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Abstract 

Background:  Preoperative prediction of pancreatic cystic neoplasm (PCN) differentiation has significant value for the 
implementation of personalized diagnosis and treatment plans. This study aimed to build radiomics deep learning 
(DL) models using computed tomography (CT) data for the preoperative differential diagnosis of common cystic 
tumors of the pancreas.

Methods:  Clinical and CT data of 193 patients with PCN were collected for this study. Among these patients, 99 were 
pathologically diagnosed with pancreatic serous cystadenoma (SCA), 55 were diagnosed with mucinous cystad-
enoma (MCA) and 39 were diagnosed with intraductal papillary mucinous neoplasm (IPMN). The regions of interest 
(ROIs) were obtained based on manual image segmentation of CT slices. The radiomics and radiomics-DL models 
were constructed using support vector machines (SVMs). Moreover, based on the fusion of clinical and radiological 
features, the best combined feature set was obtained according to the Akaike information criterion (AIC) analysis. 
Then the fused model was constructed using logistic regression.

Results:  For the SCA differential diagnosis, the fused model performed the best and obtained an average area under 
the curve (AUC) of 0.916. It had a best feature set including position, polycystic features (≥6), cystic wall calcification, 
pancreatic duct dilatation and radiomics-DL score. For the MCA and IPMN differential diagnosis, the fused model with 
AUC of 0.973 had a best feature set including age, communication with the pancreatic duct and radiomics score.

Conclusions:  The radiomics, radiomics-DL and fused models based on CT images have a favorable differential 
diagnostic performance for SCA, MCA and IPMN. These findings may be beneficial for the exploration of individualized 
management strategies.
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Background
Pancreatic cystic neoplasms (PCNs) are a set of hetero-
geneous pancreatic cystic tumors with various biological 
behaviors [1]. The detection rate of PCN in the general 
population depends on the imaging method [2]. The 
detection rate of magnetic resonance imaging (MRI) is 
even close to 50% [3].

Common PCNs include serous cystic neoplasms 
(SCNs) and non-SCNs (mucinous cystic neoplasms, 
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MCNs; intraductal papillary mucinous neoplasms, 
IPMNs; etc.) [1–3]. Among them, SCA, MCA and IPMN 
make up the majority of cases of PCNs. SCA has no ten-
dency to undergo malignant transformation. Hence, 
follow-up observation is usually recommended in the 
clinical guidelines [2, 4]. Unlike SCA, MCN and IPMN 
have certain malignant transformation rates. Surgical 
resection is required for the latter to achieve a favorable 
prognosis [2, 4–6]. Therefore, there is an urgent demand 
to obtain an accurate preoperative diagnosis of PCNs for 
the formulation of individualized treatment schemes and 
follow-up strategies.

Currently, CT and MRI are the primary imaging meth-
ods for the evaluation of PCNs, depending on the mor-
phological features of the tumors [2, 7]. Although PCNs 
with typical characteristics can be identified, those with 
atypical PCNs bring challenges to individualized clinical 
diagnosis and treatment. The requirements for individu-
alized evaluation of patients with PCNs cannot be fully 
satisfied by morphological features.

In recent years, novel radiomics and radiogenom-
ics studies have provided new ideas for the evaluation 
of tumors through deep learning and machine learning 
(ML) algorithms [8–13]. Recent studies have found that 
radiomics models contribute greatly to the individualized 
evaluation of pancreatic lesions, such as tumor detec-
tion, classification, differentiation, and antitumor drug 
effect prediction [14–18]. In addition, pancreatic cystic 
lesions have been categorized using radiomics meth-
ods in multiple studies [19, 20]. Although these findings 
confirmed the feasibility of radiomics for the assessment 
of pancreatic cystic lesions [21–28], the robustness of 
these radiomics diagnostic models may be limited due 
to the relatively small datasets included in most studies. 
Therefore, the accumulation of additional research data is 
required for the study of pancreatic cystic lesions.

This study aimed to construct diagnostic models based 
on radiomics and deep learning algorithms to differenti-
ate between SCA and non-SCA, and between MCA and 
IPMN for the individualized evaluation of three common 
cystic neoplasms.

