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Abstract
Background:  Overall survival of advanced colorectal cancer (CRC) patients remains poor, and gene expression 
analysis could potentially complement detection of clinically relevant mutations to personalize CRC treatments.

Methods:  We performed RNA sequencing of formalin-fixed, paraffin-embedded (FFPE) cancer tissue samples of 23 
CRC patients and interpreted the data obtained using bioinformatic method Oncobox for expression-based rating of 
targeted therapeutics. Oncobox ranks cancer drugs according to the efficiency score calculated using target genes 
expression and molecular pathway activation data. The patients had primary and metastatic CRC with metastases in 
liver, peritoneum, brain, adrenal gland, lymph nodes and ovary. Two patients had mutations in NRAS, seven others 
had mutated KRAS gene. Patients were treated by aflibercept, bevacizumab, bortezomib, cabozantinib, cetuximab, 
crizotinib, denosumab, panitumumab and regorafenib as monotherapy or in combination with chemotherapy, and 
information on the success of totally 39 lines of therapy was collected.

Results:  Oncobox drug efficiency score was effective biomarker that could predict treatment outcomes in the 
experimental cohort (AUC 0.77 for all lines of therapy and 0.91 for the first line after tumor sampling). Separately for 
bevacizumab, it was effective in the experimental cohort (AUC 0.87) and in 3 independent literature CRC datasets, 
n = 107 (AUC 0.84–0.94). It also predicted progression-free survival in univariate (Hazard ratio 0.14) and multivariate 
(Hazard ratio 0.066) analyses. Difference in AUC scores evidences importance of using recent biosamples for the 
prediction quality.

Conclusion:  Our results suggest that RNA sequencing analysis of tumor FFPE materials may be helpful for 
personalizing prescriptions of targeted therapeutics in CRC.
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Background
Colorectal cancer (CRC) is globally the fourth most com-
mon cancer with approximately 1.8  million new cases 
diagnosed in 2018 [1]. CRC overall survival was increas-
ing slowly during two last decades [2] and remains now 
at the level of ~ 3–5 years [3, 4] with the major factors 
being patient age [5] and tumor stage [6]. Several tar-
geted cancer drugs with different molecular specificities 
were approved for the treatment of CRC, such as beva-
cizumab [7], aflibercept [8], regorafenib [9], cetuximab 
[10], and panitumumab [11]. New potential therapeutic 
molecules that act as the inhibitors of MEK, MET, RAS, 
RAF and PD-1/PDL-1 proteins are currently undergoing 
clinical trials in CRC (reviewed in [12]). Current chemo-
therapeutic drug prescription in CRC is generally based 
on the results of clinical imaging (computer tomography, 
magnetic resonance, positron emission tomography) and 
on histopathological analysis [13].

However, molecular guidance for treatment of meta-
static disease was also informative and successful in 
several CRC subtypes. For example, activating muta-
tions in KRAS, NRAS and BRAF genes are used as nega-
tive predictors for EGFR-targeted therapies [14], and 
microsatellite instability is regarded as an indication for 
immunotherapy and platinum drugs prescription [15]. In 
turn, in BRAF mutant cases combined targeting of BRAF, 
EGFR, and MEK by the specific therapeutics can be 
effective [16]. HER2-specific monoclonal antibodies and 
low-molecular mass tyrosine kinase inhibitors are the 
option to treat patients with HER2-amplified and wild-
type KRAS/NRAS tumors [17, 18]. Taken together, the 
abovementioned genetic alterations cover approximately 
50–60% of all CRC cases, leaving aside the rest 40–50% 
of patients [19–23]. Thus, more molecular biomarkers 
are needed for guiding CRC treatment, especially for the 
cases when the current diagnostic mutations can’t iden-
tify therapeutics or when patients don’t respond on the 
standardly recommended medicines/lines of treatment.

