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Abstract 

Background:  The specific differentiation potential, unlimited proliferation, and self-renewal capacity of cancer stem 
cells (CSCs) are closely related to the occurrence, recurrence, and drug resistance of hepatocellular carcinoma (HCC), 
as well as hypoxia. Therefore, an in-depth analysis of the relationship between HCC stemness, oxygenation status, and 
the effectiveness of immunotherapy is necessary to improve the poor prognosis of HCC patients.

Methods:  The weighted gene co-expression network analysis (WGCNA) was utilized to find hypoxia-related genes, 
and the stemness index (mRNAsi) was evaluated using the one-class logistic regression (OCLR) technique. Based on 
stemness-hypoxia-related genes (SHRGs), population subgroup categorization using NMF cluster analysis was carried 
out. The relationship between SHRGs and survival outcomes was determined using univariate Cox regression. The 
LASSO-Cox regression strategy was performed to investigate the quality and establish the classifier associated with 
prognosis. The main effect of risk scores on the tumor microenvironment (TME) and its response to immune check-
point drugs was also examined. Finally, qRT-PCR was performed to explore the expression and prognostic value of the 
signature in clinical samples.

Results:  After identifying tumor stemness- and hypoxia-related genes through a series of bioinformatics analyses, we 
constructed a prognostic stratification model based on these SHRGs, which can be effectively applied to the prog-
nostic classification of HCC patients and the prediction of immune checkpoint inhibitors (ICIs) efficacy. Independent 
validation of the model in the ICGC cohort yielded good results. In addition, we also constructed hypoxic cell models 
in Herp3B and Huh7 cells to verify the expression of genes in the prognostic model and found that C7, CLEC1B, and 
CXCL6 were not only related to the tumor stemness but also related to hypoxia. Finally, we found that the constructed 
signature had a good prognostic value in the clinical sample.

Conclusions:  We constructed and validated a stemness-hypoxia-related prognostic signature that can be used to 
predict the efficacy of ICIs therapy. We also verified that C7, CLEC1B, and CXCL6 are indeed associated with stemness 
and hypoxia through a hypoxic cell model, which may provide new ideas for individualized immunotherapy.
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Introduction
A small number of specialized cells called cancer stem 
cells (CSCs) have been reported to be present in hepa-
tocellular carcinoma (HCC) tissue, which has a strong 
tumorigenic capacity and stem cell properties, includ-
ing the ability to self-renew and differentiate [1]. CSCs 
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are significantly associated with the poor prognosis of 
HCC patients through their involvement in the regula-
tion of tumor metastasis, recurrence, and resistance to 
chemotherapy and radiotherapy for clinical treatment 
[2, 3]. Moreover, considering the presence of anti-apop-
totic and maintenance of stemness components in the 
tumor microenvironment (TME), CSCs can facilitate 
the conversion of non-CSCs to CSCs by modifying the 
critical signaling pathways of normal stem cells in con-
cert with TME, further affecting the poor prognosis of 
HCC patients [4, 5]. Hypoxia is a common phenotype 
of liver cancer and increases the risk of immune evasion 
and recurrence of tumor cells [6]. The hypoxic microen-
vironment induced by hypoxia is closely related to CSCs 
[7]. Hypoxia-inducible factor (HIF) secreted by immune 
cells is a key factor for cancer cell survival and promotes 
the persistence of cancer stem cells in a hypoxic micro-
environment [8–10]. By focusing on several pathways, 
including the Wnt/-catenin, Notch, and STAT3 path-
ways, hypoxia can modify the stemness of CSCs, mak-
ing tumor cells in the G1/S phase resistant to radiation 
[10, 11]. Given that it is still impossible to predict cancer 
stemness and oxygenation status based on clinicopatho-
logical data from patients, there is an urgent need for 
validated molecular biomarkers to evaluate tumor cell 
stemness and oxygenation status. This is necessary for 
a thorough understanding and eradication of CSCs and 
hypoxia status, improving the poor survival outcomes of 
patients and the efficacy of anti-tumor therapy in HCC.

In the present study, through a series of methodical 
bioinformatic studies, we merged tumor cell stemness 
and hypoxic state in HCC and created a unique prog-
nostic signature that can forecast patients’ response to 
immunosuppressive medication. In addition, we also 
constructed a hypoxic cell model to verify the expres-
sion of genes in the prognostic model. Therefore, we sug-
gest that this classifier can be used in clinical work as a 
molecular diagnostic assay to assess the prognostic risk 
and therapeutic effect of HCC patients.

