

Prediction of immunotherapeutic response and evaluation 
of drug sensitivity
The Immune Cell Abundance Identifier (ImmuCellAI) is 
a computational method used to predict immune check-
point responses based on the abundance of immune 
cells, specifically different T-cell subpopulations, which 
was released in 2020 [29]. TCIA (Cancer Immunome 
Atlas) is an online program that gives full immunog-
enomic analysis findings. The immunophenotype Score 
is a quantitative measure of tumor immunogenicity that 
ranges from 0 to 10 (IPS). Immune checkpoint inhibitor 
(ICI) response can be predicted using IPS  [30]. The “pro-
phytic” R package was used to compute the half-maximal 
inhibitory concentration (IC50) of samples from the high 
and low-risk score groups to analyze the risk score for 

predicting responsiveness to chemotherapy and molecu-
lar medicines.

Statistical analysis
All analyses were performed using R version 4.1.1, 
64-bit6, and its support package. Kaplan-Meier survival 
analysis and the log-rank test were used to calculate prog-
nostic values and compare patient survival in different 
subgroups in each dataset. The non-parametric Wilcoxon 
rank sum test was used to test the relationship between 
the two groups for continuous variables. Kruskal-Wallis 
test was used for comparisons between more than two 
groups. LASSO regression and Cox regression analy-
ses were used for predictive model development. Clini-
cal characteristics of the high and low-risk groups were 
screened for prognostic variables using univariate and 
multivariate Cox regression (R package ‘survival’). Cor-
relation coefficients were examined using spearman 
correlation analysis. A P value < 0.05 was considered sta-
tistically significant.

Results
scRNA‑seq and cell typing of normal and glioblastoma 
brain samples
We downloaded 10X scRNA-seq data from the 
GSE162631 dataset for four GBM and four normal sam-
ples (single cell suspensions of CD 31 + cells enriched 
for magnetically activated cell sorting (MACS)), where 
102,412 cells were identified after cell quality control 
(QC) (Fig. S1A). FindVariableFeatures function was used 
to screen for highly variable genes based on expression 
data after normalization. The first 2000 highly vari-
able genes are shown in Fig. S1B. After PCA and UMAP 
downscaling analysis, we identified 13 different cell clus-
ters (Fig. 1A, B), after which we used the “SingleR” pack-
age for cluster annotation and UMAP to visualize the 
downscaled cell types. In addition, we identified four 
cell types, including ECs, monocytes, macrophages, and 
neutrophils (Fig.  1C). After applying Fisher’s exact test, 
ECs were identified as the most important cell type, and 
ReactomeGSA functional enrichment analysis showed 
that these cell types were mainly involved in classical 
antibody-mediated complement activation, transmem-
brane transport, and serotonin receptor and cardiolipin 
synthesis (CL) (Fig. 1D).

(See figure on next page.)
Fig. 1  Different cluster annotations and cell type identification in GBM10 × scRNA-seq data. A-C Cluster annotation and cell type identification by 
UMAP. D Functional enrichment analysis of identified hub cell types using the “ReactomeGSA” package. E-G Cell trajectory and pseudo-time analysis 
for the identified hub cell types. GBM, glioblastoma multiforme; scRNA-seq, single cell RNA sequencing; UMAP, uniform manifold approximation and 
projection
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Fig. 1  (See legend on previous page.)
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Next, the “monocle” R package was used to determine 
the cell trajectories and pseudotime distributions of two 
cell types that significantly differed in tumor and normal 
samples. We observed neutrophils corresponding to state 
1 and ECs corresponding to states 2 and 3 (Fig. 1E-G).

Finally, we calculated the contribution of genes during 
cell development and selected the top 100 genes for visu-
alization (Fig.  S2A). Cell-cell communication networks 
were inferred by calculating the likelihood of communi-
cation (Fig.  S2B). In addition, we predicted the cell-cell 
communication network for the relevant ligand recep-
tors, finding that MSTN-TGFBR1-ACVR2A (Fig.  S2C), 
WNT7B-FZD4-LRP6 (Fig. S2D), and others had a crucial 
role in the communication network of ECs .