Gene expression profiles of tumor tissues can be con-
sidered as promising emerging biomarkers for cancer 
molecular diagnostics and personalized prescription of 
targeted drugs [24]. Both single gene expression profiles 
[25], differential gene sets/diagnostic signatures [26], and 
molecular pathway activation levels [27] may be useful 
to predict treatment outcomes for the individual tumors 
with regard to any associated cancer drug or treatment 
regimen. RNA sequencing is currently recognized as 
the method of choice for high throughput assessment of 
gene expression [28]. Further comparison of cancer gene 
expression levels with the normal tissues is important for 

delineating specific mechanisms of cancer onset, pro-
gression and responsiveness to clinical interventions [29, 
30].

However, RNA sequencing profiles can be obtained 
using different equipment, reagents and protocols and 
sometimes can be poorly compatible thus making their 
direct comparison problematic [31, 32]. In order to 
obtain comparable results, ideally the same experimen-
tal platform should be used for all biosamples in a given 
study [32]. We recently published a collection of RNA 
sequencing profiles of human healthy tissues called Atlas 
of Normal Tissue Expression (ANTE) [33]. It contains 
159 tissue samples of human healthy donors and pro-
vides relevant reference groups for twenty human organs 
including colon.

Finding appropriate normal expression profiles is cru-
cial for the molecular pathway activity analysis and for 
modeling tumor-specific drug efficacy. For example, a 
bioinformatic method Oncobox calculates “balanced 
efficiency score” (BES) for cancer therapeutics based on 
a parallel analysis of drug target gene expressions and 
target molecular pathway activation levels in each indi-
vidual tumor [34–37]. As the output, it returns person-
alized rating of targeted drugs [38]. This approach was 
demonstrated to be effective in an ongoing prospective 
clinical investigation [39] and also for prescription of 
experimental therapies in advanced cholangiocarcinoma, 
lung cancer, granulosa cell ovarian cancer, and gastric 
cancer cases [35, 40–42]. As investigated on a retrospec-
tive cohort of gastric cancer patients, it allowed robust 
prediction of the efficacy of ramucirumab, a vascular 
endothelial growth factor (VEGF) receptor-specific ther-
apeutic monoclonal antibody [43]. However, the Onco-
box method performance so far hasn’t been tested for 
predicting targeted drug efficiencies in the CRC patient 
cohorts.

In this paper, we report original clinically annotated 
RNA sequencing profiles for 23 CRC tumors for which 
we used Oncobox platform to predict individual treat-
ment outcomes based on RNA sequencing data and com-
pared these predictions with the real tumor response 
records.

Materials and methods
Tissue samples
All experimental biosamples were formalin fixed, paraf-
fin embedded (FFPE) tumor tissue blocks. Prior further 
analyses, all biosamples were evaluated by a pathologist 
to confirm the tumor tissue origin and only the speci-
mens with the content of tumor cells greater than 50% 
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were further investigated. Samples were obtained from 
various medical institutions of Russia and Lithuania 
(Supplementary file S1). The patients were 5 men and 
18 women (range 37–72 years). 13 patients had sigmoid 
colon cancer, 1 – cecum cancer, 1 – rectal cancer, 8 – 
colon cancer (nos). The samples were clinically annotated 
with the information about the patient’s diagnosis and 
clinical history. For all the biosamples, informed written 
consents to participate in this study (including publica-
tion of anonymized clinical, transcriptomic, and genetic 
data) were collected from the patients or their legal rep-
resentatives. The consent procedure and the design of 
the study were approved by the ethical committee of 
Vitamed Clinic, Moscow, protocol date 16.10.17. Tumor 
responses to each line of therapy were characterized 
according to RECIST criteria for CRC [44]. For those 39 
lines of therapy, the following treatment outcomes were 
collected. Control over disease was registered for 12 cases 
(8 stable disease and 4 partial response outcomes), and 27 
therapies resulted in progression of the disease.

For the above 39 lines collected, targeted drugs were 
used alone or in combination with other chemotherapeu-
tic schemes. The following targeted drugs were admin-
istered during these treatments: bevacizumab (n = 23), 
cetuximab (n = 3), panitumumab (n = 2), regorafenib 
(n = 3), crizotinib (n = 2), cabozantinib (n = 2), denosumab 
(n = 1), bortezomib (n = 1), and aflibercept (n = 2) (Table 
S1).

