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Abstract 

Background:  MicroRNAs (miRNAs) play pivotal roles in the development and progression of breast cancer (BC). In 
this study, we attempted to identify miRNAs associated with BC prognosis and progression via integrated analysis.

Methods:  We first screened 83 differentially expressed miRNAs (DEMs) in 1249 BC samples and 151 normal samples. 
We then validated their roles in expression and prognosis of BC, identified two survival-related DEMs, and established 
a risk model. The prediction efficiency was assessed in both the training and validation groups. Tissue and cell experi-
ments were conducted to verify the regulatory effects of miR-127 in BC.

Results:  The ROC curve indicated good prediction ability with 1-, 3-, and 5-year survival rates of 0.73, 0.72, and 0.72, 
respectively. Moreover, hsa-miR-127 was found to be an independent prognostic factor of BC. Functional analyses 
revealed that it is involved in various cancer pathways such as the PI3K-Akt and p53 pathways. miR-127 expression 
was down-regulated in both BC tissues and cell lines. The knockdown of miR-127 substantially increased, whereas 
overexpression decreased BC cell proliferation, invasion, and migration. This effect of miR-127 was consistent with its 
tumorigenic ability and tumor volume in nude mice.

Conclusions:  These findings indicate that low expression of miR-127 contributes to BC migration, invasion, and 
tumorigenesis and that it can be a therapeutic target and prognostic biomarker for BC.
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Background
Breast cancer (BC) is the most common malignant tumor 
in women, with the highest incidence and second high-
est mortality worldwide [1]. Approximately169,000 BC 
patients are diagnosed each year, with a quarter of the 
deaths occurring in China [2]. Although advances in 
treatment have improved the overall survival (OS) of BC 
patients, 30% of patients die from recurrence and metas-
tasis [3]. Therefore, determining the underlying mecha-
nism of BC invasion and metastasis is urgently needed.

In the human genome, only 2% of genes are encoded 
in messenger RNA (mRNA), and more than 98% are 
transcribed in non-coding RNA (ncRNA), indicat-
ing the importance of ncRNA in protein produc-
tion [4, 5]. This phenomenon has also been observed 
in cancer tumorigenesis, progression, and metasta-
sis [6]. MicroRNAs(miRNAs) are highly conserved 
short non-coding RNAs–20–24 nucleotides in length 
[7, 8]. Although miRNAs do not possess an open read-
ing framework (ORF), they can assemble into an 
RNA-induced silencing complex (RISC) and target com-
plementary mRNA sequences to inhibit their translation 
or degradation [7]. Up to 60% of mRNAs contain at least 
one miRNA complementary sequence, indicating that 
miRNAs strongly regulate mRNAs [9].

Additionally, the disturbance of miRNAs has great 
significance in cellular processes, tumor invasion, 
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angiogenesis, and metastasis in BC [10, 11]. miRNAs are 
inhibited by inactivating oncogenes such as miR-10b, 
miR-146a, miR-181, miR-24, miR-29a, and miR-520c [12, 
13]. Some miRNAs can promote BC progressions, such 
as miR-30, miR-31, miR-126, miR-146a, miR-206, and 
miR-503 [14–17]. Some miRNAs are considered thera-
peutic targets for BC, including miR-30c, miR-187, and 
miR-339-5p [18, 19]. MiRNAs are also used to evaluate 
BC diagnosis and prognosis because they are stable, easy 
to detect, and highly tissue-specific. For example, miR-
148a and miR-335 can be used as diagnostic markers [20, 
21], and miR-30c, miR-187, and miR-339-5p can predict 
the therapeutic efficacy of chemotherapy [19, 21]. These 
studies suggest an imperative role for miRNAs in BC pro-
gression. Therefore, it is necessary to explore miRNA dis-
orders in BC.

In the present study, we comprehensively evaluated 
miRNA disorders and their role in prognosis. A nomo-
gram is a simple and accurate model based on patient 
survival in every variable, which allows clinicians to 
quickly evaluate survival outcomes and make decisions. 
We developed a miRNA-based prognostic model based 
on these advantages and evaluated its efficiency in the 
training and validation groups. In addition, we verified 
miR-127 roles in BC cell proliferation, migration, inva-
sion, and tumorigenicity through Vitro experiments. 
These findings shed light on novel treatment strategies 
for BC and provide a therapeutic target and prognostic 
biomarker for patients with BC.