Identification of DEGs in bulk RNA‑Seq data
We performed a differential analysis of tumor and normal 
tissues from the TCGA-GBM and GTEx cohorts, identi-
fying 3911 DEGs. Of these, 2021 genes were up-regulated 
in tumors and 1901 genes were down-regulated (Fig. 2A).

Next, we used WGCNA to identify DEGs involved 
in the development of GBM associated with the TCGA 
cohort. In the process of co-expression network con-
struction, we observed that the soft thresholding 
powerβwas 6 when the fit index of scale-free topology 
reached 0.90 (Fig. 2B, C). Eight modules were identified 
based on the average linkage hierarchical clustering and 
the soft thresholding power (Fig.  2C, D). Based on cor-
relation coefficients and p-values, we observed that tur-
quoise and brown modules were significantly associated 
with GBM development. We eventually took the inter-
section of marker genes of ECs and module genes of 
WGCNA and selected 157 genes to construct an expres-
sion matrix for further analysis (Fig. 2E).

Finally, we performed a univariate Cox regression anal-
ysis to identify potential prognostic factors for GBM in 
the TCGA cohort. A total of 28 genes were identified as 
being prognostically associated (Fig. 2F).

Different molecular subtypes identification
Based on the results of the univariate analysis, all patients 
were divided into two groups using the NMF algorithm 
(Fig.  3A). Sankey plots were used to investigate the 

relationship between different immune subtypes and 
groupings. The tumor samples were divided into differ-
ent immune subtypes according to the GSVA enrich-
ment score of 5 immune gene sets, i.e., wound healing, 
macrophages, lymphocyte, IFN-gamma, TGF-beta, and 
each immune subtype representing a specific immune 
microenvironment. The results showed that all patients 
in group 1 were classified as immune C4 (lymphocyte 
depleted) subtype. Due to the malignant nature of glio-
mas, most of the patients in group 2 were also classified 
as immune C4 (lymphocyte depleted) subtype, while only 
a few were classified as C1 (wound healing) subtype and 
immune C6 (TGF-beta dominant) subtype (Fig. 3B). The 
results showed that patients in group 2 had better OS 
compared to patients in group 1 (Fig.  3D). The MCP-
counter algorithm was used to estimate the infiltration of 
immune cells in different clusters. The level of infiltration 
of cytotoxic lymphocytes was significantly higher in clus-
ter 2; however, fibroblasts’ infiltration level was higher in 
group 1 (Fig. 3C).

After differential analysis of gene expression between 
the two groups, 56 genes were down-regulated in cluster 
2 and 12 genes were up-regulated in cluster 2 (Fig. 3E). 
Finally, the R package “clusterProfiler” was used to per-
form GO and KEGG enrichment analysis in these DEGs, 
which were associated with a variety of items, including 
“wound healing” and “negative regulation of hydrolase 
activity” in the biological processes (BP) category, “colla-
gen-containing extracellular matrix” in the cellular compo-
nent (CC) category, and “endopeptidase inhibitor activity” 
in the molecular function (MF) category (Fig.  3F). They 
were also associated with HIF-1, P53, and signaling path-
ways in diabetes (Fig. 3G). HIF-1 confers survival to glioma 
cells, and it drives angiogenesis [31]. P53 is an oncogene 
whose mutation can affect the secondary GBM [32].

Prognostic model construction and validation
We performed LASSO regression analysis on 28 prognos-
tic genes (Fig. 2F), which can effectively reduce features in 
high-dimensional data and optimize predictors of clinical 
outcomes, identifying seven genes (ANXA2, TUBA1C, 
RPS4X, PMP22, PDIA4, KDELR2, and SLC40A1) at this 
step (Fig.  4A). Ultimately, by multivariate Cox analysis, 

Fig. 2  TCGA cohort differential analysis and WGCNA identification of hub genes in GBM development. A Volcano plot of up-and down-regulated 
DEGs in the TCGA-GTEx cohort. B Scale-free fit indices for soft threshold powers. Soft threshold powerβin WGCNA was determined by the scale-free 
R2 (R2 = 0.90). The left panel shows the relationship between β and R2. The right panel shows the relationship between soft threshold power β 
and average connectivity. C Deg tree diagram based on clustering of different metrics. D Heat map illustrating the correlation between different 
gene modules and clinical features (normal vs. tumor). E Venn diagram between WGCNA module genes and endothelial cell marker genes. F Forest 
plot of the results of one-way cox analysis of 157 intersecting genes. DEGs, differentially expressed genes; TCGA, cancer genome atlas; GBM, 
glioblastoma multiforme; WGCNA, weighted gene correlation network analysis

