RESEARCH

Open Access

Impact of *GTF2H1* and *RAD54L2* polymorphisms on the risk of lung cancer in the Chinese Han population

Tingting Geng¹, Miao Li², Rong Chen³, Shuangyu Yang¹, Guoquan Jin², Tinabo Jin¹ and Fulin Chen^{1*}

Abstract

Background: Repair pathway genes play an important role in the development of lung cancer. The study aimed to assess the correlation between single nucleotide polymorphisms (SNPs) in DNA repair gene (*GTF2H1* and *RAD54L2*) and the risk of lung cancer.

Methods: Five SNPs in *GTF2H1* and four SNPs in *RAD54L2* in 506 patients with lung cancer and 510 age-and gendermatched healthy controls were genotyped via the Agena MassARRAY platform. The influence of *GTF2H1* and *RAD54L2* polymorphisms on lung cancer susceptibility was assessed using logistic regression analysis by calculating odds ratios (ORs) and their corresponding 95% confidence intervals (CIs).

Results: *RAD54L2* rs9864693 GC genotype increased the risk of lung cancer (OR = 1.33, 95%CI: 1.01–1.77, p = 0.045). Stratified analysis found that associations of *RAD54L2* rs11720298, *RAD54L2* rs4687592, *RAD54L2* rs9864693 and *GTF2H1* rs4150667 with lung cancer risk were found in subjects aged \leq 59 years. Precisely, a protective effect of *RAD54L2* rs11720298 on the occurrence of lung cancer was observed in non-smokers and drinkers. *GTF2H1* rs4150667 was associated with a decreased risk of lung cancer in subjects with BMI \leq 24 kg/m². *RAD54L2* rs4687592 was associated with a reduced risk of lung cancer in drinkers. In addition, *GTF2H1* rs3802967 was associated with a reduced risk of lung squamous cell carcinoma.

Conclusion: Our study first revealed that *RAD54L2* rs9864693 was associated with an increased risk of lung cancer in the Chinese Han population. This study may increase the understanding of the effect of *RAD54L2* and *GTF2H1* polymorphisms on lung cancer occurrence.

Keywords: Lung cancer, Gene polymorphisms, GTF2H1, RAD54L2, MDR analysis

Introduction

Lung cancer, also called primary bronchogenic carcinoma, is a malignant tumor derived from the trachea, bronchial mucosa or glands. Currently, it is the most common malignant tumor in the world [1]. According

*Correspondence: fulinchen0901@163.com

to statistics, in 2015, lung cancer is the most important cause of death in cancer patients, and the incidences of lung cancer in Chinese men and women were 50.9 per 100,000 person-years and 22.4 per 100,000 person-years, respectively [2]. Surgery is still the preferred treatment for early-stage lung cancer. However, most lung cancer patients are diagnosed at an advanced stage, and their 5-year survival rate is only 19.7%, that is to say, they missed the best treatment opportunity [1, 3]. Most studies have suggested that the occurrence of lung cancer is related to environmental factors, such as smoking,

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

¹ Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an 710069, Shaanxi, China Full list of author information is available at the end of the article

occupational exposure, and air pollution [4, 5]. At the same, genetic factors play an important role in the development of lung cancer, including *EGFR* [6], *CHRNA5* [7], *CLPTM1L* [8], *TP63* [9], and so on.

GTF2H1 (general transcription factor IIH subunit 1) protein plays a vital role in the nucleotide excision repair (NER) pathway, participates in the early damage recognition of XPC-HR23B protein, and recruits endonuclease XPG to the injury site to complete the enzymatic cleavage process [10–12]. In addition, GTF2H1 protein is involved in transcription and regulates the transcriptional activation of multiple genes [13]. One research has found that rs3802967 and rs4150606 in the *GTF2H1* gene may increase the risk of lung cancer, and rs4150667 in the *GTF2H1* gene variant may reduce the risk of lung cancer [14]. So, the genetic polymorphisms of *GTF2H1* may be involved in the pathogenesis of lung cancer.

RAD54L2, also known as *ARIP4* (androgen receptorinteracting protein 4), is a protein-coding gene belonging to the RAD54 subfamily of SNF2-type chromatin remodeling factor superfamily [15], with double-stranded DNA-dependent ATPase activity. In fact, Rad54 interacts with Rad51, thereby enhancing its ability to form cruciform and D-loops. *RAD51* catalyzes DNA repair by homologous recombination to ensure the stability of cell genome. In a study of the effects of *RAD51* G135C polymorphism on non-small cell lung cancer patients treated with platinum-paclitaxel/gemcitabine Wrst line chemotherapy, it has been found that the G135C allele is associated with a higher survival time and a better prognosis [16]. However, the effect of the *RAD54L2* gene on the occurrence and development of lung cancer is unknown.

Here, nine polymorphisms in *GTF2H1* and *RAD54L2* were selected and genotyped to explore their impact on the risk of lung cancer in the Chinese Han population.

Materials and methods

Study participants

A total of 506 patients with lung cancer and 510 ageand gender-matched healthy controls were recruited from the Qinghai Province Cancer Hospital. The inclusion criteria for cases were lung cancer confirmed by histopathology and no history of malignant tumors in other organs. Patients with prior cancer history, pulmonary diseases, and serious chronic diseases were excluded. The control group consisted of healthy people with no medical or family history of cancer or any lung disease. Further, each subject was interviewed by trained personnel using a structured questionnaire to obtain information about demographic characteristics [age, gender, smoking and drinking, body mass index (BMI)]. Based on smoking status, participants were classified into non-smokers (never) and smokers (ever or current smokers). Subjects who smoked at least one cigarette per day were classified as current smokers. For drinking status, participants were classified into nondrinkers (never) and drinkers (ever or current alcohol drinkers). Subjects who drank at least 100 g of alcohol per week were considered as drinkers. Pathological data (pathological type, lymph node metastasis, and clinical stage) were obtained via medical records. This study was conducted under the approval of the Institutional Review Boards of Northwest University. All participants were informed of the content of the study and signed informed consent. It was confirmed that all methods were carried out in accordance with relevant guidelines and regulations.