Methods
Publicly available datasets
RNA sequencing (RNA-seq) data from The Cancer 
Genome Atlas-HCC (TCGA-HCC) cohort obtained 
from the UCSC Xena project (https://​xenab​rowser.​net) 
served as the discovery cohort. RNA-seq data of the 
HCC (LIRI-JP) cohort obtained from the ICGC database 
(https://​dcc.​icgc.​org/) served as the test cohort. Samples 
without complete survival data or with a survival time of 
less than 1  month were excluded. RNA-seq data of the 
normal samples from the GTEx database obtained from 
the UCSC Xena project (https://​xenab​rowser.​net) served 
as a supplementary cohort. The clinical features of the 

datasets were shown in Table S1. The transcriptome data 
were normalized using the log2 (FPKM + 1) transforma-
tion. Combat from the R package "SVA" was used to rec-
tify the batch effects between the normalized data from 
the TCGA and GTEx. With cut-off criteria of P-value less 
than 0.05 and |logFC|≥ 1, differentially expressed genes 
(DEGs) between normal and HCC samples in the TCGA 
and GTEx cohorts were eliminated.

Calculation of the mRNAsi and identification 
of mRNAsi‑related DEGs
One-class logistic regression (OCLR) algorithm was 
used to assess the stemness index (mRNAsi) in normal 
and HCC samples [12]. Kaplan–Meier Plotter was used 
to compare differences in survival between patients with 
high and low mRNAsi. The mRNAsi-related DEGs were 
identified between patients with high and low mRNAsi 
with cut-off criteria of P-value less than 0.05 and 
|logFC|≥ 1.

Calculation of the hypoxia signature score 
and identification of hypoxia‑related genes
Hypoxia signature score was assessed by the ssGSEA 
method based on the gene set of HALLMARK_
HYPOXIA and hypoxia-related genes were then iden-
tified by the weighted gene co-expression network 
analysis (WGCNA) [13]. Gene significance (GS) was also 
employed to quantify the relationships between specific 
genes and the hypoxic signature score, while module 
members represented the relationships between specific 
genes and gene expression patterns for each module. The 
P-value threshold of GS less than 0.0001 and the signifi-
cance level of univariate Cox regression with a P-value 
less than 0.01 were used to assess genes found from the 
module that was most related to the hypoxia signature 
score as candidates.

Identification of population subgroups 
by the non‑negative matrix factorization (NMF) algorithm
Overlapping genes between DEGs, mRNAsi-related 
DEGs, and hypoxia-related genes were considered as 
stemness- and hypoxia-related genes (SHRGs) for NMF 
cluster analysis with the criterion "brunet" and 50 itera-
tions. The optimal number of clusters was explored based 
on cophenetic, dispersion, and profile, as we previously 
reported [14]. Further Kaplan–Meier survival analysis 
was done to compare the survival rates of various sub-
types found by the NMF algorithm.

Prognostic risk score model construction
To determine the relationship between SHRGs and 
patient survival outcomes, univariate Cox regression 
was used. The prognostic SHRGs were then investigated 
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to create a classifier linked to prognosis using the 
LASSO-Cox regression technique. The risk score was 
assessed based on the premise of directly combining 
the equation underneath with the mRNA expression 
level duplicated the multivariate Cox relapse coefficient 
(β) demonstrate, as we previously reported [14]. Risk 
score = ∑iCoefficient  (mRNAi)*Expression  (mRNAi). 
We stratified HCC patients into two subgroups due to 
the ideal hazard score edge. The prescient control and 
autonomy of the prognostic signature were evaluated 
by ROC examination, Kaplan–Meier survival examina-
tion and cox relative risks relapse investigation.

Genetic alterations and functional analysis
The mutation data of HCC patients were downloaded 
to analyze the difference in genetic alterations between 
the different subgroups with R package “maftools”. 
Gene Set Enrichment Analysis (GSEA) was performed 
in the Metascape database to explore significantly 
altered GO and KEGG items [15, 16]. We have received 
permission from Kanehisa Laboratories.

Immune cell infiltration and immune checkpoint gene 
analysis
Stromal and immune scores in tumor tissue were esti-
mated by ESTIMATE based on gene expression profiles 
of HCC samples to assess the abundance of stromal and 
immune cells within the tumor [17]. Furthermore, to 
assess the distribution differences of tumor-infiltrating 
immune cells (TIICs) in the HCC TME in more detail, 
CIBERSORT [18], xCELL [19], MCPcounter [20], and 
TIMER [21] databases were used to measure the abun-
dance ratio of TIICs. The tumor immune dysfunction 
and exclusion (TIDE) score was used to predict the 
immune checkpoint blockade (ICB) response in HCC 
patients [22]. Finally, we compared the expression dif-
ferences of various immune checkpoint genes includ-
ing PD1, PD-L1, CD276, CTLA4, LAG3, CXCR4, IL1A, 
IL6, TGFB1, TNFRSF4, TNFRSF9, and PD-L2 in differ-
ent subgroups.