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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four genes were identified as independent prognos-
tic factors, including TUBA1C, RPS4X, KDELR2, and 
SLC40A1. Based on their coefficients, we calculated risk 
scores using the following formula: risk score = (expres-
sion level of TUBA1C*0.41)+(expression level of RPS4X*- 
0.65)+(expression level of KDELR2*0.60)+(expression 
level of SLC40A1*-0.39). All patients were divided into 
high and low-risk groups according to the median value 
of the risk score. Survival curves showed that patients in 
the high-risk group had worse OS compared to those in 
the low-risk group (Fig. 4B, P < 0.001). Furthermore, the 
risk score performed well in predicting OS for these indi-
viduals in the TCGA cohort (Fig. 4C; AUCs for 1, 3, and 
5-year OS: 0.655, 0.774, and 0.955). Similar results were 
observed in the CGGA cohort (Fig. 4B, C, AUC for 1-, 3-, 
and 5-year OS: 0.587, 0.643, and 0.701). The risk graph 
shows detailed survival outcomes for each patient in the 
TCGA cohort and the CGGA external validation cohort, 
with patients in the high-risk group mostly having poor 
prognostic outcomes. The heat map shows the differ-
ence in expression of the four genes in the models in the 
risk group (Fig.  4D), with TUBA1C and KDELR2 hav-
ing higher expression in the tumor tissues, while RPS4X 
and RPS4X had the opposite tendency. In summary, the 
endothelial hub gene risk model had the best prognostic 
efficacy in GBM patients.

Next, we performed principal component analysis 
(PCA) to further validate the grouping ability of the four 
DEGs. PCA was performed to demonstrate the differ-
ences between the high and low-risk groups based on 
the prognostic characteristics of the whole gene expres-
sion profile and the expression profile classification of the 
four model genes. The results showed that the expression 
of the entire gene was diffusely distributed in both risk 
groups (Fig.  4E), while the expression of the four DEGs 
included in this prognostic risk model was well divided 
into two different risk clusters (Fig. 4F).

Clinical features between the high‑risk group and low‑risk 
group
Univariate and multivariate Cox analyses revealed that 
risk scores could be an independent prognostic factor 
for GBM patients compared with other common clini-
cal characteristics (Fig. 5A). Based on the risk regression 

model of the TCGA cohort, age, sex, race, and risk 
score were incorporated into the nomogram line graph 
to predict the survival status of patients with GBM as 
a whole. In the nomogram, risk scores for the endothe-
lial cell hub gene had better predictive power than other 
clinicopathological features. The calibration curves also 
demonstrated acceptable agreement between actual and 
predicted survival at 1, 2, and 3 years (Fig. 5B), indicating 
that the risk model constructed based on the endothelial 
cell hub gene is reliable and can predict the prognosis of 
GBM patients well. The area under the curve (AUC) for 
the 1, 3, and 5-year risk class was higher than the AUC 
for the other clinicopathological features (Fig.  5C, Fig. 
S3), and the temporal c-index values for the risk class 
were similarly higher than for the other features (Fig. 5D). 
These results suggested that the prognostic functions 
of the four genetic features were quite reliable. The his-
togram of the chi-square test showed that the high-risk 
grouping was only associated with the mutational status 
of IDH (Fig. 5E).

Also, GBM patients were grouped by age, gender, 
and IDH mutation status to investigate the relation-
ship between risk characteristics and prognosis of GBM 
patients in these clinicopathological variables. For differ-
ent staging, patients in the low-risk group of the TCGA 
and CGGA cohorts had significantly longer OS than 
those in the high-risk group (Fig. 6A-L). The differential 
results for the TCGA > 60 years group and the female 
subgroup may be due to poor prognosis in GBM and the 
limited number of patients. These results suggest that 
predictive characteristics may also predict the progno-
sis of GBM patients of different ages, genders, and IDH 
statuses.