Materials and methods
Data selection and process
To avoid bias caused by a single database, we system-
atically evaluated differentially expressed miRNAs 
(DEMs) by integrating RNA-Seq data of 1,400 BC sam-
ples obtained from the Cancer Genome Atlas(TCGA) 
[22] and Gene Expression Omnibus (GEO) databases 
[23]. The raw count data of TCGA_BRCA dataset were 
downloaded from the Genetic Disease Control (GDC) 
database, including 1104 breast cancer samples and 
113 normal samples. The expression of miRNAs was 
extracted from raw data, unified, and normalized using 
the "limma" package [24]. Then, the DEMs was identi-
fied using the "DESeq2" package [25] with the threshold 
of |log2FC|≥ 0.5, P-value < 0.05. For the GEO database 
of BC, samples were systematically screened accord-
ing to the following inclusion criteria:(1) human BC tis-
sue,(2)the data type of miRNA expression was an array, 
and (3) both tumor and non-tumor samples were greater 
than 10. Finally, two GEO datasets were included, the 
GSE38167 dataset consisting of 67 samples with 44 BC 
samples and 23 normal samples, and the GSE45666 data-
set consisting of 116 samples, including 101 BC samples 

and 15 normal samples. The matrix data were obtained, 
normalized, standardized, and subjected to DEMs 
using the cut-off criteria mentioned above. The annota-
tion of miRNAs in TCGA and GEO was limited. So, we 
expanded the cut-off criteria of DEMs with |log2FC|≥ 0.5 
rather than |log2FC|≥ 1 to obtain more comprehensive 
miRNA data. Common DEMs in the three datasets were 
screened using a Venn diagram [26] and selected for fur-
ther analysis.

Establishing a prognostic model
To explore the roles of DEMs in BC prognosis, we 
extracted data on survival time and survival status from 
TCGA_BRCA dataset and removed samples without 
OS or survival time of fewer than 30 days. Hazard ratios 
(HR) and 95% confidence intervals (CI) for each gene 
were estimated using univariate and multivariate COX 
regression analyses. Only miRNAs with P < 0.05 were 
identified as prognostic miRNAs. Next, we estimated the 
prognostic risk score for each patient using the follow-
ing formula: risk score = X1α1 + X2α2 + X3α3 + … + Xn
αn. Patients were divided into high- and low-risk groups 
based on the median risk score. Subsequently, the prog-
nostic miRNAs were used to construct a nomogram risk 
model. Calibration curves at 3 and 5y were used to evalu-
ate the reliability of the nomogram model for prognos-
tic prediction. Kaplan–Meier (KM) analysis was used to 
estimate the difference in OS between the high-risk and 
low-risk groups. Then, we assessed the prediction perfor-
mance of the risk model using receiver operating charac-
teristic (ROC) curves at 1, 3, and 5 y and computed their 
area under the curve (AUC) values in the three groups. 
Moreover, we validated the prognosis of miR-127-5p in 
the METABRIC database and detected its survival roles 
in the ER-positive group, HER2 negative group, TNBC, 
lymph node positive group, and luminal A subtypes. To 
reveal the characteristic of hsa-miR-127 and hsa-miR-340 
in different BC subgroups, we obtained PAM50 data 
from TCGA. PAM50 was a widely accepted gene test and 
divided into 5 subtypes according to BC genome pheno-
type, including LumA (Luminal A), LumB, Her2, Basel, 
Normal. In clinical application, Basel and Normal sub-
types were regarded as TNBC subtypes.

Validating the prognostic model
TCGA_BRCA dataset was randomly grouped and cho-
sen as a validation dataset to evaluate the prediction 
efficiency of the risk model. The expression and OS data 
of prognostic miRNAs were extracted from the valida-
tion group. We then calculated the HR and 95% CI of 
prognostic miRNAs using Cox analysis with a cut-off 
of p < 0.05. Additionally, we constructed a prognostic 
model based on the validation group. The reliability and 
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validity of the risk model were evaluated using a calibra-
tion curve, ROC curve, and KM analysis, respectively.