SNP selection and genotyping

The GoldMag-Mini Whole Blood Genomic DNA Purification Kit (GoldMag Co. Ltd. Xi'an City, China) was applied to extract DNA samples from the 5 mL peripheral venous blood, and Nanodrop 2000 (Gene Company Limited) was used to detect the concentration and purity of DNA samples to ensure that samples could be used for subsequent experiments. Four SNPs (rs11720298, rs4687721, rs4687592, and rs9864693) in RAD54L2 and five SNPs (rs4150530, rs3802967, rs4150606, rs4150658, and rs4150667) in GTF2H1 were randomly selected in our study based on the following criteria: (1) minor allele frequency (MAF) > 0.05, min genotype > 75%, and r^2 > 0.8 from the Genome Aggregation Database (gnomAD, http://www.gnomad-sg.org/), (2) MAF more than 0.05 in the Chinese Han population from dbSNP database (https://www.ncbi.nlm.nih.gov/snp/), (3) previous studies on these polymorphisms have been related to lung cancer [14], (4) combined with MassARRAY primer design software, Hardy-Weinberg equilibrium (HWE) > 0.05 and the call rate > 95% in our study population. Haploreg (https:// pubs.broadinstitute.org/mammals/haploreg/haploreg. php), RegulomeDB (https://regulome.stanford.edu/regul ome-search/), and FuncPred (https://manticore.niehs. nih.gov/snpinfo/snpfunc.html) were applied to identify potential functional SNPs in the human RAD54L2 and GTF2H1 genes.

Primer design and SNP genotyping were performed as shown in Suppl_Table 1. The genotyping primers were designed with the Agena MassARRAY Assay Design 3.0 software [17]. The Agena MassARRAY RS1000 system was used for genotyping, and the related data were managed using Agena Typer 4.0 software [17–19]. To ensure accuracy, about 5% of the samples were randomly re– genotyped, and the concordance of duplicated genotyping was 100%.

Statistical analysis

Demographic characteristics between cases and controls were compared by Student's t test and χ^2 test. The Hardy-Weinberg equilibrium (HWE) was calculated by χ^2 test [20]. Multiple genetic models were used to evaluate the association between gene polymorphisms and lung cancer risk. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) adjusting for age and gender were estimated using a logistic regression model through the PLINK software [21]. Further analyses based on age, gender, BMI, smoking, drinking, histology, lymph node metastasis, and clinical stages were performed to assess the impact of polymorphisms on lung cancer. Multifactor dimensionality reduction (MDR) (version 3.0.2) was applied to evaluate the impact of SNP-SNP interactions on the risk of lung cancer. The threshold of p was set at 0.05.

Results

The information on patients with lung cancer and healthy participants was presented in Table 1. The mean ages of participants in the case and control groups were 59.80 ± 10.63 years and 59.80 ± 9.08 years, respectively. The case group includes 350 males and 156 females, and the control group consists of 353 males and 157 females. There were no significant differences in terms of age (p = 0.992) and gender (p = 0.987) between the two groups. Of the 506 patients, 269 had lymph node metastasis,103 had no metastasis, and 286 (56.50%) patients were in stage III–IV. And there were 174 (34.4%) cases of squamous cell carcinoma and 212 (41.9%) cases of adenocarcinoma.

Table 2 showed the basic information on nine SNPs in the *RAD54L2* and *GTF2H1* genes, including physical location, chromosome, minor allele frequency, and HWE. And all variants met the HWE. Associations between *RAD54L2* and *GTF2H1* polymorphisms and the risk of lung cancer were evaluated under different genetic models. In allele model (Table 2), no significant association of SNPs with the genetic susceptibility of lung cancer was found. Database analysis presented that the potential functions of these SNPs might be related to promoter /enhancer histone marks, transcription factor binding, DNAse, proteins binding, changed motifs changed, and selected expression quantitative trait loci (eQTL) hits.

In genotype model, subjects with *RAD54L2* rs9864693 GC heterozygote genotype might have an increased risk of lung cancer compared with individuals with GG wild-type genotype (crude analysis: OR=1.33, 95%CI: 1.01–1.76, p=0.046; adjusted analysis: OR=1.33, 95%CI: 1.01–1.77, p=0.045) (Table 3). No statistically significant

Table 1 The information of the participants

Characteristics	Case	Control	р
Number	506	510	
Age (mean \pm SD, years)	59.80 ± 10.63	59.80 ± 9.08	0.992
> 59	271 (53.6%)	275 (54.3%)	
<u>≤</u> 59	235 (46.4%)	235 (46.4%)	
Gender			0.987
Male	350(69.2%)	353(69.8%)	
Female	156(30.8%)	157(31.2%)	
BMI (kg/m²)			
<u>≤</u> 24	133 (26.3%)	138 (27.3%)	
> 24	81 (16.0%)	181 (35.8%)	
Missing	292 (57.7%)	191 (37.7%)	
Smoking			
Yes	242 (47.8%)	108 (27.3%)	
No	161 (31.8%)	180 (35.8%)	
Missing	292 (20.4%)	191 (43.5%)	
Drinking			
Yes	109 (21.5%)	103 (20.4%)	
No	267 (52.8%)	156 (30.8%)	
Missing	130 (25.7%)	251 (49.6%)	
Pathological type			
Lung squamous cell carcinoma	174 (34.4%)		
Lung adenocarcinoma	212 (41.9%)		
Missing	120 (23.7%)		
Lymph node metastasis			
Yes	269 (53.2%)		
No	103 (20.4%)		
Missing	134 (26.5%)		
Clinical stages			
+	93 (18.4)		
+ V	286 (56.5)		
Missing	127 (25.1%)		

p values were calculated by χ^2 test or the Student's t test

association between other SNPs with lung cancer susceptibility was observed (p > 0.05, Suppl_Table 2).