Drug susceptibility analysis
The association between anticancer drug sensitivity and 
mRNA molecules in our risk model was directly explored 
in the CellMiner database [23]. 574 in advanced clinical 
trials and 216 Food and Drug Administration (FDA)-
approved drugs were used for follow-up analyses. Drugs 
with adjusted P-value < 0.001 and Pearson correlation 
coefficient > 0.3 as cut-off criteria were considered tumor-
sensitive drugs.

Hypoxia model construction and gene expression 
validation by qRT‑PCR
The recommended DMEM medium (Sangon Biotech, 
China) containing 10% fetal bovine serum (FBS, San-
gon Biotech, Shanghai, China) was cultured in Hep3B 
and Huh7 cells obtained from the Cell Bank of Shang-
hai Institute of Cell Research, Chinese Academy of Sci-
ences (Shanghai, China) at 100% humidity, 37 °C, and 5% 
CO2. Following a 24-h incubation period with two dif-
ferent oxygen concentrations (1 percent and 21 percent), 
the cells were removed, lysed, and the total RNA was 
extracted. To identify the variations in gene expression 
in the two HCC cells under different oxygen concentra-
tion culture conditions, the qRT-PCR (Sangon Biotech, 
China) approach was lastly employed. Primer sequences 
are shown in Table S2.

Gene expression validation in clinical samples
To further validate the value of signature in predict-
ing the prognosis of HCC, we collected tissues from 50 
normal tissues and 59 HCC samples and used qRT-PCR 
(Sangon Biotech, China) to detect the expression of genes 
in signature [24], as previously done.

Statistical analysis
The grouped t-test or Mann-Withney-Wilcoxon test was 
used to evaluate continuously distributed numerical data, 
while the qualitative data were analyzed using the chi-
square test. NMF cluster analysis was used to divide HCC 
patients into two groups with significant survival differ-
ences based on stemness-hypoxia-related DEGs by the 
NMF package. Kaplan–Meier survival analysis was used 
to estimate overall survival rates between groups using 
the survival and survminer packages. Receiver operating 
characteristic (ROC) curves were performed to calculate 
the AUC values at 1-, 2-, and 3-year using the timeROC 
package. Univariate and multivariate Cox regression 
analyses were performed to evaluate whether the signa-
ture was an independent prognostic factor, and a nomo-
gram was constructed using the RMS package based on 
its results. Correlation analysis was performed using the 
Pearson or Spearman correlation test. When the P value 
was less than 0.05, the results were deemed statistically 
significant. All analyses were performed using the R pro-
gramming language (version 4.1.2). The flowchart of this 
study is shown in Fig. 1.

Results
High mRNAsi in tumor samples predicts poorer patient 
survival
As shown in Fig. 2A, we found that normal samples had 
significantly lower mRNAsi values than HCC samples. 
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Furthermore, significant survival differences between 
HCC patients in high- and low-mRNAsi subgroups were 
observed (Fig.  2B). Finally, we identified 387 mRNAsi-
related DEGs between high- and low-mRNAsi subgroups 
(Fig. 2C).

Identification of hypoxia‑related genes
According to the outcomes of the WGCNA (Fig.  3A), 
nine non-grey modules were produced after the ssGSEA 
method assessed the hypoxia signature score and the 
removal of outliers (Supplementary Figure S1). The green 
module had the strongest correlation with the hypoxic 
signature score, as seen in Fig. 3B&C (R2 = 0.78, P = 1.2e-
186), which contained 908 hypoxia-related genes.

Molecular subtypes identification
After obtaining 622 DEGs from the TCGA and GTEx 
datasets (Fig.  4A), 61 overlapping genes were identi-
fied as SHRGs (Fig. 4B) and were used for subsequent 
analysis. The expression levels of 61 SHRGs in normal 
and tumor tissues were shown in Supplementary Figure 

S2A. We also constructed a protein–protein interaction 
(PPI) network based on these genes (Supplementary 
Figure S2B). Furthermore, the main enriched entries for 
these genes were NABA matrisome associated, blood 
vessel development, in-utero embryonic development, 
and malignant pleura mesothelioma (Supplementary 
Figure S2C). The optimal number of clusters was identi-
fied as two based on cophenetic, dispersion, and profile 
(Fig.  4C, Supplementary Figure S3). Significant sur-
vival differences between patients in the Cluster 1 and 
Cluster 2 subgroups were observed (Fig. 4D). As shown 
in Fig. 4E, samples from Cluster 1 had lower immune, 
stromal, and ESTIMATE scores compared with sam-
ples from Cluster 2. In addition, as shown in Fig.  4F, 
according to the CIBERSORT, patients in the Cluster 2 
had higher abundance levels of memory B cells, resting 
memory CD4 T cells, follicular helper T cells, Tregs, 
active NK cells, M0 macrophage, M1 macrophage, M2 
macrophage, resting myeloid dendritic cells, resting 
mast cells, and neutrophil, and lower abundance lev-
els of naive CD4 T cells when compared with patients 