Functional enrichment analysis
Based on the validated results, we identified miR-127 
as an independent protective prognostic factor for BC. 
We first predicted the potential target genes by miR-127 
using the TargetScan, miRTarBase, and miRNet data-
bases. Common target genes were obtained from the 
Venn diagrams. We then performed the Gene Ontology 
(GO) terms [27] and Kyoto Encyclopedia of Gene and 
Genomes (KEGG) [28] pathway analyses to elucidate the 
potential function and pathway of miR-127 in cancer. GO 
terms and KEGG pathways were performed using the 
DAVID [29] and KO-Based Annotation System (KOBAS) 
databases [30] separately. Benjamini and Hochberg’s 
method was used to calculate p-values. And the top 10 
results were visualized using “ggplot2” package [31]. 
Additionally, we detected the functional enrichment of 
miR-127 in hallmark gene sets by Gene Set Enrichment 
Analysis (GSEA) analysis. We ranked GSEA results with 
NES (normal enrichment score) and depicted the top 5 
items using "ggplot2" package.

Quantitative real‑time PCR assay
The breast cancer cell lines MDA-MB-231, MCF7, 
SKBR3, and BT474, and the normal breast epithelial cell 
line MCF-10A were purchased from the cell bank of the 
Chinese Academy of Sciences. MDA-MB-231, MCF7, 
and MCF-10A cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS). BT474 cells were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum 
(FBS). Cells were maintained at 37  °C in an incubator 
with 5% CO2.

Tumor and adjacent non-tumorous (normal) tissues 
were collected from 12 patients with BC who under-
went surgical treatment at Shengjing Hospital from 
January 2020 to February 2021. All specimens were col-
lected following surgical resection and immediately fro-
zen at − 80  °C until use. All patients provided written 
informed consent before enrollment, and the study was 
approved by the ethics committee of Shengjing Hospital 
of China Medical University (2021PS569K).

Tissue and cell proteins were lysed using TRIzol rea-
gent to extract the total RNA. For quantitative real-time 
PCR, NanoPhotometer 50 (Implen, Germany) was used 
to detect the concentration and purity of total RNA, and 
a two-step method was then used to synthesize cDNA 
using a miRNA reverse transcriptase kit. The reaction 
conditions were as follows: 42  °C for 2  min, 25  °C for 
5 min, 50 °C for 15 min, and 85 °C for 5 min, followed by 
cooling at 4 °C. The amplification reaction was performed 

using an ABI 7500 system (Thermo Fisher, USA). The 
amplification system consisted of 2μl cDNA, 0.4  μl mQ 
primer, 2 μl Specific primer, and 10 μl miRNA universal 
SYBR, with the total reaction volume adjusted to 20  μl 
using ddH2O. The amplification conditions were as fol-
lows: denaturation at 95 °C for 30 s, followed by one cycle 
of 95 °C for 5 min, 40 cycles of 95 °C for 10 s and 60 °C for 
30 s, and one cycle of 95 °C for 15 s, 60 °C for 60 s, and 
95 °C for 15 s. U6 was used as an endogenous reference. 
Primer specificity was determined using melting curve 
analysis, and relative quantification was performed using 
the 2 − ΔΔCt method. The primers were synthesized by 
Shengong Company, and the sequences were as follows: 
hsa-miR-127-5p (miR-127): 5′-CGC TGA AGC TCA 
GAG GGC-3′ (forward), 5′-AGT GCA GGG TCC GAG 
GTA TT-3′ (reverse); miR-127RT Primer: GTC GTA 
TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG 
GAT ACG ACA TCA GA; U6:5′-CGC AAG GAT GAC 
ACG CAA AT-3′ (forward), 5′-CGG CAA TTG CAC 
TGG ATA CG-3′(reverse).