Methods
Ethical information and data collection
This retrospective study was approved by the ethics com-
mittee of our institution (the First Affiliated Hospital of 
Zhejiang University). The inclusion criteria were: (1) The 
patient underwent surgical resection and was pathologi-
cally diagnosed with SCA, MCA or IPMN. (2) Unen-
hanced and contrast-enhanced CT scan data for the 
pancreas taken within a month before surgery were avail-
able. The exclusion criteria were: (1) The region of inter-
est (ROI) could not be determined due to poor image 

quality. (2) The CT or pathology data were incomplete. 
Data from 193 patients with PCNs who were treated at 
this hospital from January 2012 to January 2020 were col-
lected for this study, including 99 patients diagnosed with 
SCA, 55 diagnosed with MCA, and 39 diagnosed with 
IPMN. The clinical data of these patients were all col-
lected by one surgeon. The flowchart of data collection 
process in our study is shown in Fig. S1.

Radiological feature analysis
In this study, the morphological features of the pancre-
atic cystic lesions were evaluated. The radiological fea-
tures included the tumor position, maximum diameter, 
unilocular/ multilocular cysts, lobulation, polycystic fea-
tures (≥2, ≥6), nodular soft tissue, cystic wall calcifica-
tion, communication with the pancreatic duct, pancreatic 
duct dilatation, and peripancreatic lymph node enlarge-
ment. These features were evaluated by two radiologists 
(with 8 years and 10 years abdominal diagnosis experi-
ence in CT images, respectively) who were unaware of 
the pathology results. If there were inconsistencies in the 
radiological evaluation, a senior radiologist participated 
in the evaluation. Thus, the morphological features of 
the pancreatic cystic lesions were obtained from the CT 
images.

Radiomics analysis
Image segmentation
This radiomics study was conducted based on arterial 
phase images from pancreas CT data. ITK-SNAP (v3.6.0) 
software was used to manually segment the ROI. Two 
radiologists performed segmentation on the cross-sec-
tional layer with the largest area of the tumor, and a sen-
ior radiologist participated in the segmentation review.

Radiomics feature extraction
In an attempt to normalize the radiomics features, iso-
tropic resampling and uniform quantization of image 
gray levels were performed. The radiomics features 
extracted in this study included three categories: global 
histogram features, second-order texture features and 
high-order filtering features. High-order filtering fea-
tures include wavelet features and local binary pattern 
(LBP) features. LBP image features were obtained by 
LBP decomposition and reconstruction through rotation 
invariance.

Radiomics feature selection and model construction
To reduce the error of ROI segmentation, the ROI was 
segmented twice by different radiologists. Images seg-
mented by the two radiologists were collected and dif-
ferent sets of features were extracted through ROIs. 
The intraclass correlation coefficient (ICC) was used to 
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measure the repeatability of the different sets of radiom-
ics features. Radiomics features with ICC values over the 
threshold were regarded as optional feature sets with 
high repeatability.

Then, variance threshold selection and correlation 
coefficient tests were applied to preliminarily screen the 
radiomics features. Subsequently, the symbolic regres-
sion method based on genetic algorithms was adopted 
to construct and transform the original features, thus we 
got ‘struct features’. Finally, recursive feature elimination 
with cross validation (RFECV) based on SVM algorithms 
was adopted to screen the remaining radiomics features 
to obtain a valuable feature set.

The internal five-fold validation method was used to 
construct the SCA differential diagnostic model as well 
as the MCA and IPMN differential diagnostic model. 
The training sets of all patients’ relevant datasets were 
utilized in both models, and model verification was per-
formed on each dataset by stratified sampling. The SVM 
algorithm was adopted in both models. Finally, the pre-
diction efficiency of the radiomics model was evaluated 
using the average AUC of the receiver operating charac-
teristic (ROC) curve.

DL feature extraction
In this study, the DL features were extracted using the 
transfer learning (TL) method and the structure of this 
DL network is shown in Table S1. The public dataset [29] 
of breast cancer pathology sections from Kaggle were 
downloaded, and used for pretraining. The original data 
was randomly divided into training, validation and test 
sets at a ratio of 60%: 20%: 20% and were trained on the 
transformed network. After model training, DL features 
were extracted from the outputs of the fully connected 

layer. A detailed introduction of TL and the process of 
DL feature extraction can be found in Method S1.