Fig. 1  The flow chart
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in the Cluster 1. According to the TIMER database, 
patients in the Cluster 2 had higher abundance levels of 
B cells, CD4 T cells, neutrophil cells, macrophage, and 
myeloid dendritic cells when compared with patients in 
Cluster 1. According to the xCELL database, patients in 
the Cluster 2 had higher abundance levels of memory 
CD4 T cells, naive CD8 T cells, common lymphoid pro-
genitor, myeloid dendritic cell, cancer-associated fibro-
blast, macrophage, macrophage M1, neutrophil, Th2 
CD 4  T cell, and activated myeloid dendritic cell, and 
lower abundance levels of central memory CD4 T cells, 
common myeloid progenitor, endothelial cell, plasma B 
cell, and Th1 CD 4 T cell when compared with patients 
in the Cluster 1. According to the MPCcounter data-
base, patients in the Cluster 2 had higher abundance 
levels of T cells, CD8 T cells, B cells, cancer-associated 

fibroblast, monocyte, macrophage monocyte, myeloid 
dendritic cell, neutrophil, and endothelial cell when 
compared with patients in the Cluster 1. When consid-
ering the four algorithms comprehensively, as shown in 
Table S3, myeloid dendritic cells, macrophages, neutro-
phils, and CD4 T cells were differential immune cells 
between Cluster 1 and Cluster 2 groups based on four 
algorithms. Finally, we found the mutation rates of the 
top fifteen most significantly mutated genes were sig-
nificantly different in the two subgroups (Supplemen-
tary Figure S4).

Establishment of a signature for tumor stemness 
and hypoxia characteristics in HCC
The prognostic value of the 61 SHRGs was calculated in a 
univariate Cox regression model (Fig. 5A). Eight of the eleven 

Fig. 2  Identification of mRNAsi-related DEGs. A Normal samples had significantly lower mRNAsi values than HCC samples. B Significant survival 
differences between patients in high- and low-mRNAsi subgroups were observed. C 387 mRNAsi-related DEGs between high- and low-mRNAsi 
subgroups were identified

Fig. 3  Identification of hypoxia-related genes by the WGCNA. A Nine non-grey modules were produced. B-C The green module had the strongest 
correlation with the hypoxic signature score
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Fig. 4  Molecular subtypes identification by the NMF algorithm. A 622 DEGs from the TCGA and GTEx datasets. B 61 overlapping genes were 
identified as SHRGs. C The optimal number of clusters was identified as two. D Significant survival differences between patients in the Cluster 1 
and Cluster 2 subgroups were observed. E Samples from Cluster 1 had lower immune, stromal, and ESTIMATE scores compared with samples from 
Cluster 2. F Analysis of immune infiltrating cells
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prognostic SHRGs were screened out by performing the 
LASSO-Cox regression model (Fig.  5B) and were then put 
into a multivariate Cox proportional model (Fig.  5C). Risk 
score = (0.19418143 × GLP2R)—(0.03421663 × C7) – (0.0408
4137 × IL1RL1) + (0.03137575 × CXCL6) + (0.11103071 × CH
ST4)—(0.14224683 × CLEC1B)—(0.11412072 × GPR182)—
(0.14543623 × INMT). The aforementioned algorithm was 
used to construct risk scores for HCC patients, and an ideal 
risk score threshold was used to categorize patients into high- 
or low-risk categories (Fig. 5D). Patients with greater risk rat-
ings had considerably worse survival outcomes (Fig. 5E). This 
classifier demonstrated strong prognostic performance with 
AUCs at 1-, 2-, and 3-year of 0.730, 0.721, and 0.751. (Fig. 5F). 
Higher risk scores were further associated with patient mortal-
ity (Fig. 6A), later grade (Fig. 6B), relapse (Fig. 6C), progressed 
TNM stage (Fig. 6D), and later T stage (Fig. 6E). The results 
demonstrated that this predictive model could further distin-
guish individuals with various clinical features when additional 
stratified survival analysis was done for those clinical variables 
(Supplementary Figure S5). Last but not least, univariable Cox 
regression analysis showed that this classifier was statistically 
related to HCC patient survival outcomes (HR = 4.103, 95%CI 
2.648–6.359, P = 2.6e-10). After controlling for other clinical 
parameters, multivariate Cox regression analysis showed that 
the statistically significant variables collected above might be 
used as an independent prognostic factor for HCC patients 
(HR = 3.318, 95%CI 2.114–5.214, P = 1.9e-07).