Preparation of libraries and RNA sequencing
To isolate RNA, 10 µM - thick paraffin slices were 
trimmed from each FFPE tissue block using microtome. 
RNA was extracted from FFPE slices using QIAGEN 
RNeasy FFPE Kit following the manufacturer’s protocol. 
RNA 6000 Nano or Qubit RNA Assay kits were used to 
measure RNA concentration. RNA Integrity Number 
(RIN) was measured using Agilent 2100 bio-Analyzer. 
For depletion of ribosomal RNA and library construction, 
KAPA RNA Hyper with rRNA erase kit (HMR only) was 
used. Different adaptors were used for multiplexing sam-
ples in one sequencing run. Library concentrations and 
quality were measured using Qubit ds DNA HS Assay kit 
(Life Technologies) and Agilent Tapestation (Agilent). 
RNA sequencing was done at Department of Pathol-
ogy and Laboratory Medicine, University of California 
Los Angeles, using Illumina HiSeq 3000 equipment for 
single-end sequencing, 50  bp read length, for approxi-
mately 30 million (mln) raw reads per sample). Data qual-
ity check was done on Illumina SAV. De-multiplexing 
was performed with Illumina Bcl2fastq2 v 2.17 program. 
Sequencing data were deposited in NCBI Sequencing 
Read Archive (SRA) under accession ID PRJNA663280.

Processing of RNA sequencing data
RNA sequencing FASTQ files were processed with STAR 
aligner [45] in “GeneCounts” mode with the Ensembl 
human transcriptome annotation (Build version GRCh38 
and transcript annotation GRCh38.89). Ensembl gene 
IDs were converted to HGNC gene symbols using Com-
plete HGNC dataset (https://www.genenames.org/, data-
base version from 2017 to 13). Totally, expression levels 
were established for 36 596 annotated genes with the 
corresponding HGNC identifiers. Statistics concerning 
mapping quality and reads number is stored in Supple-
mentary file S2.

Publicly available gene expression datasets
The following publicly available gene expression CRC 
datasets were used: TCGA, GSE19862, GSE19860, 
GSE104645, Syn2623706. TCGA cohort contains 17 
patients treated with the first-line targeted drugs (beva-
cizumab, cetuximab, panitumumab, regorafenib). 10 
patients demonstrated progressive disease, 1 – sta-
ble disease, 4 – partial response, and 2 – complete 
response. PFS information was available for 117 patients. 
GSE19860 dataset contains expression data for 12 tumor 
samples from patients with metastatic or recurrent CRC 
who were treated with bevacizumab in combination with 
chemotherapy (five treatment responders and seven 
non-responders). GSE19862 dataset contains expression 
profiles for seven responders and seven non-responders 
to bevacizumab therapy. All patients had metastatic or 
recurrent CRC and received bevacizumab therapy as the 
first- or second-line treatment. GSE104645 dataset has 
193 gene expression profiles of patients with metastatic 
CRC, 183 of them were “pre-treatment” samples. The 
first-line bevacizumab treatment outcome is available 
for 81 patients (75 responders, 6 non-responders). Also, 
80 patients with wild type status of KRAS gene (KRASwt) 
were annotated by response to “second-line” cetuximab 
(54 responders, 26 non-responders). PFS data were avail-
able for 85 patients, who received bevacizumab, and for 
83 patients who received cetuximab. We also used 768 
gene expression profiles from Syn2623706 dataset anno-
tated with PFS data.