Fused model construction and evaluation
In the SCA differential diagnostic model, the radiomics 
features were fused with the DL features to form the radi-
omics-DL feature set. In addition, the SVM classification 
algorithm was also used to train the radiomics-DL model 
using five-fold-cross-validation. The fused model was 
constructed by combining the clinical features, radiologi-
cal features and the radiomics-DL score. As a compari-
son, the clinical model was also constructed by clinical 
characteristics and radiological features of significant 
difference between two groups. In terms of the MCA 
and IPMN differential diagnosis task, the radiomics pre-
diction score, clinical features, and radiological features 
were employed to construct the fused model. The com-
bined feature selection was completed according to AIC. 
In addition, the final fused model was constructed using 
a logistic regression method. Consistent with the radi-
omics model, the accuracy and AUC of the fused model 
were adopted for the evaluation. The flowchart of this 
study is shown below in Fig. 1.

Statistical analysis
The software packages used for the data processing and 
statistical analysis included SPSS24 (IBM Corp, Chi-
cago, USA), MATLAB (2018b, MathWorks, Natick, MA, 
USA), Python (https://​www.​python.​org/), and R 3.6.1 
(http://​www.​Rproj​ect.​org). The data analysis was per-
formed with SPSS 24 (IBM Corp, Chicago, USA). The 
form of ‘ x ± s ’ was used to show the comparison results 
of the continuous feature groups using the Mann–Whit-
ney U test. The absolute numbers and percentages were 

Fig. 1  Flowchart of the deep learning radiomics research

https://www.python.org/
http://www.rproject.org
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used to show the comparison results of the features 
meeting discrete variable criteria using the χ2 and Fish-
er’s exact test. The criterion of statistical significance was 
considered p<0.05. ROCs were plotted, and AUCs were 
computed using SPSS24 and the R package ‘pROC’. Radi-
omics features were extracted with the ‘Wavelet’, ‘Com-
munication Toolbox’ and ‘Radiomics’ standard libraries 
in MATLAB.

Results
Analysis of the clinical and imaging data
In the SCA differential diagnostic model, the clinical and 
radiological features of 193 patients were included in the 
data statistics, including 99 patients (51.8 ± 11.6 years 
old) with SCA and 94 patients (50.2 ± 14.3 years old) with 
MCA and IPMN. Among these patients, sex was the only 
clinical characteristic with a significant difference among 
the diagnostic groups (p < 0.05). Regarding the radiologi-
cal features, position, calcification, lobulation, polycystic 
features (≥2, ≥6), pancreatic duct dilatation and com-
munication with the pancreatic duct showed significant 
differences (p < 0.05) between the SCA and non-SCA 
groups, while the others did not (p > 0.05). The statistical 
analyses of the clinical and imaging features in the SCA 
differential diagnostic model is shown in Table S2 and 
Table 1, respectively.

In the MCA and IPMN differential diagnostic model, 
the clinical and radiological features of 94 patients were 
included in the data statistics, including 55 patients 
(45.9 ± 14.3 years old) with MCA and 39 patients 
(61.1 ± 8.3 years old) with IPMN. Sex and age were the 
only two characteristics with significant differences 
among the diagnostic groups (p < 0.05). Position, maxi-
mum diameter, lobulation, polycystic features (≥2, ≥6), 
pancreatic duct dilatation and communication with the 
pancreatic duct showed significant differences (p < 0.05) 
between MCA and IPMN. However, the other CT radio-
logical features showed fewer differences (p > 0.05). The 
statistical results of the clinical and radiological features 
in the MCA and IPMN differential diagnostic models are 
listed in Table S3 and Table 2, respectively.

Feature extraction and feature screening
During the extraction of the radiomics features, 1067 
radiomics features were obtained from the ROIs of CT 
data of all 193 patients, including 7 global histogram 
features, 53 texture features, 159 LBP features, and 
848 wavelet features. Details of the radiomics features 
extracted in this study are listed in Table S4. Under the 
condition of ICC > 0.9, 833 radiomics features passed the 
repeatability test.

During the construction of the DL model, the accu-
racy rate of the pretrained model based on breast 

cancer pathology data was 0.761. The accuracy rate of 
the SCA DL model was 0.670, and 256 DL features were 
collected through the final model. The heatmap of the 
extracted DL features is shown in Fig. S2.