Functional and genetic alterations analysis
Gene set enrichment analysis (GSEA) between high- and 
low-risk score subgroups was used to identify GO and 
KEGG items with FDR less than 0.05, which were mostly 
engaged in cell cycle and metabolic processes (Supple-
mentary Figure S6). The top fifteen substantially modified 
genes were then subjected to a genetic alteration study, 
which revealed that the mutation rates in the two group-
ings were considerably different. The most often altered 
gene in the high-risk score subgroup was TP53 (43%) and 
the most altered gene in the low-risk score subgroup was 
CTNNB1 (230%). (Supplementary Figure S7).

Verification of the signature in the ICGC cohort
Risk scores of patients were calculated with the same for-
mula, and patients were stratified into high- or low-risk 
subgroups in the ICGC cohort (Fig.  7A). Patients who 
are dead (Fig. 7B) or with advanced TNM stages (Fig. 7C) 
had significantly higher scores. Kaplan–Meier survival 
analysis revealed that patients with higher risk scores 
were prominently relevant to poorer OS rates (Fig.  7D) 
and ROC analysis revealed that this signature had a good 
prognostic performance with AUCs at 1-, 2-, 3-year of 
0.661, 0.648, 0.657 (Fig.  7E). In addition, this prognos-
tic model could further differentiate patients of different 
TNM stages (Fig. 7F).

Fig. 5  Establishment of a signature for tumor stemness and hypoxia characteristics. A Univariate Cox regression analysis. B Eleven prognostic 
SHRGs were selected by the LASSO-Cox regression. C The coefficients for each gene in the multivariate Cox proportional model. D Patients were 
stratified into high- or low-risk subgroups with an optimal risk score threshold. E Patients with higher risk scores were significantly relevant to poorer 
survival outcomes. F ROC analysis
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Fig. 6  Higher risk scores were linked to patient death A, later grade B, recurrence C, advanced TNM stage D, and later T stage E 

Fig. 7  Verification of the signature in the ICGC cohort. A Patients were stratified into high- or low-risk subgroups. Patients who are dead (B) or 
with advanced TNM stages (C) had significantly higher scores. D Kaplan–Meier survival analysis revealed that patients with higher risk scores were 
prominently relevant to poorer OS rates. E ROC analysis. F This prognostic model could further differentiate patients of different ages and TNM 
stages
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Analysis of immune infiltrating cells
As shown in Fig.  8A, samples in high-risk groups had 
lower stromal, and ESTIMATE scores compared with 
samples in low-risk groups, however, there was no differ-
ence in immune scores between the two groups. In addi-
tion, as shown in Fig. 8B, according to the CIBERSORT, 
patients in the high-risk score group had higher abun-
dance levels of activated memory CD4 T cells, follicular 
helper T cells, Tregs, M0 macrophage, and neutrophil, 

and lower abundance levels of monocyte and activated 
mast cells when compared with patients in the low-risk 
score group. According to the TIMER database, patients 
in the high-risk score group had higher abundance lev-
els of CD4 T cells, macrophages, and neutrophils, and 
lower abundance levels of CD8 T cells when compared 
with patients in the low-risk score group. According to 
the xCELL database, patients in the high-risk score group 
had higher abundance levels of class-switched memory 

Fig. 8  Analysis of immune infiltrating cells. A Samples in high-risk groups had lower stromal, and ESTIMATE scores compared with samples in 
low-risk groups, however, there was no difference in immune scores between the two groups. B Differential analysis of immune infiltrating cells
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B cell, common lymphoid progenitor, common myeloid 
progenitor, mast cell, NK T cell, Th1 CD4 T cell, and Th2 
CD4 T cell, and lower abundance levels of naïve CD8 T 
cell, CD8 T cell, central memory CD8 T cell, endothe-
lial cell, cancer-associated fibroblast, granulocyte mono-
cyte progenitor, hematopoietic stem cell, macrophage, 
macrophage M2, and plasmacytoid dendritic cell when 
compared with patients in the low-risk score group. 
According to the MPCcounter database, patients in the 
high-risk score group had higher abundance levels of 
monocyte and macrophage monocyte, and lower abun-
dance levels of NK cell and endothelial cells when com-
pared with patients in the low-risk score group. When 
considering the four algorithms comprehensively, as 
shown in Table S4, macrophage was the differential 
immune cell between high- and low-risk score groups 
based on four algorithms.

Establishment of a nomogram model and drug 
susceptibility analysis
A nomogram model was built in the TCGA dataset to 
investigate the effectiveness of this classifier’s coefficient 
prediction. The results showed that the nomogram with 
a C-index of 0.803 could aid in the development of an 
accurate quantitative method for predicting the 1-, 2-, 
and 3-year survival rates (Supplementary Figure S8A). 
The calibration curves’ overlap between the predicted 
and actual probability of 1-, 2-, and 3-year survival rates 
showed good agreement (Supplementary Figure S8B). 
Among the 574 in advanced clinical trials and 216 FDA-
approved drugs, 77 were considered tumor-sensitive 
drugs (Table S5), and the top 16 most significant tumor-
sensitive drugs were shown in Supplementary Figure S9.