Molecular pathway analysis
Pathway activation levels were established using Onco-
box analytic software [34] for 1682 molecular pathways 
extracted from the extracted from the public databases 
Reactome [46], NCI Pathway Interaction Database 
[47], Kyoto Encyclopedia of Genes and Genomes [48], 
HumanCyc [49], Biocarta [50] and Qiagen Pathway 
Central (available at https://www.qiagen.com/us/shop/
genes-and-pathways/pathway-central/). The molecular 
pathways were visualized using Oncobox pathway visual-
ization/reconstruction tool [34, 36].

https://www.genenames.org/
https://www.qiagen.com/us/shop/genes-and-pathways/pathway-central/
https://www.qiagen.com/us/shop/genes-and-pathways/pathway-central/
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The pathway activation level (PAL) scores were calcu-
lated according to Oncobox method [37]. Tumor gene 
expression profiles were normalized on the geometric 
mean tissue expression profile of the control groups to 
calculate PAL for each individual sample investigated33. 
PAL scores were calculated as follows

	
PALp =

∑

n

ARRnp ∗ lg (CNRn) /
∑

n

|ARRnp|,

where PALp is PAL for pathway p, CNRn is case-to-nor-
mal ratio, the ratio of gene n expression level in a tumor 
sample under study to an average level for the control 
group; ARR (activator/repressor role) is Boolean flag 
that depends on function of gene n product in pathway 
p. ARR is − 1 if gene product n inhibits pathway p; 1 if n 
activates pathway; 0 if n has ambiguous or unclear role in 
a pathway; 0.5 or − 0.5, if n is rather activator of a path-
way or its inhibitor, respectively.

The random permutation test
To test whether a given number of common differential 
genes or pathways between the three intersecting data-
sets is significant, 10 000 random intersections were 
performed. In every case, three random samples from 
three corresponding gene/pathway sets of the respective 
datasets were taken. Then these random samples were 
intersected for each iteration and 10 000 random sets of 
common genes/pathways were obtained. P-value of inter-
section significance was calculated as a fraction of ran-
dom sets with equal or higher number of common genes/
pathways than in the experimental observations.

Ranking targeted drugs and survival analysis
Ranking of target cancer drugs using Balanced Efficiency 
Scores (BES) was performed as described previously [27, 
38, 40]. The Oncobox software returned personalized 
list of target drugs in descent order of predicted efficacy. 
The observed clinical responses were used for validation 
of Oncobox predictions using ROC AUC analysis. ROC 
AUC was calculated using R ROCR package. Patient sur-
vival analysis and plotting were performed using R pack-
ages survival, survminer and ggplot2. P-value threshold 
was set to 0.05.

Results
Clinical data
We enrolled twenty three retrospective patients with 
diagnosed primary or metastatic CRC who received at 
least one line of therapy with targeted cancer drugs, and 
to whom clinical response data were available. There were 
eighteen female and five male 37–72 years old patients 
enrolled (mean age 46 y.o.). Among them eighteen had 
distant metastases at the time of the enrollment (Table 1; 

Supplementary file S1). In total, results of 39 different 
lines of therapy were collected, on the average 2 lines per 
each patient enrolled (Supplementary file S1). With rela-
tion to the date of obtaining tumor biopsy, among them 
23 represented first line of chemotherapy.

RNA sequencing results
The CRC tissue specimens were the formalin fixed par-
affin embedded (FFPE) tissue blocks stored in clinical 
diagnostic laboratory for 4–49 months before extrac-
tion of RNA. RNA sequencing resulted in fourteen 
sets of 29–41  million sequencing reads, on the aver-
age ~ 35  million reads per library. Among them, there 
were ~ 6–15  million reads uniquely mapped on known 
human Ensembl genes, on the average ~ 10 million gene-
mapped reads per library. All the CRC gene expression 
profiles obtained here met the quality control criterion 
for the RNA sequencing protocol used of returning at 
least 2.5  million uniquely gene-mapped reads per suc-
cessful library [33].

To assess data reproducibility, we added a technical 
control of one CRC sample (CC-9 sample) that was RNA-
sequenced in four replicates using independent RNA 
extraction and library preparation procedures.