Thirty struct features were synthesized based on the 
genetic algorithms. In the SCA differential diagnostic 
model, a total of 94 key features (including 2 global his-
togram features, 2 texture features, 57 wavelet features, 
12 LBP features, 17 DL features and 4 synthetic features) 
were retained after RFE. Three DL features which reflect 
heterogeneity the most are shown in Fig. 2A. A total of 
69 key features (including 2 texture features, 47 wavelet 
features, 6 LBP features and 14 synthetic features) were 
retained after RFE, and they were used to construct the 
MCA and IPMN radiomics diagnostic model.

Table 1  Comparison of the radiological characteristics between 
pancreatic serous cystadenoma (SCA) and non-SCA

Radiological Characteristics SCA
(n = 99)

Non-SCA
(n = 94)

p

Position 0.014

  Head and Neck 45 (45%) 28 (30%)

  Body and Tail 54 (55%) 66 (70%)

Solitary/multiple cysts 0.001

  Solitary 5 (5%) 22 (23%)

  Multiple 94 (95%) 72 (77%)

Maximum diameter (cm) 4.0 ± 2.2 4.1 ± 2.4 0.871

Lobulation 0.001

  With 69 (70%) 44 (47%)

  Without 30 (30%) 50 (53%)

Polycystic features (≥2) 0.712

  With 77 (78%) 71 (76%)

  Without 22 (22%) 23 (24%)

Polycystic features (≥6) 0.006

  With 51 (52%) 30 (32%)

  Without 48 (48%) 64 (68%)

Nodular soft tissue 0.261

  With 16 (16%) 10 (11%)

  Without 83 (84%) 84 (89%)

Cystic wall calcification < 0.001

  With 33 (33%) 10 (11%)

  Without 66 (67%) 84 (89%)

Pancreatic duct dilatation 0.001

  With 5 (5%) 21 (22%)

  Without 94 (95%) 73 (78%)

Communication with the pancreatic duct 0.031

  With 25 (25%) 14 (15%)

  Without 69 (75%) 85 (85%)

Peripancreatic lymph node enlargement 0.609

  With 2 (2%) 3 (3%)

  Without 97 (98%) 91 (97%)
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Construction and evaluation of the radiomics diagnostic 
models and clinical diagnostic models
A radiomics diagnostic model with five-fold cross-valida-
tion based on SVM was established for SCA differential 
diagnosis. The model resulted in an average AUC of 0.730, 
with an accuracy of 74.0%, sensitivity of 65.6%, specificity 
of 81.8%, positive predictive value of 77.2% and negative 

predictive value of 71.7%. The average AUC of the radi-
omics-DL diagnostic model was 0.830, the accuracy was 
83.3%, the sensitivity was 86.0%, the specificity was 80.8%, 
the positive predictive value was 80.8% and the negative 
predictive value was 86.0%. The ROC image of the five-
fold cross-validation of the model is shown in Fig. 2B. A 
radiomics diagnostic model with five-fold cross-validation 
based on SVM was established for MCA and IPMN dif-
ferential diagnosis. The average AUC, accuracy, sensitivity, 
specificity, positive predictive value and negative predic-
tive value of the training set reached 0.900, 90.3, 87.0, 94.9, 
95.9 and 84.1%, respectively. The ROC curves of the clini-
cal models for SCA differential diagnosis as well as MCA 
and IPMN differential diagnosis are shown in Fig. S3. 
The AUCs of SCA differential diagnostic model as well as 
MCA and IPMN differential diagnostic model were 0.655 
(95% CI: 0.536, 0.774) and 0.746 (95% CI: 0.633, 0.859), 
respectively. The ROC image of the fused model is shown 
in Fig. 3A.

Fused model
The radiomics-DL score as well as the corresponding clini-
cal and radiological features were included in the fused 
SCA differential diagnostic model. After feature selection 
according to the AIC, the best feature set was obtained, 
including the position, cyst number (≥6), wall calcifica-
tion, pancreatic duct dilatation and radiomics-DL score. 
By means of logistic regression analyses, the AUC achieved 
0.916 (95% CI: 0.876-0.955), with an accuracy of 85.6%, 
sensitivity of 83.3%, specificity of 87.6%, positive predic-
tive value of 86.2% and negative predictive value of 85.0%. 
The AUCs of each model contributing to the SCA differ-
ential diagnosis are shown in Fig. 2C. The prediction scores 
of the models, including the radiomics model, radiomics-
DL model and fused model were made into a scatter dia-
gram in the same three-dimensional coordinate system as 
illustrated in Fig. 2D to allow for a visual evaluation of the 
accuracy of the model prediction. A nomogram was also 
constructed, as shown in Fig.  2E, to benefit the patient’s 
individualized diagnosis and treatment scheme. For model 
evaluation, the calibration curve and decision curve analy-
sis of the radiomics-DL model and fused model are plotted 
in Fig. S4A and Fig. S4B.