Stratified analysis was carried out based on age, gender, BMI, smoking, drinking, pathological type, lymph node metastasis, and clinical stages (Table 4). In subjects aged \leq 59 years, *RAD54L2* rs11720298 was related to a reduced susceptibility to lung cancer, whereas several risk-increasing associations of *RAD54L2* rs4687592 (OR=0.69, p=0.012), *RAD54L2* rs9864693 (OR=1.64, p=0.012) and *GTF2H1* rs4150667 (OR=1.32, p=0.048) with lung cancer were found. Among subjects with BMI \leq 24 kg/m², *GTF2H1* rs4150667 (OR=0.18, p=0.008) contributed to a lower risk of developing lung cancer. Among non-smokers and drinkers, the protective effects of *RAD54L2* rs11720298 (OR=0.62, p=0.011; and

gene
GTF2H1
4L2 and
he RAD5
ms on t
norphis
ie polyr
iine ger
ion of r
nformat
2 The ii
Table

Gene	SNP	Chromosome	Physical location	Alleles	MAF-Case	MAF-Control	HWE-p	OR (95%CI)	р	HaploReg v4.1	RegulomeDB	FuncPred
RAD54L2	rs11720298	с	51,547,493	A/G	0.25	0.28	0.229	0.86 (0.70-1.05)	0.127	Selected eQTL hits	TF binding + DNase peak	
	rs4687721	m	51,564,238	A/G	0.07	0.07	0.747	0.99 (0.71–1.39)	0.972	Promoter histone marks, Enhancer histone marks, Motifs changed, Selected eQTL hits	TF binding + any motif + DNase peak	
	rs4687592	Ω	51,621,840	C7	0.34	0.33	0.159	1.07 (0.89–1.28)	0.490	Enhancer histone marks, DNAse, Proteins bound, Selected eQTL hits	TF binding + DNase peak	
	rs9864693	m	51,622,354	C/G	0.45	0.42	0.856	1.10 (0.92–1.31)	0.293	SiPhy cons, Promoter his- tone marks, Enhancer his- tone marks, Motifs changed, Selected eQTL hits	TF binding or DNase peak	
GTF2H1	rs4150530	=	18,322,147	GЛ	0.10	0.12	0.831	0.84 (0.63–1.11)	0.219	Promoter histone marks, DNAse, Proteins bound, Motifs changed, Selected eQTL hits	TF binding + any motif + DNase Foot- print + DNase peak	TFBS, Splicing
	rs3802967	=	18,322,517	A/G	0.46	0.48	0.479	0.92 (0.77–1.09)	0.323	SiPhy cons, Promoter his- tone marks, DNAse, Proteins bound, Motifs changed, Selected eQTL hits	TF binding + matched TF motif + matched DNase Footprint + DNase peak	TFBS
	rs4150606	11	18,342,022	A/C	0.13	0.14	0.591	0.91 (0.71–1.18)	0.485	Motifs changed, Selected eQTL hits	Motif hit	
	rs4150658	11	18,357,336	A/G	0.10	0.12	1.000	0.85 (0.64–1.12)	0.253	Motifs changed, Selected eQTL hits	TF binding or DNase peak	
	rs4150667	11	18,361,364	C/T	0.33	0.32	0.919	1.05 (0.87–1.27)	0.583	DNAse, Motifs changed, Selected eQTL hits	TF binding + DNase peak	
SNP Single Haploreg (<i>p</i> values w	: nucleotide pc https://pubs.b ere calculated	Jymorphism, MAF roadinstitute.org/r by X ² test	Minor allele fre nammals/hapl	equency, H loreg/haplo	<i>WE</i> Hardy-Wei oreg.php); Reg	nberg equilibriun ulomeDB (https:/	n, <i>eQTL</i> exl /regulome	oression Quantitati a.stanford.edu/regu	/e Trait L	cci, TF Transcription factor, TFBS T arch/); FuncPred (https://mantico	ranscription factor binding site re.niehs.nih.gov/snpinfo/snpfun	c.html)

Table 3	Risk analysis for RAD54L2 rs986469	3 and lung cancer in c	different genetic m	nodels by logistic regression ar	nalysis
---------	------------------------------------	------------------------	---------------------	----------------------------------	---------

SNP	Model	Genotype	control	case	crude analysis		adjusted analysis	
					OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value
RAD54L2	Genotype	GG	171	143	1		1	
rs9864693		GC	247	275	1.33 (1.01–1.76)	0.046*	1.33 (1.01–1.77)	0.045*
		CC	92	88	1.14 (0.79–1.65)	0.473	1.14 (0.79–1.65)	0.472
	Dominant	GG	171	143	1		1	
		GC-CC	339	363	1.28 (0.98–1.67)	0.069	1.28 (0.98–1.67)	0.069
	Recessive	GG-GC	418	418	1		1	
		CC	92	88	0.96 (0.69–1.32)	0.787	0.96 (0.69–1.32)	0.787
	Additive	-	-	-	1.10 (0.92–1.32)	0.282	1.10 (0.92–1.32)	0.282

SNP single nucleotide polymorphism, OR odds ratio, 95% CI 95% confidence interval

p values were calculated by logistic regression analysis without/with adjustments for age and gender

*p < 0.05 respects the data is statistically significant

OR=0.17, p=0.008) on the occurrence of lung cancer were observed. Besides, an increased risk of lung cancer was observed for *RAD54L2* rs4687592 in drinkers (OR=2.54, p=0.034). Stratified by pathological type, *GTF2H1* rs3802967 was associated with a reduced risk of lung squamous cell carcinoma (OR=0.68, p=0.045). However, no significant relationships of selected polymorphisms with lung cancer risk in the stratified analysis by gender, lymph node metastasis, and clinical stages were detected (Suppl_Table 3 and Suppl_Table 4).