Mutation, immune function, enrichment analysis, 
and drug treatment analysis between the high‑risk group 
and low‑risk group
Next, we generated two waterfall plots to explore the 
detailed gene mutations between the high-risk and 
low-risk groups, finding that TP53, TTN, and PTEN 
were the most commonly mutated genes in high-risk 
and low-risk groups (Fig.  7A, B). Next, we downloaded 
the immune cell infiltration data from the TCGA data-
base from TIMER 2.0. Spearman correlation analysis 

(See figure on next page.)
Fig. 3  Identification of different subtypes. A The NMF algorithm identified two different subtypes. B Sankey plots show the association between 
different subtypes and immune subtypes. C Differences in TME between different subtypes. D Kaplan-Meier curves for overall survival in different 
GBM subgroups (log-rank test, P value = 0.03). E Heat map of the top 50 genes with the largest | log2FC | for different subtype differences analysis. 
F, G GO and KEGG enrichment analysis of DEGs. NMF: non-negative matrix decomposition; OS: overall survival; KEGG: Kyoto Encyclopedia of Genes 
and Genomes; GO: Gene Ontology
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revealed a correlation between risk scores and the abun-
dance of immune cells in the GBM tumor microenvi-
ronment obtained by various algorithms. E.g., B cells in 
CIBERSORT, XCELL, and TIMER results were nega-
tively correlated with risk scores (Fig.  7C). Next, using 
correlation heat maps, we investigated the correlation 
between the expression levels of the four genes and risk 
scores and genes associated with common ICIs in the 
model, respectively. The results showed that higher risk 
scores were significantly associated with the upregulation 
of CD276, CD274, and CD44 (Fig.  7D). In addition to 
this, we explored the correlation between risk score and 
tumor mutational load (TMB) and the difference in TMB 
between different risk groups (Fig.  4A), finding no sig-
nificant association between risk score and TMB. Finally, 
using the R package “estimate”, we found no significant 
differences between stromal and immune scores in the 
high- and low-risk groups (Fig. 4B).

We applied TCIA to predict the susceptibility of 
patients with high and low-risk scores to immunother-
apy. As shown in the figure, neither programmed cell 
death protein 1 (PD-1) nor cytotoxic t lymphocyte anti-
gen 4 (CTLA4) was significant for treatment in the risk 
group (Fig. S4C), probably due to the very poor prog-
nosis of GBM. We predicted the IC50 of all chemother-
apeutic agents in the high- and low-risk score groups, 
finding that most of the agents such as AKT inhibitors 
and pabucirib exhibited a higher IC50 in patients with 
high-risk scores, thus suggesting that patients with 
high-risk scores may be more sensitive to these agents 
(p all < 0.05; Fig. 4D). In addition, we performed GSEA 
enrichment analysis between the TCGA high and low-
risk datasets to assess the biological function of these 
genes. Using the gene set database MSigDB Collec-
tions (c2.cp.kegg.v7.4.symbols.gmt), we selected the 
eight most significant enriched signalling pathways 
based on normalized enrichment scores (NES) and  
P values (< 0.001) (Fig.  7E). p53 signaling pathway, cell 
cycle, DNA repair, and regulation of the actin cytoskeleton 
were enriched in the high-risk group, whereas the low-
risk group had higher levels of Parkinson’s disease, 
ribosomal, Alzheimer’s disease, and neuroactive ligand-
receptor interactions.