Cell transfection
Agomirs and antagomirs of miR-127 (agomiR-127 and 
antagomiR-127) were designed and synthesized by 
GenePharma Company (Shanghai, China). Cells were 
transfected according to the manufacturer’s instruc-
tions. The transfection procedures were as follows: cells 
were inoculated in 6-well plates in advance and trans-
fected with Lipofectamine 3000 when the convergence 
properties reached 70%. Dissolved diluted Lipo 3000 and 
miR-127 were mixed and allowed to react at room tem-
perature for 20 min before being added to 6-well plates. 
The changes in miR-127 were detected via PCR to ver-
ify the transfection efficiency and conduct subsequent 
experiments.

Experimental verificationin vitro
After miR-127 transfection, BC cell proliferation, inva-
sion, and migration were detected using CCK8, transwell, 
and scratch wound assays, respectively.

The CCK8 kit was used to evaluate changes in cell 
proliferation after transfection with agomiR-127 and 
antagomiR-127. The steps followed are as follows: trans-
fected cells during logarithmic growth were incubated 
in 96-well plates overnight; 10μL of CCK8 solution was 
added to each well of the plate at 0, 24, 48, and 72  h; 
the plate was incubated for 1 h in an incubator, and the 
absorbance was measured at 450 nm using a microplate 
reader.

A transwell assay was used to assess changes in cell 
invasion. Matrigel was added to the upper chamber and 
allowed to solidify in advance. Then, a medium con-
taining 10% FBS was added to the lower chamber as a 
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chemoattractant, and a serum-free medium was added to 
the upper chamber with matrigel. The cells were seeded 
in the upper chamber and incubated for 24 h. The lower 
cells were fixed with 4% paraformaldehyde and stained 
with hematoxylin and eosin. The number of invading 
cells in each group was observed under a microscope and 
statistically analyzed.

A wound-healing assay was performed to assess cell 
migration. Cells were seeded into 6-well plates and 
scratched with a 200μL pipette tip when cell conver-
gence reached 70%. The change in the cell scratch width 
was observed under a microscope at 0 and 24 h and the 
change in cell mobility was estimated.

Xenograft tumors formation
The experimental protocol was approved by the ethics 
committee, Shengjing Hospital (2021PS569K). Female 
BALB/c nude mice at 8 weeks old were purchased from 
Beijing HFk Bioscience (Beijing, China), and housed in a 
specific pathogen-free facility. For Xenograft tumor for-
mation, 1 × 106 cells were subcutaneously injected into 
the left axillary of each mice. Tumor volume (V) was 
measured at 7, 14, and 21 days as the following method, 
V = π/6 × L × W2. Finally, all the mice were euthanized 
with CO2 anesthesia and dissected for further analysis. 
Tumors were weighed and pictured for further analysis.

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 8.0, and R software. For statistical methods, a t-test 
was used to compare significant differences between two 
groups, and one-way analysis of variance ANOVA to 
compare multiple groups. Cumulative survival was cal-
culated using Kaplan–Meier univariate analysis. The log-
rank test was performed to test for differences in survival 
time. All experiments were repeated three times, and sta-
tistical significance was set at p < 0.05 (*p < 0.05).

Results
Identification of DEMs
A total of 1400 samples were used: 1249 BC samples and 
151 normal breast samples from three datasets. DEMs 
were identified with the threshold of |log2FC|≥ 0.5, 
P-value < 0.05, and displayed on the volcano plot 
(Fig. 1A-C). Briefly, the TCGA-BRCA database included 
284 common DEMs, including 146 upregulated and 138 
downregulated DEMs; 217 DEMs in the GSE38167 data-
base, including105 up-regulated and 112 downregulated 
DEMs; and 323 DEMs in the GSE45666 database, includ-
ing 137 upregulated and 186 downregulated DEMs. Ulti-
mately, we identified 83 common DEMs, including 44 
upregulated and 39 downregulated DEMs (Fig. 1D). The 

common DEMs in the three datasets were chosen for fur-
ther analysis.