The gene expression profiles were then analyzed to 
assess if the profiles obtained are congruent with the bio-
logical nature of the biosamples under study. To this end 
we used principal component analysis (PCA) plot and 
hierarchical clustering dendrogram to visualize distri-
butions of the experimental CRC profiles obtained here 
with the profiles of healthy human colon and liver tissues 
from ANTE database previously obtained with the same 
equipment and protocol [33], Fig. S1. We observed espe-
cially tight clustering for the CC-9 replicates with mean 
Spearman’s correlation coefficient 0.965 (Fig. S1B). The 
experimental CRC samples formed clear-cut clusters that 
were most closely located with the normal colon profiles, 
whereas the liver samples formed outgroup clusters (Fig. 
S1A, C). These results suggest that the experimental RNA 
sequencing profiles obtained were technically reproduc-
ible and reflected biological properties of the respective 
biosamples (Fig. S1). We also calculated BES for each of 
these four replicates to assess their reproducibility for all 
targeted drugs. Mean Spearman correlation coefficient 
was 0.926 for comparison of BES among the replicates, 
standard deviation values are shown in Supplementary 
table S2.

Genes and molecular pathways linked with CRC treatment 
prognosis
We performed a search for novel gene expression based 
prognostic biomarkers. First, we analyzed differential 
gene expression in order to identify individual genes cor-
related with poor prognosis in colorectal cancer patients. 
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We analyzed separately three datasets: the experimental 
dataset and two external datasets for validation: colorec-
tal TCGA [51] and Syn2623706 [52]. Patients in the 
experimental cohort had lower PFS time, when compared 
to TCGA and Syn2623706. The latter may be due to 
increased proportion of the advanced cancers: the exper-
imental cohort had 69% stage IV patients, in contrast 
to only 14.3% and 3.8% in the TCGA and Syn2623706 
cohorts, respectively. For each patient we took progres-
sion-free survival (PFS) time in months and performed 
Cox proportional hazards survival analysis [53]. For each 
gene we separated patients in two cohorts: patients with 
DESeq2 normalized gene expression higher than median 
in all patients and patients with gene expression lower 
than median, and compared PFS time between these 
two groups in Cox model. For each gene we calculated 
log-rank p-value and Hazard Ratio that indicates rela-
tive impact of gene in overall risk of recurrency [54]. We 
extracted 1787, 1352 and 2770 differentially expressed 
genes for experimental, TCGA and Syn2623706 datasets, 
respectively (Supplementary table S3). However, these 
gene lists showed random intersection pattern (p = 0.38).

To further investigate molecular processes linked with 
the CRC prognosis, we then performed molecular path-
way activation analysis using the Oncobox software [55].

In all three datasets (experimental, TCGA, and 
Syn2623706), we performed Cox survival analysis for 
each molecular pathway in the same way as for the indi-
vidual gene products. Patients were stratified into two 
groups according to PAL value (less and higher than 
median PAL). We obtained log-rank test p-value < 0.05 for 
83 pathways in the experimental dataset, 110 pathways 
in TCGA dataset, and 687 pathways in the Syn2623706 
dataset. Five pathways were common for all three data-
sets (p = 0.0311 according to random permutation test, 
see Methods for details, Tables 2, Supplementary file S4). 
KEGG Bladder cancer pathway, EGG cGMP PKG signal-
ing pathway, NCI E cadherin signaling in keratinocytes 
pathway, and KEGG Aldosterone regulated sodium reab-
sorption pathway were associated with unfavorable prog-
nosis, whereas NCI Signaling events mediated by HDAC 
Class II Pathway was linked with longer PFS. Tumor 
stage may have an impact on PFS, therefore we also per-
formed multivariate Cox analysis, which included stage 

as a variable. All the above pathways remained significant 
also in the multivariate analysis, except for KEGG Aldo-
sterone regulated sodium reabsorption pathway (Supple-
mentary table S4)”.