Forecasting ICB response by the 8‑gene signature
We normalized the TCGA transcriptome data of 342 
HCC patients, that is, the expression of each gene minus 
the average value of the gene in all samples, and then 
imported the data into the TIDE (http://​tide.​dfci.​harva​
rd. edu/) database. The analysis results were finally down-
loaded. We found that the TIDE scores in the group with 
higher risk scores were significantly greater than those 
in the group with lower risk scores, as shown in Fig. 9A. 
The high-risk scores group had higher T-cell exclusion 
values than the low-risk scores group (Fig.  9B), while 
the low-risk scores group had higher T-cell dysfunction 
scores than the high-risk scores group (Fig.  9C). When 
the predicted response rate to immunotherapy was 
taken into account, the proportion of “respond” in the 
high-risk group was even lower (Fig.  9D). Additionally, 
we discovered that patients with lower risk ratings had 
greater levels of the genes PD-L1, CTLA4, CD4, CXCR4, 
IL6, LAG3, TGFB1, PD1, and PD-L2 than patients with 

higher risk scores in the ICGC dataset (Fig. 9E), indicat-
ing that these ICIs may be more beneficial for patients 
with lower risk scores.

Expression levels of these genes in hypoxia cell models
As shown in Fig. 10A, CD44, a putative tumor stem cell 
marker, was significantly associated with C7, CXCL6, 
CLEC1B, and GPR182 in Hep3B cells and with C7, 
CXCL6, CLEC1B, and IL1RL1 in Huh7 cells. Compared 
with the culture condition with 21% oxygenation concen-
tration, after 24 h of culture at 1% oxygenation concen-
tration, the expression of C7, CLEC1B, and GPR182 in 
Hep3B cells was significantly decreased, and the expres-
sion of CXCL6 was significantly increased in Hep3B cells, 
while in Huh7 cells, the expressions of C7 and CLEC1B 
were significantly decreased, and the expression of 
CXCL6 was significantly increased (Fig. 10B). All of the 
above indicated that C7, CLEC1B, and CXCL6 were not 
only related to the tumor stemness but also related to 
hypoxia.

Expression and prognostic value of C7, CLEC1B, and CXCL6
Based on the above cell culture results, only C7, CLEC1B, 
and CXCL6 were associated not only with tumor 
stemness but also with hypoxia; therefore, we focused on 
exploring the expression levels and prognostic value of 
these three genes. As shown in Fig. 11A, all three genes 
were down-regulated in HCC tissues compared to nor-
mal tissues. After substituting the expression of the three 
genes into the formula to calculate the risk score, the sur-
vival rate of patients with higher risk scores was poorer 
than that of patients with lower risk scores (Fig. 11B).

Discussion
Although heterogeneous CSCs with different differen-
tiation statuses are not abundant in tumor tissues, their 
differentiation potential, unlimited proliferation, and 
self-renewal abilities are closely related to oncogenesis, 
tumor advancement, relapse, and drug resistance [25]. 
Accumulating evidence suggests that multiple signaling 
pathways, including Wnt/-catenin, Notch, Hypoxia, and 
STAT3, play critical roles in maintaining self-renewal 
in CSCs and participating in tumorigenesis [26]. Due 
to the uneven distribution of newly formed microves-
sels in tumor tissue, and the oxygen consumption of 
tumor cells being higher than that of normal cells, HCC 
tissue is often in a state of hypoxia [27]. Intratumoral 
hypoxia can in turn further promote tumor malignancy 
and aggressiveness [28, 29]. However, few studies have 
combined tumor stemness and hypoxia phenotypes to 
construct a model and explore mRNAsi and hypoxia-
related genes in HCC. Therefore, an in-depth analysis of 
the relationship between HCC stemness and hypoxia and 
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the effectiveness of immunotherapy, and the exploration 
of methods for subtype differentiation based on tumor 
stemness- and hypoxia-related genes, are necessary to 
explore potential therapeutic targets to improve the poor 
prognosis of HCC patients.

In this study, after identifying tumor stemness- and 
hypoxia-related genes through a series of bioinformat-
ics analyses, we constructed a prognostic stratification 
model based on these SHRGs, which can be effectively 
applied to the prognostic classification of HCC patients 
and the prediction of ICB efficacy. Independent vali-
dation was performed using patient samples from the 
ICGC cohort and a clinical sample cohort, and the vali-
dation results were favorable. In addition, we also con-
structed hypoxic cell models in Herp3B and Huh7 cells 
to verify the expression of genes in the prognostic model 
and found that C7, CLEC1B, and CXCL6 were not only 
related to the tumor stemness but also related to hypoxia, 
suggesting that these three genes can serve as therapeutic 
targets for tumor stemness and hypoxia targeting.