Constructing a prognostic model
We evaluated the roles of 83 DEMs on the OS of BC 
through univariate and multivariate Cox analyses and 
Lasson analysis (Fig.  2A-B and S  1A-B). As presented 
in Fig.  2A, nine DEMs were associated with BC prog-
nosis as per univariate Cox analysis. We also validated 
their expression and prognosis in the TCGA_BRCA 
database (Fig.  2C-F and Figure S  1C-F). The expression 
of only seven miRNAs was consistent with the univari-
ate Cox analysis. The expression of miR-193a and miR-
449a was inconsistent with the results of the univariate 
analysis (Figure S  1C). The expression and prognosis of 
the other seven DEMs were matched to univariate anal-
ysis with a cut-off threshold of P < 0.05 (Fig.  2C-F and 
S  1C-F). Then, Lasson regression was then performed 
to determine the best variables included in the multi-
variate analysis. The results showed that seven prognostic 
DEMs were suitable for enrollment in multivariate analy-
sis (Figure S 1A-B). In further multivariate Cox analysis, 
only two DEMs were identified as prognostic miRNAs 
of BC with a P-value of < 0.05, including hsa-miR-127 
and hsa-miR-340. The HR and 95%CI of miR-127 and 
miR-340 were 0.650(0.506 − 0.835), with P < 0.001, and 
1.498(1.214 − 1.849), with p < 0.001, respectively. The 
expression and prognosis of miR-127 and miR-340 were 
consistent with the multivariate Cox analysis (Fig.  2C-
D). Based on the multivariate analysis, we calculated 
the prognostic risk scores of each patient. The patients 
were divided into high-risk and low-risk groups based on 
the median risk score. The risk formula was as follows: 
(0.40 × miR-340) − (0.43 × miR-127). A nomogram risk 
model was constructed with high accuracy to predict the 
prognostic risk of patients with BC at 3 and 5y (Fig. 3A). 
Calibration curves revealed that the prognostic predic-
tion of the nomogram at 3-year and 5-year was con-
sistent with the actual OS (Fig.  3B-C). Additionally, we 
depicted the distribution of the risk scores and OS status 
in a dot-plot. The results showed a substantial increase in 
mortality with increasing risk scores (Fig. 3E). The abil-
ity of the nomogram to predict OS was evaluated using 
the ROC curve and KM survival analysis (Fig. 3D-F). The 
ROC curve showed that the nomogram was excellent for 
predicting 1-, 3-, and 5-year OS with AUC values of 0.73, 
0.72, and 0.72, respectively (Fig.  3D). Survival analysis 
showed that the high-risk group had a worse prognosis 
and higher mortality than the low-risk group (Fig.  3F). 
These results indicated that the prognostic risk model 
constructed based on DEMs could effectively predict BC 
OS. Furthermore, we validated the relationship between 
miR-127-5p and clinical paraments in the METABRIC 
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database (Figure S  2 A-F). High expression of hsa-miR-
127-5p indicated a better prognosis in overall survival, 
ER-positive group, HER2 negative group, TNBC, lymph 
node positive group, and luminal A subtype. Those find-
ings reveal that miR-127 research has a promising clinical 
application for BC therapy. Also, we revealed the char-
acteristic of hsa-miR-127 and hsa-miR-340 in PAM50 

subtypes. As shown in Figure S 3 A-B, the expression of 
miR-340 in LumA (Luminal A) was lower than in LumB, 
Basel, and Normal (TNBC) subtype. The survival of 
LumA subtype is better than other PAM50 subtypes, and 
miR-340 has a higher expression in the TNBC subtype. 
High expression of miR-340 reveals a worse survival, 
which is consistent with our previous results (Fig.  2D). 

Fig. 1  Screening differentially expressed miRNAs (DEMs)between breast cancer(BC) and normal breast. A-C Volcano plot revealed DEMs in TCGA_
BRCA (A), GSE38167 (B), GSE45666 (C), with the threshold of |log2FC|≥ 0.5, P-value < 0.05.The red dots and blue dots represent the up-regulated and 
down-regulated DEMs, respectively. Black means no difference in expression; D Venn diagram showed the intersection of DEMs in three groups
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Similarly, miR-340 in LumA (Luminal A) was higher 
than in LumB, Basel, and Normal (TNBC) subtype. And 
the high expression of miR-340 reveals a better survival, 
which is consistent with our previous results (Fig. 2C).