In the fused MCA and IPMN differential diagnostic 
model, the radiomics score as well as the correspond-
ing clinical and radiological features were included. After 

Table 2  Comparison of the radiological characteristics between 
mucinous cystadenoma (MCA) and intraductal papillary 
mucinous neoplasm (IPMN)

Radiological Characteristics MCA
(n = 55)

IPMN
(n = 39)

p

Position 0.045

  Head and Neck 5 (9%) 23 (59%)

  Body and Tail 50 (91%) 16 (41%)

Solitary/multiple cysts < 0.001

  Solitary 4 (7%) 18 (46%)

  Multiple 51 (93%) 21 (52%)

Maximum diameter (cm) 4.7 ± 2.7 3.2 ± 1.6 0.002

Lobulation < 0.001

  With 11 (20%) 33 (85%)

  Without 44 (80%) 6 (15%)

Polycystic features (≥2) 0.014

  With 36 (65%) 35 (90%)

  Without 19 (35%) 4 (10%)

Polycystic features (≥6) 0.001

  With 10 (18%) 20 (51%)

  Without 45 (82%) 19 (49%)

Nodular soft tissue 1.000

  With 6 (11%) 4 (10%)

  Without 49 (89%) 35 (90%)

Cystic wall calcification 0.263

  With 8 (15%) 2 (5%)

  Without 47 (85%) 37 (95%)

Pancreatic duct dilatation < 0.001

  With 2 (4%) 19 (49%)

  Without 53 (96%) 20 (51%)

Communication with the pancreatic duct < 0.001

  With 3 (5%) 22 (56%)

  Without 52 (95%) 17 (44%)

Peripancreatic lymph node enlargement 0.568

  With 1 (2%) 2 (5%)

  Without 54 (98%) 37 (95%)

(See figure on next page.)
Fig. 2  A: Violin plots of the feature range of the 3 most important deep learning features evaluated in construction of SCA differential diagnostic 
model; B: ROC curves of five-fold cross-validation with the deep learning radiomics model for the SCA differential diagnosis; C: ROC curves of the 
radiomics model, deep learning radiomics model and fused model for the SCA differential diagnosis; D: Predictions of the radiomics model, deep 
learning radiomics model and fused model for each patient shown as a 3D pattern; E: Nomogram of the fused model for the SCA differential 
diagnosis
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Fig. 2  (See legend on previous page.)
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Fig. 3  A: ROC curves of the five-fold cross-validation with the radiomics model for MCA and IPMN diagnosis; B: ROC curves of the radiomics model 
and fused model for MCA and IPMN diagnosis; C: Calibration curves of the radiomics model and fused model for MCA and IPMN diagnosis; D: 
Decision curve analysis of the radiomics model and fused model for MCA and IPMN diagnosis; E: Nomogram of the fused model for MCA and IPMN 
diagnosis
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feature selection according to the AIC, the best feature set 
included age, communication with the pancreatic duct and 
radiomics score. After training with logistic regression, the 
AUC was 0.973 (95% CI: 0.947-0.999), accuracy was 92.2%, 
sensitivity was 86.3%, specificity was 100.0%, positive pre-
dictive value was 100.0% and negative predictive value was 
84.8%. The ROC image of the fused model and radiomics 
model is shown in Fig. 3B. The calibration curve and deci-
sion curve analysis of the radiomics model and fused model 
are plotted in Fig. 3C and Fig. 3D. The nomogram is also 
shown in Fig. 3E for the sake of potential usage concerning 
clinical decision-making.

Discussion
In this study, deep learning and radiomics methods were 
used to construct classification prediction models for 
SCA, MCA and IPMN. Then, more than 1300 radiomics 
features were extracted, including 256 deep learning fea-
tures, which were used to construct the feature set. The 
fused model was constructed by logistic regression. The 
model established in this study achieved good results in 
the classification prediction of SCA, MCA, and IPMN, 
which proves that deep learning radiomics models have 
potential use in the classification of pancreatic cystic 
tumors.