FPRP analysis was performed to verify positive findings, as shown in Table 5. At a prior probability level of 0.25, a significant association of *RAD54L2* rs9864693 remained noteworthy overall (FPRP=0.160 and statistical power=0.795). In subjects aged \leq 59 years, correlations of rs11720298, rs4687592 and rs9864693 in *RAD54L2* with the susceptibility to lung cancer were also positive at a prior probability level of 0.1. Moreover, an association of *RAD54L2* rs11720298 with the risk of lung cancer in non-smokers and drinkers was significant at a prior probability level of 0.1.

MDR was applied to analyze the interactions of these SNPs. The results of MDR model analysis for SNP-SNP interactions were displayed in Table 6; Fig. 1. The best multi-loci model was the eight-locus model, namely, a combination of rs3802967, rs4687721, rs9864693, rs11720298, rs4150606, rs4150658, rs4150667, and rs4687592, with a highest testing accuracy (0.5286) and a perfect cross-validation consistency (10/10). As shown in Fig. 1, the dendrogram plot demonstrated the interactions among these eight SNPs and recapitulated the main and/or interaction effect on each pairwise combination of attributes. Red and orange line indicated synergistic interaction, blue and green color indicated redundant interactions. The result suggested that rs4687721 and rs4150667 had a synergistic interaction sharing the positive information gain with lung cancer.

Discussion

In our research, we found that RAD54L2 rs9864693 was related to an increased risk of lung cancer in the Chinese Han population. Especially, among subjects aged \leq 59 years, RAD54L2 rs11720298 was related to a reduced susceptibility to lung cancer, while the risk-increasing associations were found for RAD54L2 rs4687592, RAD54L2 rs9864693 and GTF2H1 rs4150667. Among subjects with BMI ≤ 24 kg/m², *GTF2H1* rs4150667 had the lower risk of developing lung cancer. In non-smokers and drinkers, the protective risk effect of RAD54L2 rs11720298 on the occurrence of lung cancer was observed, respectively. Besides, the increased risk of lung cancer was observed for RAD54L2 rs4687592 in drinkers. GTF2H1 rs3802967 was associated with the reduced risk of lung squamous cell carcinoma. MDR result suggested that rs4687721 and rs4150667 had synergistic interaction sharing the positive information gain with respect to lung cancer. Our findings provide data for constructing a genetic panel to predict lung cancer risk in China.

RAD54L2 (ARIP4), located on human chromosome 3p21.2, is initially identified as an ATPase of Rad54/ ATRX subfamily of SNF2-like proteins, which contains chromatin remodeling activity, interacts with AR and regulates and rogen-mediated transactivation [22]. SNF2-like proteins are thought to modify the structure of chromatin in a non-covalent manner through rearrangement of nucleosomes. Only RAD54L2 has been found to affect gastrointestinal stromal tumors, and the expression of RAD54L2 has a shorter overall survival time [23]. Rad54 interacts with Rad51, which functions during DNA repair. It has been proved that Rad51 G135C allele is associated with a higher survival time and a better prognosis in lung cancer patients treated with platinum-paclitaxel / gemcitabine Wrst line chemotherapy [16]. RAD54B protein expression

Table 4 Stratified analysis for the associations between RAD54L2 and GTF2H1 polymorphisms and the risk of lung cancer