Validating the prognostic model
In the validation group, we further evaluated the rela-
tionship between the DEMs and BC survival outcomes. 
Three prognostic miRNAs were identified via univariate 
and multivariate Cox analysis, named hsa-let-7b, hsa-
miR-127, and hsa-miR-133b (Fig. 4A-B). Briefly, the HR 
and 95% CI of let-7b, miR-127, and miR-133b in the mul-
tivariate analysis were 0.620(0.482 − 0.798) with a P-value 
of 0.002, 0.668(0.460 − 0.970) with a P-value of 0.034, and 
1.260(1.062 − 1.495) with a P-value of 0.008, respectively. 

Furthermore, we constructed a nomogram risk model 
and tested its ability to predict prognosis. The risk for-
mula is as follows: (0.23 × miR-133b) − (0.40 × miR-
127) − (0.38 × let-7b). Based on the dot-plot, we found 
that patient mortality increased markedly in the high-
risk group (Fig.  4C). Survival analysis showed that the 
high-risk group had a worse prognosis than that of the 
low-risk group (Fig.  4D). The ROC curve showed that 
the ability of the model to predict the 1-year, 3-year, and 
5-year OS rates of BCwere 0.68, 0.71, and 0.71, respec-
tively (Fig.  4E). According to previous results, we con-
firmed miR-127 as an independent prognostic miRNA 
and were chosen for cell line and tissue analysis. To fur-
ther discuss the treatment strategies of miR-127 in BC, 
we compared its expression difference in endocrine 

Fig. 2  Identification and validation of prognostic DEMs in BC. A, B Univariate Cox analysis evaluated the prognostic effect of common DEMs (A); 
multivariate Cox analysis was applied to further verify (B); HR > 1 was a risk factor, HR < 1 was a protective factor, and P < 0.05 was chosen as the 
screening threshold. C-F TCGA_BRCA database verified the expression of hsa-miR-127, hsa-miR-340, hsa-miR-148, and hsa-miR-30a in breast cancer 
and its relationship with prognosis, with P < 0.05.The asterisk (*) means p-value < 0.05
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therapy (ER/PR) and targeted therapy (HER2). As shown 
in Figure S 4, miR-127 shares a lower expression in ER, 
PR, HER2 positive status, PR, and HER2 high positive 

status. Those findings indicated the exogenous supple-
ment of miR-127 could have a clinical treatment response 
in patients with PR and HER2 positive expression. These 

Fig. 3  Construction and validation of a nomogram risk model based on prognostic DEMs. A Establishing a nomogram risk model in the TCGA_
BRCA database; B, C Calibration curves evaluated the reliability of nomogram for predicting BC 3-year and 5-year overall survival (OS); D ROC curves 
were applied to compare the sensitivities and specificities of the risk model in 1, 3, and 5-year OS; E the distribution of risk scores and OS status in 
dot-plot (F); KM survival analysis assessed OS differences in high-risk and low-risk patients
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results reveal that miR-127 can be regarded as a potential 
target for BC therapy.

Functional enrichment results
We confirmed that low levels of miR-127 are an inde-
pendent protective factor for BC. Next, we performed 
GO term and KEGG analyses to explore the poten-
tial biological functions of miR-127 and the pathways 
involved. Target genes of miR-127 were also predicted. 
As shown in Figure S 5, 3002 target genes were found in 
the TargetScan database, 588 target genes in the miR-
TarBase database, and 269 target genes in the miRNet 
database, with 91 common target genes among the three 
databases. Ninety biological processes and 18 KEGG 
pathways were enriched by miR-127 expression. The top 
ten GO terms and KEGG pathways are shown in the bar-
plot (Figure S  5B-C). Briefly, miR-127 is mainly related 

to these biological processes, including protein binding, 
zinc ion binding, and RNA polymerase transcription, as 
well as several pathways, such as the PI3K-Akt, p53, and 
microRNA cancer pathways. In GSEA analysis, the top 
five GO and KEGG terms are shown in Figure S  5E-F. 
Our results share a similar function between GSEA and 
KEGG and GO analysis such as extracellular exosome 
and p53 signaling pathway, which indicated the reliability 
of our results. Overall, these results suggest that miR-127 
is closely involved in the biological processes and path-
ways of cancer.

