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Abstract 

Background: KRAS‑mutated non‑small cell lung cancer (NSCLC) accounts for 23–35% and 13–20% of all NSCLCs 
in white patients and East Asians, respectively, and is therefore regarded as a major therapeutic target. However, its 
epidemiology and clinical characteristics have not been fully elucidated because of its wide variety of mutational 
subtypes. Here, we focused on two distinct base substitution types: transversion mutations and transition mutations, 
as well as their association with environmental factors and clinical outcome.

Methods: Dataset from the Japan Molecular Epidemiology Study, which is a prospective, multicenter, and molecu‑
lar study epidemiology cohort study involving 957 NSCLC patients who underwent surgery, was used for this study. 
Questionnaire‑based detailed information on clinical background and lifestyles was also used to assess their asso‑
ciation with mutational subtypes. Somatic mutations in 72 cancer‑related genes were analyzed by next‑generation 
sequencing, and KRAS mutations were classified into three categories: transversions (G > C or G > T; G12A, G12C, G12R, 
G12V), transitions (G > A; G12D, G12S, G13D), and wild‑type (WT). Clinical correlations between these subtypes have 
been investigated, and recurrence‑free survival (RFS) and overall survival (OS) were evaluated.

Results: Of the 957 patients, KRAS mutations were detected in 80 (8.4%). Of these, 61 were transversions and 19 were 
transitions mutations. Both pack‑years of smoking and smoking duration had significant positive correlation with the 
occurrence of transversion mutations (p = 0.03 and < 0.01, respectively). Notably, transitions showed an inverse corre‑
lation with vegetable intake (p = 0.01). Patients with KRAS transitions had the shortest RFS and OS compared to KRAS 
transversions and WT. Multivariate analysis revealed that KRAS transitions, along with age and stage, were significant 
predictors of shorter RFS and OS (HR 2.15, p = 0.01; and HR 2.84, p < 0.01, respectively).

Conclusions: Smoking exposure positively correlated with transversions occurrence in a dose‑dependent manner. 
However, vegetable intake negatively correlated with transitions. Overall, KRAS transition mutations are significantly 
poor prognostic factors among resected NSCLC patients.
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Background
Lung cancer is the leading cause of death from various 
cancers in many countries [1]. Kirsten rat sarcoma viral 
oncogene homolog (KRAS) is a well-known oncogene 

Open Access

*Correspondence:  hiroakiakamatsu@gmail.com; ykoh@wakayama‑med.ac.jp

1 Internal Medicine III, Wakayama Medical University, 811‑1 Kimiidera, 
Wakayama‑shi, Wakayama 641‑8509, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-022-10246-7&domain=pdf


Page 2 of 9Sato et al. BMC Cancer         (2022) 22:1148 

that drives cancer progression to metastases in various 
types of carcinomas, including non-small cell lung can-
cer (NSCLC), pancreatic cancer, and colorectal cancer. 
KRAS mutations were found in 23–35% in white patients 
[2–4] and in 13–20% in Asians [5, 6]. Among KRAS 
mutations in NSCLC, G12C was the most common (32–
39%), followed by G12V (18–21%) and G12D (17–23%), 
G12A/G12S/G12R (16%), G13C/G13D/G13S (7%) and 
Q61H/Q61K (0.7%) [7, 8]. KRAS mutations have long 
been untreatable owing to their unique shapes. How-
ever, inhibitors of KRAS G12C, such as sotorasib, have 
recently been developed, and the first KRAS-targeted 
anticancer therapy was then made available [9]. Advances 
in KRAS-targeted therapies are anticipated in the future. 
Thus, KRAS subtypes need to be characterized. Previous 
studies have attempted to elucidate the characteristics 
of each of the KRAS mutations; however, different fre-
quencies of each subtype mutation rendered the results 
inconsistent. According to the base substitutions, KRAS 
mutations have been categorized as transversion muta-
tions (G > C or G > T; G12A, G12C, G12R, G12V) or 
transition mutations (G > A; G12D, G12S, G13D). Tran-
sitions refers to the substitution of purine with purine 
(adenine to guanine), or pyrimidine to pyrimidine (cyto-
sine to thymine), whereas transversions correspond to 
the substitution of purine with pyrimidine [10]. Although 
transversions mutations are basically considered as 
smoking-related substitutions, [11] actual associations 
have not yet been completely investigated. Other clinical 
factors associated with the occurrence of transversions 
and transitions have not yet been elucidated. Addi-
tionally, structural differences between the P-loop and 
Switch-II were reported between transversions and tran-
sitions; however, it has not been clarified whether this 
leads to phenotypical outcomes [12]. Although this back-
ground information enables us to recognize two distinct 
subtypes of KRAS mutations, the clinical implications of 
these remain unclear. Here, we describe the clinical dif-
ferences of KRAS mutations between transversions and 
transitions.