SNP	Model	Genotype	Number		adjusted by age ar	nd sex	Number		adjusted by age ar	ıd sex
			Case	Control	OR (95%CI)	p	Case	Control	OR (95%CI)	p
Age ≤ 59 years							Age>59 ye	ars		
RAD54L2	Genotype	AA	143	115	1		143	153	1	
rs11720298		GA	77	98	0.61 (0.41-0.90)	0.013*	108	87	1.16 (0.81–1.67)	0.408
		GG	15	21	0.57 (0.28-1.16)	0.120	20	25	0.8 (0.42-1.51)	0.489
	dominant	AA/GG+GA	143/92	115/119	0.60 (0.42-0.87)	0.007*	143/128	153/122	1.09 (0.77-1.53)	0.625
	recessive	GA + AA/GG	220/15	213/21	0.70 (0.35-1.39)	0.306	251/20	250/25	0.75 (0.40-1.39)	0.362
	log-additive				0.69 (0.51-0.92)	0.012*			1.00 (0.77-1.30)	0.991
RAD54L2	Genotype	CC	106	129	1		120	110	1	
rs4687592		TC	96	82	1.41 (0.95-2.10)	0.085	120	128	0.85 (0.59-1.22)	0.377
		Π	33	24	1.74 (0.96-3.13)	0.066	31	37	0.78 (0.45-1.34)	0.366
	dominant	CC/TT+TC	106/129	129/106	1.49 (1.03-2.14)	0.034*	120/151	110/165	0.83 (0.59-1.17)	0.297
	recessive	TC + CC/TT	202/33	211/24	1.50 (0.85-2.63)	0.162	240/31	238/37	0.85 (0.51-1.41)	0.522
	log-additive				1.35 (1.03-1.76)	0.028*			0.87 (0.68-1.12)	0.284
RAD54L2	Genotype	CC	70	97	1		73	74	1	
rs9864693		GC	119	101	1.60 (1.06-2.40)	0.025*	156	146	1.09 (0.73-1.61)	0.688
		GG	46	37	1.75 (1.03-2.99)	0.039*	42	55	0.80 (0.47-1.34)	0.391
	dominant	CC/GG+GC	70/165	97/138	1.64 (1.12-2.40)	0.012*	73/198	74/201	1.01 (0.69-1.47)	0.972
	recessive	GC + CC/GG	189/46	198/37	1.35 (0.83-2.17)	0.226	229/42	220/55	0.75 (0.48-1.18)	0.215
	log-additive				1.37 (1.05–1.77)	0.019*			0.91 (0.71-1.18)	0.488
GTF2H1	Genotype	CC	98	118	1		127	120	1	
rs4150667	Genotype	тс	109	97	1 38 (0 94–2 03)	0.100	122	125	0.92 (0.64–1.31)	0.626
		TT	28	20	1.67 (0.88-3.15)	0.115	22	30	0.67 (0.36-1.23)	0.194
	dominant	CC/TT+TC	98/137	118/117	1.43 (0.99-2.07)	0.055	127/144	120/155	0.87 (0.62-1.22)	0.151
	racossiva		207/29	215/20	1.42(0.79, 2.61)	0.055	240/22	245/20	0.70 (0.20 1.25)	0.227
	log-additive	10+00/11	207720	213/20	1.32 (1.00-1.75)	0.048*	273/22	245/50	0.85 (0.66-1.11)	0.227
$BMI < 24 \text{ kg/m}^2$	log additive				1.52 (1.00 1.75)	0.040	BMI > 24 kg	/m ²	0.05 (0.00-1.11)	0.200
GTE2H1	Genotype	CC	68	65	1		22 23	93	1	
rs4150667	denotype	тс	62	58	1.02 (0.62-1.67)	0.055	37	76	1 36 (0 77-2 40)	0.286
		TT	2	15	0.18 (0.05 0.65)	0.955	11	10	2.44 (0.07, 6.19)	0.200
	dominant		69/65	65/72	0.10 (0.05-0.05)	0.005	22/40	02/00	1.51 (0.99 - 2.59)	0.055
	recessive		130/3	122/15	0.18 (0.05-0.63)	0.008*	70/11	160/12	2.09 (0.87-5.06)	0.100
	log additivo	10 + 00/11	150/5	123/13	0.70 (0.47 1.04)	0.000	/0/11	100/12	1.40 (0.00 2.24)	0.050
Non smokors	log additive				0.70 (0.47-1.04)	0.077	Smokore		1.49 (0.99-2.24)	0.000
RADSAL2	Constras		02	00	1		120	56	1	
Non-smokers <i>RAD54L2</i> rs11720298	denotype	CA.	62	75	0.72 (0.45 1.15)	0.167	04	41	0.94 (0.52, 1.27)	0.495
		GG	7	16	0.72 (0.45=1.15)	0.107	10	11	0.69 (0.32 - 1.57)	0.465
	dominant		02/60	00/01	0.28 (0.11-0.73)	0.047*	120/104	56/50	0.09 (0.50-1.55)	0.307
	torninant		154/7	162/16	0.03 (0.40-0.99)	0.047	224/10	07/11	0.31 (0.31=1.28)	0.302
	leg additive	GA T AA GG	1,04/7	105/10	0.53 (0.13-0.83)	0.021	224/10	57/11	0.22 (0.50 1.12)	0.305
Drinkors	log-adultive				0.02 (0.45-0.89)	0.011	Non drink		0.65 (0.59-1.16)	0.505
Drinkers PADEAL2	Constras		66	40	1		251	75	1	
rs11720298	Genotype	AA CA	40	49	0.70 (0.20, 1.24)	0.217	231	15	0.72 (0.47, 1.00)	0.110
		GA	40	41	0.70 (0.59-1.24)	0.217	21	00	0.72 (0.47-1.09)	0.116
			3	13	0.17 (0.05-0.63)	0.008^	21	14	0.76 (0.36-1.57)	0.455
	dominant	AAVGG+GA	00/43	49/54	0.57 (0.33-0.99)	0.045	151/110	/5/80	0.72 (0.48-1.08)	0.110
	recessive	GA + AAVGG	100/3	90/13	0.20 (0.05-0.71)	0.013	240/21	141/14	0.87 (0.43-1.78)	0.708
	log-additive	~~		-	0.54 (0.35-0.85)	0.008*			0.80 (0.59–1.09)	0.162
кAD54L2 rs4687592	Genotype		38	4/	1		124	11	1	
			50	45	1.37 (0.76-2.48)	0.295	114	66	1.08 (0.71-1.65)	0.706
		11	21	11	2.54 (1.07-6.00)	0.034*	29	13	1.43 (0.70-2.92)	0.329
	dominant	CC/TT+TC	38/71	47/56	1.60 (0.91–2.79)	0.101	124/143	77/79	1.14 (0.77–1.70)	0.518
	recessive	TC + CC/TT	88/21	92/11	2.15 (0.97-4.79)	0.061	238/29	143/13	1.38 (0.69–2.74)	0.365
	log-additive				1.53 (1.03–2.28)	0.035*			1.15 (0.85–1.56)	0.366

Table 4 (continued)