CXCL6 is involved in the development of various dis-
eases including tumors [30–33]. CXCL6 secreted by HCC 
cells can increase the HCC stemness and accelerate the 
progression of HCC by activating the extracellular signal-
regulated kinase (ERK) 1/2 signaling pathway of tumor-
associated fibroblasts (CAFs) [34, 35]. Hypoxia induces 
increased expression of multiple HIF-1-dependent CXC 
chemokines, including CXCL6, in HCC cells [36]. These 
suggest that CXCL6 may promote the progression of 
HCC by simultaneously affecting the stemness and oxy-
genation status of tumor cells. C7 is a complement pro-
tein that is differentially expressed in a variety of tumors 
and is associated with poor patient prognosis [37–39]. 
C7 can act as an anti-cancer gene to inhibit HCC metas-
tasis by targeting the HGF signaling pathway [40]. Para-
doxically, Hyang found that C7 could control tumor cell 
stemness by regulating the expression of LSF-1, and 
overexpressed C7 can increase stemness factor secretion 
and promote tumor cell proliferation [41], which sug-
gests that C7 may be a tumor-promoting gene. Hypoxia 
inhibits innate immune processes in Larimichthys crocea 

Fig. 9  Forecasting ICB response. A The TIDE scores in the high-risk scores group were much higher than that in the low-risk scores group. B 
T-cell exclusion scores were lower in the high-risk scores group than that in the low-risk scores group. C T-cell dysfunction scores were greater in 
the high-risk scores group than that in the low-risk scores group. D The proportion of “respond” in the high-risk group was lower than that in the 
low-risk score group. E Patients in the high-risk scores group had higher expression of CD276, CTLA4, IL1A, TGFB1, TNFRSF4, and TNFRSF9
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Fig. 10  Expression levels of these genes in hypoxia cell models. A CD44 was significantly associated with C7, CXCL6, CLEC1B, and GPR182 in Hep3B 
cells and with C7, CXCL6, CLEC1B, and IL1RL1 in Huh7 cells. B Compared with the culture condition with 21% oxygenation concentration, after 
24 h of culture at 1% oxygenation concentration, the expression of C7, CLEC1B, and GPR182 in Hep3B cells was significantly decreased, and the 
expression of CXCL6 was significantly increased in Hep3B cells, while in Huh7 cells, the expressions of C7 and CLEC1B were significantly decreased, 
and the expression of CXCL6 was significantly increased

Fig. 11  Expression and prognostic value of C7, CLEC1B, and CXCL6. A All three genes were down-regulated in HCC tissues compared to normal 
tissues. B The survival rate of patients with higher risk scores was poorer than that of patients with lower risk scores
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and reduces most complement components including C7 
[42], but whether hypoxia affects the expression of C7 in 
humans has not yet been reported. CLEC1B is an HCC 
prognostic marker worthy of further exploration for its 
great potential [43]. Low expression of CLEC1B can sig-
nificantly promote the growth rate of HCC cells, shorten 
the tumor doubling time, and aggravate the poor progno-
sis of patients [44]. Low expression of CLEC1B can also 
predict the clinical outcome of HCC patients with tumor 
hemorrhage [45]. In addition, CLEC1B was also associ-
ated with inflammatory immune cell infiltration within 
the HCC TME [46]. In our present study, CLEC1B was 
significantly negatively correlated with the expression of 
tumor stemness marker CD44, and its expression was 
significantly reduced under hypoxic culture conditions in 
Hep3B and Huh7 cells.

Growing evidence suggests that the TME plays an 
unparalleled role in the initiation and progression of 
HCC, as do hypoxia and tumor stemness. A variety of 
cell types, including cancer cells, immune cells, stromal 
cells, endothelial cells, complex cytokine secretion, and 
fibroblasts, are present within TME and can be involved 
in tumor formation, progression, and migration [47]. 
Macrophages with intra-hypoxic microenvironment tar-
geting are widely distributed in high-risk score samples 
and play an important role in hypoxia-mediated immune 
evasion. When the results of the four algorithms TIMER, 
CIBERSORT, XCELL, and MCPcounter were considered 
together, macrophages were the differential immune cells 
between the high- and low-risk subgroups, suggesting 
that the stemness-hypoxia-related signature may pro-
mote poor prognosis of HCC by modulating macrophage 
infiltration. Meanwhile, regulatory T cells and neutro-
phils in high-scoring samples can form extracellular traps 
to jointly promote the transformation of non-alcoholic 
steatohepatitis to HCC [48]. In addition, we also observed 
a higher mutation rate of the TP53 gene in samples 
with high-risk scores, which is consistent with previous 
reports that TP53 mutation is a genomic consequence 
of tumor hypoxia [49]. Complex mechanisms of inter-
action between immune cells and effector molecules in 
TME can promote or inhibit the growth of HCC by alter-
ing the immune system. A variety of approved or pend-
ing systemic therapies targeting typical tumor-associated 
pathways in TME, including vascular endothelial growth 
factor (VEGF)-dependent angiogenesis, adenosine 5′ 
monophosphate-activated protein kinase (AMPK), and 
PI3K/AKT/rapamycin (mTOR) mammalian targets, have 
a limited role in HCC [50]. Given the potent cytotoxic-
ity of T lymphocytes in cancer, TME-targeted therapies 
based on innate T cell immune responses, including ICB 
and chimeric antigen receptor (CAR) T cell therapies, are 
in full swing in current research [51]. CAR-T therapy can 