miR‑127 regulating BC proliferation, migration, 
and invasion
After multiple validations and evaluations, we identified 
miR-127 as an independent prognostic protective fac-
tor for BC. Next, we verified the expression of miR-127 

Fig. 4  Evaluating the prediction performance of the risk model. A, B Univariate and multivariate Cox analyses were performed to verify the effect 
of DEMs on OS; HR > 1 was a risk factor, HR < 1 was a protective factor, and P < 0.05 was chosen as the screening threshold; C-E Validating the 
prognostic prediction ability of risk model; the distribution of OS status in high-risk and low-risk breast cancer patients were presented in dot-plot 
(C); KM survival analysis assessed OS differences in high-risk and low-risk patients (D); ROC curves was applied to compare the sensitivities and 
specificities of BC risk model in 1, 3, and 5 years (E)

(See figure on next page.)
Fig. 5  Low expression of miR-127 promotes BC proliferation, invasion, and migration. A The relative expression of miR-127 was evaluated in breast 
cancer cells and normal breast cells; B-I Cell proliferation, invasion, and migration were detected via CCK8, Transwell, and scratch wound assays, 
respectively. the interference or overexpression of miR-127 significantly enhanced or inhibited the proliferation of SKBR3 and MDA-MB-231 cells (B, 
C); invasion ability of SKBR3 and MDA-MB-231 cells (D-G); cell migration in SKBR3 and MDA-MB-231 (H, I). (*) means p-value < 0.05
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Fig. 5  (See legend on previous page.)
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in tissues and its effect on BC proliferation, invasion, 
and migration. The expression of miR-127 in 12 pairs of 
fresh BC and normal tissues was detected using qPCR. 
The results showed that miR-127 expression was low in 
BC (Figure S 5C), which is consistent with our validation 
results. In addition, the expression of miR-127 in BC cells 
was remarkably lower than that in normal breast cells. 
miR-127 expression in SKBR3 and MDA-MB-231 cells 
was lower than that in BT474 and MCF7 cells (Fig. 5A). 
SKBR3 and MDA-MB-231 cells were transfected with 
agomiR-127 and antagomiR-127, respectively. Cell pro-
liferation, invasion, and migration were detected via 
CCK8, transwell, and scratch wound assays, respectively 
(Fig.  5B-I). According to the results of the CCK8 assay, 
the cell activities of SKBR3 and MDA-MB-231 at 72  h 
and 96  h were markedly promoted following miR-127 
interference. In contrast, miR-127 overexpression nota-
bly inhibited the activity of SKBR3 and MDA-MB-231 
(Fig.  5B-C). Moreover, the ability of SKBR3 and MDA-
MB-231 cells to cross the Matrigel could be substantially 
increased through miR-127 silencing and decreased 
through miR-127 overexpression (Fig.  5D-G). In clon-
ing experiments, the healing ability of SKBR3 and MDA-
MB-231 cells was considerably increased and decreased 
after miR-127 silencing and overexpression, respectively 
(Fig.  5H-I). These results suggest that low expression 
levels of miR-127 promoted BC proliferation, migration, 
and invasion.

miR‑127 promotes tumor growthin vivo
To confirm the potential role of miR-127 in  vivo, we 
established xenograft tumors in BALB/c nude mice. 
Nude mice were injected with MDA-MB-231 cells in 
the left axilla and were randomly divided into three 
groups, including NC, antagomiR-127, and agomiR-127. 
We assessed the changes in tumor formation, volume, 
and weight. As shown in Fig.  6A-B, tumor volume was 

substantially increased and decreased following antago-
miR-127 and agomiR-127 transfection, respectively. 
Meanwhile, tumor weight was markedly increased and 
decreased following miR-127 silencing and overexpres-
sion, respectively (Fig.  6C). These results suggest that 
miR-127 regulates breast cancer growth and progres-
sion in  vivo and is a potential target for breast cancer 
treatment.