SNP	Model	Genotype	Number		adjusted by age ar	ıd sex	Number		adjusted by age ar	nd sex
			Case	Control	OR (95%CI)	p	Case	Control	OR (95%CI)	p
Lung squamou	us cell carcinoma						Lung aden	ocarcinoma		
GTF2H1	Genotype	CC	59	133	1		65	133	1	
153802967		TC	79	263	0.67 (0.45-1.00)	0.051	96	263	0.74 (0.51–1.09)	0.128
		TT	36	114	0.70 (0.43–1.15)	0.158	51	114	0.94 (0.60–1.47)	0.780
	dominant	CC/TT+TC	59/115	133/377	0.68 (0.46-0.99)	0.045*	65/147	133/377	0.80 (0.56-1.14)	0.224
	recessive	TC + CC/TT	138/36	396/114	0.90 (0.59–1.38)	0.629	161/51	396/114	1.13 (0.77–1.66)	0.526
	log-additive				0.82 (0.64–1.05)	0.118			0.96 (0.76–1.20)	0.694

SNP single nucleotide polymorphism, OR odds ratio, 95% CI 95% confidence interval

p values were calculated by logistic regression analysis with adjustments for age and gender

*p < 0.05 respects the data is statistically significant

Table 5 False-positive report probability values for the associations between RAD54L2 and GTF2H1 polymorphisms and the risk of lung cancer

SNP	Model	adjusted by age and	d sex	Statistical power	Prior pro	oability			
		OR (95%CI)	p		0.25	0.1	0.01	0.001	0.0001
Overall									
RAD54L2 rs9864693	Genotype	1.33 (1.01–1.77)	0.045	0.795	0.160 ^a	0.364	0.863	0.984	0.998
Age ≤ 59 years									
RAD54L2 rs11720298	Genotype	0.61 (0.41-0.90)	0.013	0.842	0.043 ^a	0.120 ^a	0.600	0.938	0.993
	dominant	0.60 (0.42-0.87)	0.007	0.832	0.025 ^a	0.071 ^a	0.456	0.894	0.988
	log-additive	0.69 (0.51-0.92)	0.012	0.986	0.034 ^a	0.095 ^a	0.535	0.921	0.991
RAD54L2 rs4687592	dominant	1.49 (1.03-2.14)	0.034	0.944	0.089 ^a	0.227	0.764	0.970	0.997
	log-additive	1.35 (1.03–1.76)	0.028	0.998	0.074 ^a	0.193 ^a	0.725	0.964	0.996
RAD54L2 rs9864693	Genotype	1.60 (1.06-2.40)	0.025	0.860	0.075 ^a	0.195 ^a	0.727	0.964	0.996
		1.75 (1.03–2.99)	0.039	0.687	0.150 ^a	0.347	0.854	0.983	0.998
	dominant	1.64 (1.12-2.40)	0.012	0.846	0.037 ^a	0.104 ^a	0.560	0.928	0.992
	log-additive	1.37 (1.05–1.77)	0.019	0.756	0.060 ^a	0.160a	0.677	0.955	0.995
GTF2H1 rs4150667	log-additive	1.32 (1.00-1.75)	0.048	0.813	0.165 ^a	0.373	0.867	0.985	0.998
$BMI \le 24 \text{ kg/m}^2$									
GTF2H1 rs4150667	Genotype	0.18 (0.05-0.65)	0.009	0.059	0.309	0.573	0.937	0.993	0.999
	recessive	0.18 (0.05-0.63)	0.008	0.055	0.285	0.544	0.929	0.993	0.999
Non-smokers									
RAD54L2 rs11720298	Genotype	0.28 (0.11–0.75)	0.011	0.124	0.215	0.451	0.900	0.989	0.999
	dominant	0.63 (0.40-0.99)	0.047	0.842	0.138 ^a	0.325	0.841	0.982	0.998
	recessive	0.33 (0.13-0.85)	0.021	0.195	0.250	0.500	0.917	0.991	0.999
	log-additive	0.62 (0.43-0.89)	0.011	0.878	0.032 ^a	0.089 ^a	0.518	0.916	0.991
Drinkers									
RAD54L2 rs11720298	Genotype	0.17 (0.05–0.63)	0.008	0.053	0.311	0.575	0.937	0.993	0.999
	log-additive	0.54 (0.35-0.85)	0.008	0.630	0.036 ^a	0.100 ^a	0.549	0.925	0.992
RAD54L2 rs4687592	Genotype	2.54 (1.07-6.00)	0.034	0.293	0.256	0.508	0.919	0.991	0.999
	log-additive	1.53 (1.03–2.28)	0.035	0.906	0.108 ^a	0.267	0.800	0.976	0.998
Lung squamous cell carcinor	na								
GTF2H1 rs3802967	dominant	0.68 (0.46-0.99)	0.045	0.946	0.123 ^a	0.296	0.822	0.979	0.998

SNP single nucleotide polymorphism, OR odds ratio, 95% Cl 95% confidence interval

 \boldsymbol{p} values were calculated by logistic regression analysis with adjustments for age

Statistical power was calculated using the number of observations in the subgroup and the OR and p values in this table

^a The level of false-positive report probability threshold was set at 0.2, and noteworthy findings are presented