Methods
Study design
The Japan Molecular Epidemiology (JME) study is a pro-
spective, multicenter, molecular epidemiology cohort 
study of surgically resected NSCLC patients in Japan. The 
study included 957 patients who underwent curative-
intent surgery for clinical stage I-IIIB disease (American 
Joint Committee on Cancer [AJCC] version 7) [13–15]. 
The patients were required to complete the questionnaire 
before surgery, which included questions on lifestyle fac-
tors (smoking status, body mass index (BMI), exercise, 
high fat diet, vegetables, fruits, and soybean intake). This 

questionnaire was designed for the SWOG S0424 study 
[16]. Pack-years of smoking were between 0 ≤ 30, 30 ≤ 60, 
or 60 + pack years. Smoking duration was categorized as, 
0 ≤ 20, 20 ≤ 40, or 40 + years. Fruits and vegetable intake 
was categorized as zero, 1–2, 3–4, 5 + servings per week. 
Other detailed eligibility criteria and questionnaire have 
been previously reported elsewhere [14]. Resected speci-
mens were analyzed for 72 cancer-associated somatic 
mutations (ABL1, CSF1R, FGFR3, JAK2, NOTCH1, RET, 
AKT1, CTNNB1, FLT3, JAK3, NPM1, SMAD4, ALK, 
epidermal growth factor receptor [EGFR], GNA11, KDR, 
NRAS, SMARCB1, APC, ERBB2, GNAQ, KIT, PDGFRA, 
SMO, ATM, ERBB4, GNAS, KRAS, PIK3CA, SRC, BRAF, 
FBXW7, HNF1A, MET, PTEN, STK11, CDH1, FGFR1, 
HRAS, MLH1, PTPN11, TP53, CDKN2a, FGFR2, IDH1, 
MPL, RB1, VHL, NF1, SMARC4, KEAP1, ARID1A, 
RBM10, SETD1, CBL, CUL3, DDR2, RASA1, TSC1, 
TSC2, CTIF, ERBB3, NFE2L2, PPP2R1A, AKT3, BRD3, 
CCND1, MYC, PTCH1, FGFR4, U2AF1, MAP2K1) 
with multiplex targeted deep sequencing on MiSeq by 
a TruSeq Amplicon Cancer Panel and an additional 
custom panel (Illumina, San Diego, California, USA). 
Regarding KRAS mutations, recurrence-free survival 
(RFS) and overall survival (OS) were evaluated and com-
pared among patients with KRAS wild-type (WT), trans-
versions, and transitions mutations. The time period for 
checking for recurrence by imaging follow-up was not 
specified.