Discussion
The process of angiogenesis implies the growth of new 
capillaries from pre-existing vessels. GBM is a highly vas-
cularized tumour, and the growth of glioma is extremely 
dependent on the formation of new blood vessels [33]. 
Endothelial cells (ECs) dynamically modify their behav-
ior during angiogenesis, eventually leading to differen-
tiation, proliferation, migration, polarity, metabolism, and 
cell-cell communication changes. These modifications are 
assumed to integrate many external inputs; however, they 
also govern the ability of ECs to respond to environmental 
stimuli, such as up- or down-regulation of surface recep-
tor expression [34]. In recent studies, TAM-derived factor 
(SEMA4D) has been shown to promote pericyte recruit-
ment in neovascularization and cellular communication 
between glioma stem cell-derived perivascular cells and 
ECs, thus directly contributing to vascular stability in glio-
mas [35]. FAK proteins may increase angiogenesis in glio-
mas by triggering endothelial cell migration, according to 
research on ECs and angiogenesis. High-grade gliomas 
have higher FAK expression than low-grade gliomas and 
are associated with poorer survival [36]. As a result, anti-
angiogenic therapies targeting ECs, which include inhibiting 
the proliferation of gliomas through angiogenesis-inhibiting 
factors and drugs to inhibit the formation of new tumor 
blood vessels, have gained increasing interest among 
researchers [37].

Characterization of ECs in normal brain tissue and 
GBM based on bulk RNAseq data is often limited [38]. In 
studies of ECs, it is often impossible to infer the effects of 
other cell types on account of GBM cell heterogeneity. In 
this study, we characterized the brain and GBM endothe-
lial cells in more detail by integrating 10 × scRNA-seq 
and bulk RNA-seq data and used the mark gene of ECs to 
build a prognostic model for GBM patients, finding that 
the constructed prognostic model could effectively clas-
sify patients in the TCGA and CGGA cohorts into high- 
and low-risk groups. In addition, we explored survival 
status, clinical relevance, mutational status, and tumor 
immune infiltration in the different groups. Our results 
showed that higher risk scores were associated with a 
poorer prognosis, lower frequency of IDH mutations, 
and upregulation of immune checkpoints such as PD-L1 

Fig. 4  Development and validation of a prognostic model for GBM patients. A LASSO analysis with 10-fold cross-validation identified four 
prognostic genes. B, C Survival curves and ROC curves for evaluating the risk stratification ability and predicting the constructed risk models for 
the TCGA and CGGA cohorts. D Risk maps were used to illustrate the survival status of each sample in the TCGA and CGGA cohorts; heat maps 
represent the differences in expression of each gene in the risk groups. E, F Principal component analysis between the high- and low-risk groups in 
TCGA and CGGA entire set. GBM, glioblastoma multiforme; DEGs, differentially expressed genes; LASSO, minimal absolute shrinkage and selection 
manipulation; ROC, subject operating characteristic curve

(See figure on next page.)
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in patients. Therefore, patients with higher risk scores 
may be more likely to receive immunotherapy. In addi-
tion, we identified two different subtypes using the NMF 
algorithm. All patients in cluster 1 were immune C4 sub-
types, which were associated with a worse prognosis [39]. 
We observed that the different subtypes had different 
prognostic and TME components. Group 1 was associ-
ated with poorer clinical outcomes and high infiltration 
levels of fibroblasts, whereas group 2 was associated with 
better clinical outcomes and high infiltration levels of 
cytotoxic lymphocytes. For example, fibroblasts can sup-
port tumor growth by consuming glucose [40].

We first identified mark genes in ECs by using single-
cell sequencing, followed by LASSO and Cox regression 
analysis, which were used to identify four hub genes, i.e., 
TUBA1C, RPS4X, KDELR2, and SLC40A1, to model prog-
nosis. TUBA1C is an isoform of alpha-microtubule protein 
that serves as a core component of the eukaryotic cytoskel-
eton and promotes cell division, formation, motility, and 
intracellular trafficking [41, 42]. In addition, the biological 
functions of microtubule proteins have been linked to can-
cer development, neurodevelopment, and neurodegenera-
tive diseases [43]. In a recent study, TUBA1C expression 
was reported to be significantly higher in gliomas than 
in normal brain tissue, indicating a poorer prognosis. In 
addition, knockdown of TUBA1C also inhibited prolifera-
tion and migration of glioma cells, leading to apoptosis and 
G2/M phase arrest [44]. Studies on the oncogenic riboso-
mal protein S4 X-linked (RPS4X) have found that RPS4X 
increases cisplatin resistance after the depletion of specific 
small interfering RNAs. RPS4X is associated with ovarian 
cancer stage and its low expression is also associated with 
poor survival and disease progression [45]; however, there 
are still no reports on RPS4X in glioma. In hepatocellular 
carcinoma, RPS4X is required for SLFN11 inactivation 
in the mTOR signaling pathway [46]. Interestingly, the 
KDEL receptor (KDELR2) can also target and promote the 
growth of HIF1a through the mTOR signaling pathway to 
guide glioblastoma [47]. KDELR2 knockdown reduces cell 
viability, promotes G1 phase cell cycle arrest, and induces 
apoptosis. Furthermore, KDELR2 can regulate cellular 
function in glioma cells by targeting CCND1 [48]. Solute 
carrier family 40 member 1 (SLC40A1) is a gene encoding 
an iron transporter protein. Previous studies in multiple 
myeloma and ovarian cancer have shown that SLC40A1 