identify tumor-associated antigen (TAA) and effectively 
eliminate tumor cells through a non-MHC approach, 
showing excellent therapeutic effects in hematological 
malignancies [52]. Excitingly, glypican-3 (GPC-3) can 
act as an anchoring carcinoembryonic proteoglycan on 
tumor cell membranes in combination with CAR-T tech-
nology to provide a new light for immunotherapy of solid 
tumors, especially HCC [53]. GPC3-CAR-T cells have 
been shown to effectively inhibit tumor growth in HCC 
xenograft models [54]. In addition, a variety of immune 
checkpoint inhibitors (ICIs), including PD-1 and CTLA-
4, are highly anticipated in the treatment of HCC [55]. 
In our study, we discovered that patients with lower risk 
ratings had greater levels of the genes PD-L1, CTLA4, 
and PD1 than patients with higher risk scores, indicating 
that these ICIs may be more beneficial for patients with 
higher risk scores. It is undeniable that although ICIs 
can suppress the immune system by blocking the expres-
sion of CTLA-4 or PD-1 and thus produce a very durable 
antitumor response, the immune-related adverse events 
(IRAEs) generated can interfere with the effectiveness of 
immunosuppressive therapy [56]. Therefore, ICIs com-
bined with GPC3-CAR-T therapy may bring unexpected 
results to HCC patients.

The TIDE algorithm could find biomarkers to predict 
the efficacy of ICBs through a comprehensive analysis of 
hundreds of different tumor expression profiles, and its 
prediction effect is significantly better than the existing 
biomarkers. Although the developers of the TIDE algo-
rithm state that it may not apply to other therapies than 
melanoma and non-small cell lung cancer (NSCLC), 
many studies have shown that the application of the 
TIDE algorithm can be extended to other tumors besides 
melanoma and NSCLC, such as HCC [57], breast can-
cer [58], head and neck squamous cell carcinoma [59], 
and other tumors [60]. The TIDE algorithm can well 
help us estimate the immunotherapy response of HCC 
patients [61, 62]. In this study, we found that the TIDE 
scores in the group with higher risk scores were signifi-
cantly greater than those in the group with lower risk 
scores, and the proportion of “respond” in the high-risk 
group was even lower when the predicted response rate 
to immunotherapy was taken into account. In addition, 
considering that CSCs were associated with tumor resist-
ance, and hypoxia promoted CSCs metastasis and aggra-
vates drug resistance, we compared the expression levels 
of various ICBs between the two groups and found that 
patients with lower risk ratings had greater levels of the 
genes PD-L1, CTLA4, CD4, CXCR4, IL6, LAG3, TGFB1, 
PD1, and PD-L2 than patients with higher risk scores. All 
these indicated that these ICBs may be more beneficial 
for patients with lower risk scores and this signature can 
effectively predict immunotherapy response.
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Although there have been several similar papers using 
stemness-hypoxia-related features to predict patient 
prognosis and discuss associations with immunother-
apy, our manuscript still has some highlights. First, for 
the first time in HCC, we combined two phenotypes, 
hypoxia and tumor stemness, for patient prognostic 
analysis. Secondly, we constructed the signature with a 
higher prognostic value. Third, we validated the relation-
ship between the genes in the signature and hypoxia and 
tumor stemness by cytological experiments. Finally, our 
constructed signature was validated in a clinical sample 
cohort and the validation results performed well. Admit-
tedly, our study has some limitations. We need large mul-
ticenter randomized controlled studies to evaluate this 
signature in the future. In addition, the expression and 
prognostic predictive role of these eight genes at the pro-
tein level and their specific mechanisms in HCC need to 
be further evaluated in the future by additional in  vivo 
and in vitro experiments.

Conclusion
In conclusion, we constructed a stemness-hypoxia-
related prognostic signature that can be used to pre-
dict the efficacy of ICIs therapy. We also confirmed that 
C7, CLEC1B, and CXCL6 were indeed associated with 
stemness and hypoxia by constructing hypoxic cell mod-
els. These may provide new ideas for individualized treat-
ment of immunotherapy.
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