Deep learning methods have been widely used in dis-
ease classification field. In pretraining, a transfer learn-
ing step was added to increase the dataset samples at the 
early stage, and some network parameters were frozen to 
reduce overfitting [30]. The expansion of local image data 
capacity can better keep the prediction efficiency of deep 
learning itself [31]. The fusion of deep learning features 
and radiomics features has been shown to be superior to 
deep learning or radiomics alone [32–35], which is con-
sistent with our experimental conclusions, suggesting 
that there may be complementarity between deep learn-
ing features and radiomics features. We evaluated the 
feature importance ranking in the model by calculating 
and sorting the weight values of the top 30 features. We 
can learn from the ranking that deep learning features 
occupied over 50% of the 15 most valuable features. This 
indicates the importance of deep learning features.

The figures and results show that the radiomics-DL 
model is better than the radiomics model and indicate 
that the fused model has better predictive ability. The 3D 
scatter chart (Fig. 2D) shows that the predictions of the 
fused model are closer to the right corner of the image, 
which shows more stability of the prognostic results. 
Clinical characteristics also contain information con-
tributing to the model construction, because the perfor-
mance of the model fused with the radiomics-DL score 
and clinical features took first place in the AUC compari-
son. Evidently, comparing with the clinical-only model 

(AUC = 0.655), the addition of the radiomics-DL features 
made a huge leap for the classification and prediction 
of the models (AUC = 0.916) both in information sup-
plement and interpretability. Furthermore, the valuable 
radiomics texture features extracted and selected showed 
connections with tumor heterogeneity. For instance, 
roughness is a valuable texture feature selected to build 
the SCA differentiation model, and interpretability of the 
radiologic features can be obtained. Roughness originally 
showed that the distance between the pixel gray levels 
can be correlated with the regional density difference of 
the lesions.

Our findings suggest that specific morphological fea-
tures may improve the prediction efficiency for the clas-
sification of pancreatic cystic lesions. Among them, 
important features such as the location, number of cysts 
(≥6) and wall calcification were used in the fused model 
for SCA differential diagnosis. Unlike previous studies, 
in our study, tumor size was not included in the predic-
tion model to distinguish between serous and nonserous 
pancreatic cystic tumors. Previous research results also 
confirmed that imaging features could be included in the 
classification prediction models of SCA and MCA and 
even play a role in the classification models of atypical 
SCA and MCA [24, 27]. Obviously, location serves as an 
important feature for improving the classification predic-
tion models in radiomics. We believe the reason is that 
radiomic features do not include location information, 
and the location of the tumor as an imaging feature can 
improve the prediction efficiency of the models.

Communication with the pancreatic duct as an impor-
tant morphological feature was included in the MCA and 
IPMN differential diagnostic model. The current con-
sensus is that communication with the pancreatic duct 
is an important imaging feature of IPMN to distinguish 
it from other pancreatic cystic tumors. Yang and Shen’s 
previous radiomics studies did not incorporate imaging 
features into the feature set to construct the classification 
model of pancreatic cystic lesions [22, 28]. However, in 
our study, only communication with the pancreatic duct 
played a role in our MCA and IPMN differential diagnos-
tic model. We believe this is due to the inability of radi-
omics features derived from IPMN tumors to reflect the 
tumor-pancreatic duct relationship. Therefore, in radi-
omics studies, the evaluation of morphological features is 
necessary.

As a retrospective radiomics study, this study has 
certain limitations. First, despite the large number of 
cases included in our study, this is still a single-center 
study and the performance of our models on other 
datasets is uncertain. Second, we used 2D imaging data 
for the convenience of clinical use, while 3D data may 
contain more information about tumor heterogeneity. 
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However, our study shows that the 2D-based radiom-
ics model also has high predictive performance for the 
classification of pancreatic cystic lesions. Third, we 
only used CT image data for model building. The clas-
sification models of pancreatic cystic lesions still need 
to be explored based on different imaging modalities. 
In the future, we will further explore the classification 
model of pancreatic cystic lesions based on other types 
of images to meet the needs of individualized clinical 
treatment.

Conclusions
Our data demonstrate that a radiomics-based approach 
can be used for classification prediction of pancreatic 
cystic tumors using CT data. In addition, adding deep 
learning features and morphological features can fur-
ther improve the prediction efficiency of the models. 
These two classification models will provide a noninva-
sive, individualized evaluation for each patient and help 
meet the needs of clinical precision medicine.
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