We separately analyzed top 10 pathways associated 
with poor and favorable prognosis in the experimental 
dataset. For that we calculated the difference between 
mean PAL in patients with poor prognosis and mean 
PAL in patients with favorable prognosis (Supplemen-
tary table S4). The pathways with the highest/lowest PAL 
difference are shown on Fig. 1. The most strongly down-
regulated pathways in experimental patients with favor-
able prognosis were “reactome SHC1 events in ERBB2 
signaling Main Pathway”, “reactome CREB phosphoryla-
tion through the activation of Ras Main Pathway”, “NCI 
Signaling events regulated by Ret tyrosine kinase Main 
Pathway”, “NCI IL5 mediated signaling events Main Path-
way”, “reactome Regulation of KIT signaling Main Path-
way”, “reactome Interleukin 7 signaling Main Pathway”, 
“KEGG Bladder cancer Main Pathway”, “cAMP Pathway 
Chemotaxis”, “NCI Endothelins Pathway (cAMP biosyn-
thetic process)”, “reactome Interferon gamma signaling 
Main Pathway”. KEGG Bladder cancer pathway was asso-
ciated with poor prognosis in two datasets (experimental 
and TCGA), but was associated with favorable prognosis 
in the Syn2623706 dataset. However, Syn2623706 dataset 
contains data for only 5793 genes, and only two of them 
are connected to KEGG Bladder cancer pathway, thus 
the corresponding PAL values for Syn2623706 could be 
irrelevant. Kaplan-Meier plots for KEGG Bladder cancer 
Main Pathway are shown on Fig. 2.

The most strongly upregulated pathways in experi-
mental patients with favorable prognosis were “reactome 
p130Cas linkage to MAPK signaling for integrins Main 
Pathway”, “NCI Beta2 integrin cell surface interactions 
Main Pathway”, “reactome Integrin alphaIIb beta3 sig-
naling Main Pathway”, “biocarta multi step regulation of 
transcription by pitx2 Main Pathway”, “KEGG Comple-
ment and coagulation cascades Main Pathway”, “biocarta 
wnt signaling Main Pathway”, “NCI Beta3 integrin cell 
surface interactions Main Pathway”, “NCI p73 transcrip-
tion factor network Pathway apoptosis and DNA repair”, 
“NCI Signaling events mediated by HDAC Class II Main 
Pathway”, “KEGG FoxO signaling Main Pathway”. NCI 

Table 2  P-values of log-rank test and Hazard ratio for pathways, which were associated with PFS in three datasets investigated 
(experimental, TCGA, and Syn2623706)
Dataset experimental TCGA Syn2623706 experimental TCGA Syn2623706
Pathway Hazard ratio p-value of log-rank test
KEGG Bladder cancer Pathway 6.21 1.47 0.72 1.84E-02 4.80E-02 1.84E-02

NCI Signaling events mediated by HDAC Class II Pathway 0.16 0.63 0.56 6.11E-05 1.68E-02 6.11E-05

KEGG cGMP PKG signaling Pathway 6.21 1.46 1.56 1.54E-03 4.30E-02 1.54E-03

NCI E cadherin signaling in keratinocytes Pathway 6.21 1.71 1.56 1.64E-03 5.92E-03 1.64E-03

KEGG Aldosterone regulated sodium reabsorption Pathway 5.38 1.50 1.54 2.52E-03 3.11E-02 2.52E-03
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p73 transcription factor network Pathway apoptosis and 
DNA repair was the pathway with the highest PAL differ-
ence between patients with poor and favorable prognosis 
in the experimental dataset, which was also significant 
in TCGA dataset (Figs.  1 and 2). The same trend was 
observed also in the Syn2623706 dataset; however, this 
difference did not reach statistical significance (p = 0.098).

The pathway activation schemes for NCI p73 tran-
scription factor network Pathway apoptosis and DNA 

repair, KEGG Bladder cancer Pathway were visualized 
and shown on Fig. 3. The KEGG bladder cancer pathway 
activation in poor prognosis CRCs was mostly due to 
increased expression of functional nodes HRAS/KRAS/
NRAS, ARAF/BRAF/RAF1, MAPK1/MAPK3, and 
RPS6KA5 (Fig.  3  A-C). Interestingly, this pathway that 
was upregulated in poor-prognosis cancers lacks known 
molecular targets for drugs investigated in this study 
(Table 3).