 Table 6
 SNP–SNP interaction models of candidate SNPs analyzed by the MDR method

Model	Training Bal. Acc.	Testing Bal. Acc.	сус	OR (95% CI)	p
rs9864693	0.5315	0.499	8/10	1.28 (1.00-1.63)	0.0517
rs3802967,rs9864693	0.5428	0.4824	4/10	1.42 (1.10–1.85)	0.0078*
rs3802967,rs9864693,rs4150658	0.5628	0.5207	8/10	1.67 (1.29–2.14)	< 0.0001*
rs3802967,rs4687721,rs9864693,rs4150658	0.5815	0.4855	3/10	1.99 (1.53–2.58)	< 0.0001*
rs3802967,rs9864693,rs11720298,rs4150658,rs4687592	0.6098	0.5158	5/10	2.47 (1.89–3.23)	< 0.0001*
rs3802967,rs9864693,rs11720298,rs4150658,rs4150667,rs4687592	0.6344	0.5276	8/10	2.92 (2.62–3.76)	< 0.0001*
rs3802967,rs9864693,rs11720298,rs4150606,rs4150658,rs4150667 ,rs4687592	0.644	0.5217	9/10	3.13 (2.42–4.04)	< 0.0001*
rs3802967,rs4687721,rs9864693,rs11720298,rs4150606,rs4150658,rs41506 67,rs4687592	0.6507	0.5286	10/10	3.34 (2.58–4.32)	< 0.0001*
rs3802967,rs4687721,rs9864693,rs11720298,rs4150530,rs4150606,rs415065 8,rs4150667,rs4687592	0.6523	0.5306	10/10	3.40 (2.62–4.40)	< 0.0001*

MDR multifactor dimensionality reduction, Bal. Acc. balanced accuracy, CVC cross-validation consistency, OR odds ratio, Cl confidence interval

p values were calculated using χ^2 tests

Bold indicate that *p* < 0.05 indicates statistical significance

is significantly higher in lung adenocarcinoma tissues than that in healthy lung tissues, and inhibition of *RAD54B* expression in A549 cells can significantly reduce cell proliferation and increase apoptotic rate [24]. However, the effect of *RAD54L2* on lung cancer is not clear. In our research, we found that *RAD54L2* rs9864693 was associated with an increased risk of lung cancer, especially in subjects aged \leq 59 years. Besides, *RAD54L2* rs11720298 was related to a reduced

susceptibility to lung cancer in subjects aged \leq 59 years, non-smokers and drinkers, while a risk-increasing association was found between rs4687592 and lung cancer risk in subjects aged \leq 59 years and drinkers. Here, we first displayed the genetic association of *RAD54L2* polymorphisms with the susceptibility to lung cancer in the Chinese Han population. However, the role of *RAD54L2* gene in the occurrence and development of lung cancer needs to be further clarified.

GTF2H1 interacts with the C- and N-terminus of XPC protein, participates in the recruitment of other protein subunits in TFIIH, and initiates the NER repair process. The study found that the expression of GTF2H1 was down-regulated in lung cancer tissues [25]. Rs3802967 is located in the 5'-UTR region of GTF2H1 gene, and the luciferase activity experiments displayed that rs3802967 T allele was related to the enhanced expression of GTF2H1 in lung cancer cells [14]. A previous study has showed that variants of GTF2H1 rs3802967 and rs4150667 are also significantly associated with the risk of lung cancer in the southern Han Chinese population [14]. In our study, it was found that GTF2H1 rs3802967 CT-TT reduced the risk of lung squamous cell carcinoma. Moreover, a risk-increasing association was found between GTF2H1 rs4150667 and lung cancer risk in subjects aged \leq 59 years, while *GTF2H1* rs4150667 was associated with a reduced risk of developing lung cancer in subjects with BMI < 24 kg/m². However, such inconsistency might result from different behavioral habits or sample sizes. Besides, rs4150606 on GTF2H1 increased the risk of lung cancer [14]. However, no correlation between the variants of GTF2H1 rs4150606 and the risk of lung cancer was found. This may be due to the false negative results of our small sample size, and whether the association of SNPs with the risk of lung cancer needs to be further confirmed.

Several limitations in this study should be considered. First, the subjects were enrolled from the same hospital; therefore, there is selection bias. Second, after stratification, the sample size of each subgroup is relatively small, thus, a well-designed large sample is needed to further confirm our findings. Third, the mechanism of selected polymorphisms on the occurrence and development of lung cancer is still unclear, and further research is needed. Fourth, due to the absence of information, including BMI, smoking, and drinking, only age- and sex- adjustments were performed in this study. In the follow-up studies, we will improve relevant information and adjust risk factors to further analyze the correlation of *GTF2H1* and *RAD54L2* with the risk of lung cancer.

Conclusion

To sum up, our study first revealed that *RAD54L2* rs9864693 was associated with an increased risk of lung cancer in the Chinese Han population. Our finding will provide evidence that age, BMI, smoking, and drinking might be associated with the effects of *RAD54L2* and *GTF2H1* variants on lung cancer susceptibility. This study may increase the understanding the effects of of *RAD54L2* and *GTF2H1* polymorphisms on the occurrence of lung cancer.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12885-022-10303-1.

Additional file 1: Suppl_Table 1. The detail of PCR primers and UEP sequence for candidate variants. Suppl_Table 2. Risk analysis for RAD54L2 and GTF2H1 polymorphisms with the susceptibility to lung cancer in different genetic models by logistic regression analysis. Suppl_Table 3. Stratified analysis for the associations between RAD54L2 and GTF2H1 polymorphisms and the risk of lung cancer. Suppl_Table 4. The associations between RAD54L2 and GTF2H1 polymorphisms and the stage and metastasis of lung cancer.

Acknowledgements

The authors thank all participants in the study.

Authors' contributions

Tingting Geng and Miao Li drafted the manuscript. Rong Chen performed the DNA extraction and genotyping; Shuangyu Yang performed the sample collection and information recording; Guoquan Jin and Tinabo Jin, performed the data analysis; Fulin Chen conceived and supervised the study. The author(s) read and approved the final manuscript.