Statistical analysis
The clinical backgrounds of patients with KRAS WT, 
transversions, and transitions mutations were compared 
using Fisher’s exact test. Dose-dependency within each 
item was assessed using the least-squares method. To 
analyze prognosis, RFS and OS were assessed using the 
Kaplan–Meier method. Cox proportional hazards mod-
els were used for the determination of adjusted hazard 
ratios (HR) and 95% confidence intervals (CI). Univariate 
and multivariate logistic regression models by Cox pro-
portional hazards model were used to explore prognostic 
factors for RFS and OS survival. The factors for continu-
ous variables were dichotomized using the median or 
between ≤ 2/ weeks and ≥ 3/ weeks. Multivariate analysis 
of RFS and OS was performed for these significant uni-
variate factors. A statistical p-value less than 0.05 indi-
cated significance. Statistical analysis was conducted 
using JMP version 14 (SAS Institute Inc, USA).

Results
Clinical background
Patients were enrolled between July 2012 and Decem-
ber 2013, and followed up for at least four years. Nine 
hundred and fifty-seven patients were enrolled from 43 
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institutions in Japan. Of those, 876 cases (91.5%) were 
successfully analyzed for genetic mutations. After the 
exclusion of two patients with co-mutations (KRAS and 
EGFR), 80 patients had KRAS mutations, which com-
prised 61 transversion (G12C: 26, G12V: 19, G12A: 14 
and G12R: 2) and 19 transition (G12D: 16, G13D: 2 and 
G12S: 1) mutations, respectively.

Table 1 shows the clinical characteristics of each group. 
Compared with KRAS WT, both transversions and tran-
sitions were significantly more common in men, ever-
smokers, and non-squamous cell carcinoma patients. In 
addition, transitions had significantly more co-mutations 
than KRAS WT. Among the transitions, 57.9% had con-
current mutations other than KRAS mutations. Common 
co-mutations with transversions were TP53 (24.6%) and 
PIK3CA (13.1%), while PIK3CA (21.1%) and TP53 (15.8%) 
were common with transitions. The KRAS transversions 
group had a higher BMI and less frequent intake of fruits 
and vegetables than KRAS WT. To understand the influ-
ence of these backgrounds, we explored the dose-depend-
ent correlation between KRAS subgroups and lifestyle 
items. KRAS transversions showed a significant corre-
lation with pack-years of smoking (R2 = 0.94, p = 0.03), 
whereas KRAS WT was inversely correlated (R2 = 0.98, 
p < 0.01). Smoking duration also showed a significant posi-
tive correlation with transversions (R2 = 1.00, p < 0.01) and 
KRAS WT  was inversely correlated (R2 = 0.94, p = 0.03). 
Among the transitions, only vegetable intake had a sig-
nificant negative dose-dependency  (R2 = 1.00, p = 0.01) 
(Fig.  1). Correlations between other clinical factors and 
KRAS subgroups are described in Supplementary Fig. 1.

Prognosis
Figure 2 shows the RFS and OS rates of each group. The 
median RFS of patients with KRAS transitions was 30.4 
months, which was the shortest compared to KRAS WT 
and KRAS transversions, and their medians were not 
reached. Compared with transitions, HR between WT 
and transitions was 0.39 (95% CI: 0.21–0.71, p < 0.01), 
while that between transversions and transitions was 0.44 
(95% CI: 0.21–0.93, p = 0.03) (Fig.  2A). The OS in each 
subgroup showed a similar trend. Median OS with transi-
tions was 48.3 months, and KRAS WT and transversions 
OS medians did not reach. HR between WT and transi-
tions was 0.26 (95% CI: 0.14–0.50, p < 0.01), while that 
between transversions and transitions was 0.36 (95% CI: 
0.16–0.82, p = 0.02) (Fig. 2B).

Univariate analysis for RFS showed that KRAS tran-
sitions, age (< 70  years), male sex, never smoker, squa-
mous histology, stage I, and low intake of high-fat diet 
were significant prognostic factors. Multivariate analy-
sis revealed that transitions, age (≥ 70  years), and stage 
(≥ II) were significantly poor prognostic factors (Table 2). 