Discussion
The dysregulation of miRNAs plays a major role in 
cancer formation, progression, and metastasis because 
miRNAs are powerful regulators of mRNAs [32]. On 
the one hand, tumor suppressor miRNAs mediate the 
degradation of specific oncogenes and inhibit the occur-
rence, proliferation, apoptosis, and invasion of tumors 
[33]. On the other hand, oncogenic miRNAs regu-
late the normal expression of tumor suppressor genes, 
causing homeostasis imbalance and promoting tumor 
progression [34]. Moreover, miRNAs regulate the trans-
lation level of downstream genes without changing the 
transcription of mRNA, which is valuable for develop-
ing new drugs [35]. In addition, miRNAs are extensively 
involved in BC proliferation, cell cycle progression, 
tumor invasion, angiogenesis, and metastasis [36]. 
Therefore, it is necessary to elucidate the underlying 
mechanisms of miRNAs in BC.

In this study, we summarized the roles of miR-
NAs in BC and revealed their regulatory mechanisms. 
Using multiple miRNA databases, we comprehensively 
explored the expression of miRNAs in BC and estab-
lished and validated a miRNA-based prognostic model. 
The ROC curve and KM analysis suggested that the 
prognostic model has a good predictive ability for OS. 
We identified miR-127 as an independent prognostic 
factor for OS. Hsa-miR-127 is in the chromosome region 
14q32.2, with the sequence CUG AAG CUC AGA GGG 

Fig. 6  MiR-127 regulates tumor growth in vivo. A, B Tumor volume was significantly up-regulated and down-regulated after miR-127 interference 
and overexpression. C Tumor weight was increased or decreased in mice after miR-127 silence and overexpression. (*) means p-value < 0.05
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CUC UGAU [37, 38]. The transcription of miR-127 is 
induced by estrogen-related receptor gamma (ERRc) 
and inhibited by a small heterodimer partner (SHP) [39, 
40]. MiR-127 has been shown to play a tumor suppres-
sor role in a variety of human cancers, including BC [41]. 
Hypermethylation of the miR-127 promoter region in 
BC tissues is strongly associated with metastasis and is 
a marker of tumor metastasis [42]. MiR-127 was sub-
stantially downregulated in BC tissues. The low expres-
sion level of miR-127 is associated with lymph node 
metastasis, clinical stages, and shorter OS, which are 
independent factors for BC prognosis [43]. In BC cells, 
the oncogene BCL6 [44] and cancer progression-related 
genes ROCK2 and CDH11 [45] have been identified as 
targets of miR-127 in BC. Low miR-127 expression pro-
motes tumor progression by increasing oncogene expres-
sion. In triple-negative BC, miR-127 overexpression 
increases stem cell sensitivity to radiotherapy drugs [46]. 
In addition, miR-127 inhibits the proliferation and inva-
sion of gastric cancer cells via Wnt7a [47], inhibits ovar-
ian cancer cell proliferation by downregulating MAPK4 
[48], regulates the NF-κB pathway through TNFAIP3, 
and induces epithelial-mesenchymal transformation in 
lung cancer [49]. These findings were consistent with our 
results. Overall, we comprehensively explored the role 
of miR-127 in BC expression, prognosis, proliferation, 
migration, invasion, and tumorigenesis.

Although previous studies have explored the role of 
miR-127 in BC, this study is the first to comprehen-
sively describe the role of miRNA-127 in BC prognosis, 
cell function, and tumorigenesis. Our study has some 
limitations. For instance, we did not explore the effect 
of pathological classifications on OS because the impact 
of pathological types on BC prognosis is widely known 
[35, 50]. This study lacks a large-sample validation of 
miR-127 expression and prognosis in BC. However, we 
obtained results from 1400 samples, which ensured the 
credibility of our findings. In cell experiments, we vali-
dated the roles of miR-127 in proliferation, migration, 
invasion, and tumorigenesis without exploring the func-
tion of its target genes. Therefore, further studies are 
warranted.

Conclusions
In conclusion, our study comprehensively revealed the 
prognostic impact of miRNAs and identified miRNA-127 
as an independent protective factor for BC. In vitro and 
in vivo experiments showed that miR-127affects BC cell 
expression, proliferation, migration, invasion, and tumo-
rigenesis. These results reveal that miR-127 contributes 
to BC progression, indicating a potential target for breast 
cancer treatment.
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