inhibits tumor cell growth and reduces resistance to chem-
otherapy [49, 50]. Only one recent bioinformatics study 
has suggested that the ferroptosis suppressor SLC40A1 is 
associated with immunosuppression in gliomas and that 
acetaminophen may exert antitumor effects in GBM by 
modulating SLC40A1-induced death [51].

Our results showed that the developed prognostic 
model exhibited independent predictive power in pre-
dicting OS in GBM patients. We found no significant 
difference between the high-risk and low-risk groups in 
terms of gene mutations such as TP53 and PTEN; how-
ever, the high-risk group did not have any IDH muta-
tions. According to the 2016 WHO classification, there 
is a significant difference between IDH mutant GBM and 
IDH wild-type GBM, which has a poorer prognosis [52]. 
This further validates the reliability of our model. In addi-
tion, we investigated the relationship between risk scores, 
TMB values, and PD-L1 expression levels. Disappoint-
ingly, higher risk scores were not significantly correlated 
with higher TMB values (Fig.  S3A). A key mediator of 
immunosuppression in GBM is PD-L1, and although only 
a fraction of GBM cells express PD-L1, PD-L1 expression 
in the tumor microenvironment is deficient [53].

Finally, immune checkpoint blockade treatment may be 
more effective in individuals with higher risk ratings. The 
developed prognostic model might be used as a predic-
tive biomarker for immunotherapy patients. The CGGA 
external validation cohort was also employed to confirm 
the model’s accuracy in predicting OS in these individu-
als. Nonetheless, the present study has some limitations. 
To begin with, all of the presented findings are based on 
bioinformatic studies and require further experimental 
confirmation. To corroborate our findings, we created 
an endothelial cell-based biomarker that will need to be 
tested in large-scale clinical studies.

Conclusion
The present study constructed and validated a prognostic 
model for GBM by integrating 10× scRNA-seq and bulk 
RNA-seq data. Higher risk scores were significantly asso-
ciated with poorer survival outcomes, with almost zero 
IDH mutation rates and upregulation of immune check-
points such as PD-L1 and CD276. Our prognostic model 
may be used as a potential biomarker for risk stratifica-
tion and treatment response prediction in GBM patients.

(See figure on next page.)
Fig. 5  Prognostic value of endothelial cell expression-related signatures in the TCGA cohort. A Univariate and multivariate COX analysis for the 
riskscore and clinical features (including age, race, gender, and IDH state). B Nomogram for both the riskscore and clinical features to predict 1-, 
2- and 3-year survival rates. The calibration curves test the consistency between the actual outcome and the predicted outcome at 1, 2, and 3 years. 
C AUC values for risk group and clinical features at three years. D The concordance index (C-index). E Bar chart of clinical characteristics under high 
and low-risk group
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Fig. 6  Kaplan-Meier survival curves for the low and high-risk groups in the TCGA and CGGA cohorts sorted by different clinicopathological 
variables. A, B Age, C, D sex, and E, F IDH mutations in the TCGA cohort. G, H Age, I, J sex, and K, L IDH mutations in the CGGA cohort
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Fig. 7  Mutation and immune correlation analysis based on risk score models. A, B Waterfall plots summarizing mutations in high- and low-risk 
populations. C The immune cell bubble of risk groups. D Heat map showing the correlation between immune checkpoint genes and TUBA1C, 
RPS4X, KDELR2, SLC40A1, and risk scores. E Gene set enrichment analysis of the top 8 pathways significantly enriched in the risk groups
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