OS, transitions, age (< 70 years), male sex, never smoked, 
squamous histology, stage I, high-fat diet (≤ 2 per week), 
vegetables (≤ 2 per week) were significant prognostic fac-
tors in the univariate analysis. Multivariate test showed 
that transitions, age (≥ 70  years), and stage (≥ II) were 
significantly poor OS factors (Table  3). Co-mutations 
with KRAS transversions and transitions did not impact 
prognosis.

Discussion
Thirty years since KRAS mutations have been recog-
nized as oncogenes, several anticancer drugs targeting 
KRAS have also been identified [17]. Recently, sotora-
sib, a first-in-class KRAS G12C inhibitor, demonstrated 
promising results in the CodeBreaK100 clinical phase 2 
trial. In this trial, the objective response rate was 37.1% 
and the median progression-free survival (PFS) was 
6.8  months [18]. Adagrasib is another promising KRAS 
G12C inhibitor that objective response rate was 42.9% 
and the median progression-free survival was 6.5 months 
in the phase 2 cohort of the KRYSTAL-1 trial [19]. Other 
agents targeting KRAS mutations are under investiga-
tion in early phase trials. Thus, subtyping KRAS muta-
tions has become critical in clinical practice. Treatment 
for mutations other than KRAS G12C is expected to be 
available in the future, with each mutation needing to be 
characterized. Previous reports revealed that smokers are 
likely to harbor KRAS mutations [20]. However, detailed 
clinical characteristics for each subtype have not been 
elucidated. Additionally, fractionating their subtypes was 
hampered in outlining their clinical and prognostic dif-
ferences. In this study, based on substitutions, we catego-
rized KRAS mutations into two types (transversions and 
transitions), and investigated their clinical relevance.

Importantly, using the detailed questionaries, we 
revealed the clinical differences between KRAS transver-
sions and transitions not only with qualitative lifestyle 
information, but with quantitative exposures. Regarding 
smoking, only transversions showed a significant posi-
tive correlation with smoking exposure (pack-years and 
duration) in a dose-dependent manner. KRAS transver-
sions (G > T) in patients with lung cancer is thought to 
be caused by exposure to polycyclic aromatic hydrocar-
bons, such as benzopyrene in cigarettes [21]. Thus, the 
more one smokes, the more transversions one is likely 
to have. However, this study showed that the frequency 
of KRAS transitions had significantly negative correla-
tion with vegetable intake. Vegetables contain flavanols, 
which can inhibit the formation of nitroso compounds. 
Nitroso compounds induce alkylation of guanine bases, 
which could have caused transitions [22, 23]. It has also 
been reported that lupeol, a substance abundant in veg-
etables, suppresses STAT3 activation, [24] which is 
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upregulated in KRAS mutant lung cancer [25]. It is pos-
sible that a lack of protective vegetable intake could pre-
dispose patients to G12D mutation (transition mutation). 

Therefore, G12D may have a greater involvement of aber-
rant STAT3, which is different from the RAS pathway 
[26]. To the best of our knowledge, this study is the first 

Table 1 Clinical and lifestyle background

Abbreviations: KRAS WT Kirsten rat sarcoma viral oncogene homolog wild-type, Sq squamous cell carcinoma, BMI body mass index
* KRAS WT vs. transversions
^ KRAS WT vs. transitions
# transversions vs. transitions

KRAS WT (n = 794) 
No. (%)

Transversions (n = 61) 
No. (%)

P value* Transitions (n = 19) 
No. (%)

P value^ P value#

Age median (range) 70.0 (23–92) 70.0 (49–85) ‑ 70.0 (52–86) ‑ ‑

Sex 0.02  < 0.01 0.65

 Male 366 (46.1) 39 (63.9) 13 (68.4)

 Female 428 (53.9) 22 (36.1) 6 (31.6)

Smoking  < 0.01  < 0.01 0.64

 Never 413 (52.0) 18 (29.5) 5 (26.3)