Fig. 1  Top 10 upregulated and inhibited pathways sorted by PAL values for comparison between poor and favorable prognosis CRC samples. Pathways 
upregulated in favorable prognosis group are shown on the top, pathways upregulated in poor prognosis group shown on the bottom. Pathways vali-
dated using TCGA dataset are shown in italic
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Fig. 2  Kaplan-Meier plots and risk tables for the validated pathways. (a) – experimental samples, KEGG Bladder cancer Main Pathway. (b) - experimental 
samples, NCI p73 transcription factor network Pathway apoptosis and DNA repair. (c) – TCGA samples, KEGG Bladder cancer Main Pathway. (d) – TCGA sam-
ples, NCI p73 transcription factor network Pathway apoptosis and DNA repair.(e) – Syn2623706 samples, KEGG Bladder cancer Main Pathway. (e) – Syn2623706 
samples, NCI p73 transcription factor network Pathway apoptosis and DNA repair
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Fig. 3  Activation schemes of KEGG Bladder cancer Main Pathway (a-c) and NCI p73 transcription factor network Pathway apoptosis and DNA repair (d-f) in 
experimental (ad), TCGA (be) and Syn2623706 (cf.) CRC samples. Color indicates log10-transformed ratio of mean gene expression values in patients 
with poor prognosis normalized on gene expression in patients with favorable prognosis. Bold margins indicate most strongly up/downregulated nodes. 
Patients were divided into poor and favorable prognosis groups by median survival for experimental and TCGA datasets. Because median survival was 
undefined for Syn2623706 dataset, poor and favorable prognosis was determined relatively median of survival time for non-censored patients
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The NCI p73 transcription factor network Pathway 
apoptosis and DNA repair pathway was, in contrast, 
enhanced in favorable prognosis patients in three data-
sets, but showed borderline significance for Syn2623706 
(Fig. 2). On its pathway activation scheme, we observed 
that this pathway was activated in favorable prognosis 
group mostly due to increased expression of nodes TP73, 
BUB1/BUB3, BRCA2/PALB2, MCM8, CIDEA, WWOX, 
EP300, PLK3, CDK5 and PRKCQ (Fig. 3DE). In turn, this 
pathway contains VEGF - molecular target of bevaci-
zumab, one of most common CRC drugs (Table 3), which 
was not among the top activated nodes in favorable 
prognosis CRCs still was upregulated in them in three 
datasets (Fig.  3D-F). This favorable prognosis associa-
tion in the experimental dataset is in line with the clini-
cal records that 15 experimental CRC patients received 
bevacizumab during the first line of treatment.

Validation of algorithmic prediction of drug response for 
CRC patients
Oncobox platform is unique in its possibility of algorith-
mic individual prioritizing of targeted cancer drugs using 
high-throughput gene expression data and pathway acti-
vation profiles [24, 27, 38]. The therapeutics are ranked 
according to their simulated abilities to inhibit aberrantly 
regulated molecular pathways and drug target genes 
[38]. We used this platform to build personalized rating 
of targeted drugs for each individual CRC sample under 
investigation. To this end, the RNA sequencing profiles 
obtained for the experimental CRC samples were indi-
vidually compared with the set of six healthy colon tissue 
profiles from the ANTE collection [33]. We chose this 
type of normalization instead of other collections avail-
able from TCGA [51] and GTEX [73] project databases 
because of identical equipment and sequencing pro-
tocols. This was also reflected by closer PCA clustering 
pattern of experimental CRC profiles and ANTE norms 
compared to TCGA and GTEX norms (Supplementary 
Figure S1A).

By comparing tumor versus normal samples, the out-
put modeled drug efficiency value termed balanced 
efficiency score (BES) was calculated for 159 targeted 
therapeutics present in the Oncobox database [74]. 
This allowed to individually rank the drugs according 
to their BES values. The higher BES suggests higher 
predicted efficacy of a targeted drug for an individual 
tumor; overall, positive values suggest potential useful-
ness of a drug to the patient, whereas zero or negative 
values predict lack of benefit for the patient treatment 
[40]. Thus, rank of BES score for a given drug among 
other drugs investigated in an individual patient can 
serve as a measure of predicted efficacy for this drug 
compared to the others [40]. Distributions of BES for 
drugs investigated here and of their ranks are shown 
for all lines of therapy (Fig. 4AB) and separately for the 
first line of therapy (Fig. 4CD).