Funding

No

Availability of data and materials

The data that support the findings in this study are available on request from the first author and correspondent author. The data are not publicly available as they contain information that could compromise research participant privacy or consent.

Declarations

Ethics approval and consent to participate

This study was conducted under the approval of the Institutional Review Boards of Northwest University. All participants were aware of the content of the study and signed an informed consent. Confirm that all methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors have declared that they have no conflict of any interests.

Author details

¹Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, #229 Taibai North Road, Xi'an 710069, Shaanxi, China. ²Department of Medicine Oncology, The Fifth People's Hospital of Qinghai Province, 810007 Xining, Qinghai, China. ³Department of Medicine Oncology, The Affiliated Hospital of Qinghai University, 810016 Xining, Qinghai, China.

Received: 18 February 2022 Accepted: 10 November 2022 Published online: 16 November 2022

References

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.
- Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. Cancer J Clin. 2016;66(2):115–32.
- Mao Y, Yang D, He J, Krasna MJ. Epidemiology of Lung Cancer. Surg Oncol Clin N Am. 2016;25(3):439–45.

- Mohamed S, Bayoumi H, El-Aziz NA, Mousa E, Gamal Y. Prevalence, risk factors, and impact of lung Cancer on outcomes of idiopathic pulmonary fibrosis: a study from the Middle East. Multidiscip Respir Med. 2018;13:37.
- Liu D, Wen H, He J, Gao S, Li S, Liu L, He J, Huang Y, Xu S, Mao W, et al. Society for Translational Medicine Expert Consensus on the preoperative assessment of circulatory and cardiac functions and criteria for the assessment of risk factors in patients with lung cancer. J Thorac Dis. 2018;10(9):5545–9.
- Li K, Yang M, Liang N, Li S. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review). Oncol Rep. 2017;37(3):1347–58.
- Huang CY, Xun XJ, Wang AJ, Gao Y, Ma JY, Chen YT, Jin TB, Hou P, Gu SZ. CHRNA5 polymorphisms and risk of lung cancer in Chinese Han smokers. Am J Cancer Res. 2015;5(10):3241–8.
- Xun X, Wang H, Yang H, Wang H, Wang B, Kang L, Jin T, Chen C. CLPTM1L genetic polymorphisms and interaction with smoking and alcohol drinking in lung cancer risk: a case-control study in the Han population from northwest China. Med (Baltim). 2014;93(28):e289.
- Hu QY, Jin TB, Wang L, Zhang L, Geng T, Liang G, Kang LL. Genetic variation in the TP63 gene is associated with lung cancer risk in the Han population. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(3):1863–6.
- Compe E, Egly JM. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol. 2012;13(6):343–54.
- 11. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet. 2004;36(7):714–9.
- Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly JM, Coin F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 2009;28(19):2971–80.
- Ribeiro-Silva C, Aydin OZ, Mesquita-Ribeiro R, Slyskova J, Helfricht A, Marteijn JA, Hoeijmakers JHJ, Lans H, Vermeulen W. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat Commun. 2018;9(1):4067.
- Wu W, Liu H, Lei R, Chen D, Zhang S, Lv J, Wang Y, Fan W, Qian J, Jin G, et al. Genetic variants in GTF2H1 and risk of lung cancer: a case-control analysis in a Chinese population. Lung cancer (Amsterdam Netherlands). 2009;63(2):180–6.
- Ogawa H, Komatsu T, Hiraoka Y, Morohashi K. Transcriptional Suppression by Transient Recruitment of ARIP4 to Sumoylated nuclear receptor Ad4BP/SF-1. Mol Biol Cell. 2009;20(19):4235–45.
- Nogueira A, Catarino R, Coelho A, Araujo A, Gomes M, Medeiros R. Influence of DNA repair RAD51 gene variants in overall survival of non-small cell lung cancer patients treated with first line chemotherapy. Cancer Chemother Pharmacol. 2010;66(3):501–6.
- 17. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009;Chap. 2:Unit 2.12.
- Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51.
- 19. Guo T, Hao H, Zhou L, Zhou F, Yu D. Association of SNPs in the TIMP-2 gene and large artery atherosclerotic stroke in southern Chinese Han population. Oncotarget. 2018;9(4):4698–706.
- Adamec C. [EXAMPLE OF THE USE OF THE NONPARAMETRIC TEST. TEST X2 FOR COMPARISON OF 2 INDEPENDENT EXAMPLES]. Ceskoslovenske zdravotnictvi 1964, 12:613–9.
- 21. Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320(7247):1468.
- Rouleau N, Domans'kyi A, Reeben M, Moilanen AM, Havas K, Kang Z, Owen-Hughes T, Palvimo JJ, Janne OA. Novel ATPase of SNF2-like protein family interacts with androgen receptor and modulates androgendependent transcription. Mol Biol Cell. 2002;13(6):2106–19.
- Schoppmann SF, Vinatzer U, Popitsch N, Mittlbock M, Liebmann-Reindl S, Jomrich G, Streubel B, Birner P. Novel clinically relevant genes in gastrointestinal stromal tumors identified by exome sequencing. Clin Cancer Res. 2013;19(19):5329–39.

- 24. Xu C, Liu D. Knockdown of RAD54B expression reduces cell proliferation and induces apoptosis in lung cancer cells. J Int Med Res. 2019;47(11):5650–9.
- 25. Frias C, Garcia-Aranda C, De Juan C, Moran A, Ortega P, Gomez A, Hernando F, Lopez-Asenjo JA, Torres AJ, Benito M, et al. Telomere shortening is associated with poor prognosis and telomerase activity correlates with DNA repair impairment in non-small cell lung cancer. Lung Cancer (Amsterdam Netherlands). 2008;60(3):416–25.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