 Ever 381 (48.0) 43 (70.5) 14 (73.7)

Histology 0.01 0.01 1.00

 Sq 138 (17.4) 3 (4.9) 1 (5.3)

 Non‑sq 656 (82.6) 58 (95.1) 18 (94.7)

Stage 0.30 0.84 0.77

 I 568 (71.5) 38 (62.3) 12 (63.1)

 II 114 (14.4) 12 (19.7) 3 (15.8)

 III 94 (11.8) 7 (11.5) 3 (15.8)

 IV 18 (2.3) 4 (6.5) 1 (5.3)

No. of Mutations 0.35  < 0.01 0.04

 0 200 (25.2) 0 0

 1 384 (48.4) 35 (57.4) 8 (42.1)

 ≥ 2 210 (26.4) 26 (42.6) 11 (57.9)

BMI 0.01 0.06 0.39

 < 22.5 402 (50.6) 20 (32.8) 7 (36.9)

 ≥ 22.5 389 (49.0) 40 (65.6) 12 (63.1)

 Unknown 3 (0.4) 1 (1.6) 0

High fat diets 0.12 0.32 0.67

 ≤ 2/ week 313 (39.4) 31 (50.8) 9 (47.4)

 ≥ 3/ week 477 (60.1) 30 (49.2) 10 (52.6)

 Unknown 4 (0.5) 0 0

Vegetables 0.01 0.13 0.47

 ≤ 2/ week 62 (7.8) 13 (21.3) 3 (15.8)

 ≥ 3/ week 732 (92.2) 48 (78.7) 16 (84.2)

Fruits 0.02 0.14 0.48

 ≤ 2/ week 249 (31.4) 29 (47.5) 8 (42.1)

 ≥ 3/ week 545 (68.6) 32 (52.5) 11 (57.9)

Soy bean 0.05 0.84 0.12

 ≤ 2/ week 112 (14.1) 16 (26.2) 3 (15.8)

 ≥ 3/ week 681 (85.8) 45 (73.8) 16 (84.2)

 Unknown 1 (0.1) 0 0

Exercise 1.00 0.15 0.15

 ≤ 2/ week 409 (51.5) 32 (52.5) 12 (63.1)

 ≥ 3/ week 385 (48.5) 29 (47.5) 7 (36.9)
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Fig. 1 Lifestyle factors assessed in a dose‑dependent manner using the least squares method. R2 = coefficient of determination. KRAS WT, Kirsten 
rat sarcoma viral oncogene homolog wild‑type; py, pack‑years; y, years
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Fig. 2 Kaplan–Meier curves of KRAS WT, transversions, and transitions for (A) RFS and (B) OS, (A) RFS: p < 0.01, (B) OS: p < 0.01, log‑rank test. KRAS 
WT, Kirsten rat sarcoma viral oncogene. homolog wild‑type; RFS, recurrence‑free survival; OS, overall survival



Page 6 of 9Sato et al. BMC Cancer         (2022) 22:1148 

to distinguish the clinical backgrounds of KRAS trans-
versions and transitions, and the correlation between 
transitions and lower vegetable intake in lung cancer 
patients. Interestingly, transitions had a higher percent-
age of co-occurring mutations compared to KRAS WT 
and transversions (Table  1).   As observed in EGFR-
mutated NSCLC, co-mutation may have a negative prog-
nostic role [27]. However, owing to the small sample 
size, the prognostic value of the number of co-mutations 
with KRAS was not observed in this study. Patients with 
KRAS transitions had significantly shorter RFS and OS 
than KRAS WT or transversions. In addition, multivari-
ate analysis demonstrated that KRAS transitions was a 
negative prognostic factor for both RFS and OS. Among 
resected NSCLC, Finn et al. reported that G12C, a sub-
type of transversions, had a significantly shorter OS than 
the other KRAS mutations, [28] whereas another report 
showed the opposite result [29]. These differences in 
prognosis can be attributed that the KRAS isoforms 

are highly heterogeneous. They  correlate with differ-
ent therapeutic responses to MEK inhibitors, with the 
KRAS G12C and Q61H variants being more susceptible 
than the other isoforms. The authors also reported that 
in patients with NSCLC who underwent comprehensive 
tumor genome profiling, STK11 and ATM mutations 
were significantly enriched in tumors harboring G12C, 
G12A and G12V. KEAP1 were significantly enriched 
in G12C and G13X [30]. Thus, even considering G12C, 
one of the main transversions, there are differences by 
isoforms and co-mutations in each subtype that could 
impact the prognostic differences between KRAS trans-
versions and transitions.

The strength of our study was that it demonstrates that 
KRAS transitions was an independent poor prognostic 
factor via multivariate analysis. Preclinical evidence sup-
ports this prognostic difference which may be attribut-
able to the difference in signal cascades. G12D, a subtype 
of KRAS transitions, is associated with phosphorylation 

Table 2 Univariate and multivariate analysis for RFS

Abbreviations: RFS recurrence-free survival, KRAS WT Kirsten rat sarcoma viral oncogene homolog wild-type, Sq squamous cell carcinoma. Carcinoma, BMI body mass 
index, HR hazard ratio, 95% CI 95% confidence interval

RFS Univariate analysis Multivariate analysis

transversions vs. the others HR 1.10 (95% CI: 0.69–1.75), ‑

(KRAS WT and transitions) p = 0.71

transitions vs. the others HR 2.53 (95% CI: 1.38–4.63), HR 2.15 (95% CI: 1.17–3.97),

(KRAS WT and transversions) p < 0.01 p = 0.01

Age: HR 0.36 (95% CI: 0.16–0.84), HR 0.64 (95% CI: 0.49–0.83),

 < 70 vs. ≥ 70 p < 0.01 p < 0.01

Sex: HR 1.61 (95% CI: 1.26–2.06), HR 1.29 (95% CI: 0.90–1.87),

 Male vs. Female p < 0.01 p = 0.17

Smoking: HR 0.60 (95% CI: 0.47–0.77), HR 0.91 (95% CI: 0.62–1.33),

 Never vs. current / ever p < 0.01 p = 0.62

Histology: HR 1.51 (95% CI: 1.12–2.04), HR 0.90 (95% CI: 0.64–1.27),

 Sq vs. non‑sq p < 0.01 p = 0.55

Stage: HR 0.22 (95% CI: 0.17–0.29), HR 0.23 (95% CI: 0.18–0.30),

 I vs. (II, III, IV) p = 0.01 p < 0.01

Mutations: HR 0.97 (95% CI: 0.73–1.30), ‑

 0 vs. ≥ 1 p = 0.81

BMI: HR 0.79 (95% CI: 0.62–1.01), ‑

 < 22.5 vs. ≥ 22.5 p = 0.06

High fat diet: HR 1.41 (95% CI: 1.10–1.80), HR 1.15 (95% CI: 0.89–1.49),

 ≤ 2/ week vs. ≥ 3/ week p < 0.01 p = 0.27

Vegetables: HR 1.33 (95% CI: 0.89–1.98), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.16

Fruits: HR 0.99 (95% CI: 0.76–1.28), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.94

Soy bean: HR 1.33 (95% CI: 0.97–1.82), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.08

Exercise: HR 0.98 (95% CI: 0.77–1.26), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.85
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in vitro and in vivo, thus activating PI3K/AKT and MEK 
cascades, whereas KRAS transversion mutations, such 
as G12V and G12C, activate the RalGDS pathway and 
decrease phosphorylation of AKT [31, 32]. Our result 
highlighted the clinical differences in KRAS subtypes 
based on base substitutions. Thus, a similar approach can 
be applied to other rare mutations.

A limitation of this study was that the objective cases 
included only postoperative patients who were exclu-
sively Japanese. Further, the number of patients in each 
KRAS subgroup was limited, especially those in the 
transition mutation group. Therefore, we were not able 
to investigate the differences in co-mutation character-
istics between the subtypes. There were also mutations 
that could not be ascertained by only this next genera-
tion sequencing panel. This panel covers almost 15% of 
cancer-associated mutations which occurred in various 
malignancies. Future studies with large-scale KRAS-
positive cases are needed. The cases in this study were 

before the advent of immunotherapies. Therefore, 
introduction of immune-checkpoint inhibitor in the 
perioperative setting may alter the prognosis of KRAS-
mutated NSCLC.

Conclusions
Smoking exposure positively correlated with KRAS 
transversions occurrence in a dose-dependent manner. 
However, vegetable intake negatively correlated with 
KRAS transitions. KRAS transitions were found to be a 
significant poor prognostic factor among patients with 
resected NSCLC.

Abbreviations
KRAS: Kirsten rat sarcoma viral oncogene homolog; NSCLC: Non‑small cell 
lung cancer; RFS: Recurrence‑free survival; OS: Overall survival; WT: Wild‑type; 
HR: Hazard ratios; CI: Confidence interval; EGFR: Epidermal Growth Factor 
Receptor; PFS: Progression‑free survival.

Table 3 Univariate and multivariate analysis for OS

Abbreviations: OS overall survival, KRAS WT Kirsten rat sarcoma viral oncogene homolog wild-type, Sq squamous cell carcinoma, BMI body mass index, HR hazard ratio, 
95% CI 95% confidence interval

OS Univariate analysis Multivariate analysis

transversions vs. the others HR 1.33 (95% CI: 0.77–2.31), ‑

(KRAS WT and transitions) p = 0.33

transitions vs. the others HR 3.74 (95% CI: 1.97–7.10), HR 2.84 (95% CI: 1.47–5.51),

(KRAS WT and transversions) p < 0.01 p < 0.01

Age: HR 0.51 (95% CI: 0.36–0.70), HR 0.52 (95% CI: 0.37–0.74),

 < 70 vs. ≥ 70 p < 0.01 p < 0.01

Sex: HR 2.15 (95% CI: 1.55–2.97), HR 1.19 (95% CI: 0.73–1.96),

 Male vs. Female p < 0.01 p = 0.49

Smoking: HR 0.39 (95% CI: 0.28–0.55), HR 0.64 (95% CI: 0.38–1.09),

 Never vs. current / ever p < 0.01 p = 0.10

Histology: HR 2.44 (95% CI: 1.73–3.44), HR 1.45 (95% CI: 0.97–2.15),

 Sq vs. non‑sq p < 0.01 p = 0.07

Stage: HR 0.25 (95% CI: 0.18–0.34), HR 0.29 (95% CI: 0.21–0.40),

 I vs. (II, III, IV) p < 0.01 p < 0.01

Mutations: HR 0.78 (95% CI: 0.55–1.12), ‑

 0 vs. ≥ 1 p = 0.17

BMI: HR 0.84 (95% CI: 0.61–1.15), ‑

 < 22.5 vs. ≥ 22.5 p = 0.27

High fat diet: HR 1.63 (95% CI: 1.19–2.23), HR 1.23 (95% CI: 0.89–1.71),

 ≤ 2/ week vs. ≥ 3/ week p < 0.01 p = 0.21

Vegetables: HR 1.82 (95% CI: 1.15–2.89), HR 1.63 (95% CI: 1.00–2.65),

 ≤ 2/ week vs. ≥ 3/ week p = 0.02 p = 0.05

Fruits: HR 1.14 (95% CI: 0.82–1.58), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.44

Soy bean: HR 1.36 (95% CI: 0.92–2.03), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.14

Exercise: HR 0.99 (95% CI: 0.73–1.35), ‑

 ≤ 2/ week vs. ≥ 3/ week p = 0.95
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