Both standardly approved and off-label drugs used as 
the experimental therapy were present in our experi-
mental group (Table 2, Supplementary Table S1). Only 
standardly approved drugs were included in the first 
line treatments, whereas off-label drugs were pre-
scribed in the further lines. Interestingly, off-label 
therapeutics formed a small group of treatments with 
relatively high BES values and ranks (Fig. 4AB).

We then visualized BES values and ranks distributions 
in relation to the patient response status for all lines of 
therapy (Fig. 4EF) and separately for the first line of ther-
apy (Fig.  4GH). In both cases drugs prescribed for the 
responders had relatively higher BES scores (Fig.  4EG, 
respectively) and ranks (Fig. 4FH, respectively).

We then statistically compared ranks of Oncobox 
BES values with the registered clinical outcomes in the 

Table 3  Characteristic of targeted drugs investigated in the 
experimental group
Drug generic 
name

Molecular 
target(s)

Refer-
ence for 
molecular 
target

Drug use in 
CRC

Refer-
ence for 
drug 
use

Bevacizumab VEGF [56] Approved 
for advanced 
CRC

[7]

Aflibercept VEGFA, 
VEGFB, PGF

[57] Approved for 
CRC

[58]

Bortezomib PSMB5, 
PSMB1

[59] Off-label for 
CRC

[60]

Cabozantinib MET, KDR [61] Off-label for 
CRC

[62]

Cetuximab EGFR [63] [64] Approved for 
metastatic 
CRC

[65]

Crizotinib ALK, MET [66] Off-label for 
CRC

[67]

Panitumumab EGFR [68] Approved for 
metastatic 
CRC

[69]

Regorafenib RET, VEGFR1, 
VEGFR2, 
VEGFR3, KIT, 
PDGFR-al-
pha, PDGFR-
beta, FGFR1, 
FGFR2, TIE2, 
DDR2, TrkA, 
Eph2A, 
RAF-1, BRAF, 
SAPK2, PTK5, 
and Abl

[70] Approved for 
metastatic 
CRC

[9]

Denosumab TNFSF11 [71] Off-label for 
CRC

[72]
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Fig. 4  Distribution of BES values and ranks in experimental cohort for all lines of therapy (ae, n = 30; bf, n = 30) and for first lines of therapy (cg, n = 12; dh, 
n = 12). Drug ranks were BES ranks among all drugs in a given patient. Color in a-d denotes drugs approved for CRC and experimental therapeutics. Color 
in a-d denotes drugs approved for CRC and experimental therapeutics. Color in e-h denotes treatment response. Responders group included patients 
with partial response and stable disease, non-responders group included progressive disease patients

 



Page 12 of 19Sorokin et al. BMC Cancer         (2022) 22:1113 

experimental patient cohort (Supplementary Table S1). 
To this end we used the area under the ROC curve (ROC 
AUC) metric that is broadly applicable for assessing bio-
marker quality in oncology [75–80]. The AUC value is the 
overall characteristic of biomarker robustness that posi-
tively correlates with the quality of a biomarker and var-
ies depending on its sensitivity and specificity in a range 
between 0.5 and 1 [81]. The standard biomarker quality 
threshold is 0.7 and greater AUC values indicate good-
quality biomarkers, and vice versa [82].

For the available 39 lines of therapy in the experimental 
cohort (Supplementary Table S1) we compared Oncobox 
drug ranks versus treatment outcome records (classified 
as either control over disease (positive outcome) or pro-
gressive disease (negative outcome) (Fig. 4E-H). We found 
that the Oncobox BES rank as the biomarker could effec-
tively predict CRC response on treatment by targeted 
therapeutics with AUC = 0.77 (Supplementary Figure 
S2A). For the first-line only targeted therapy data, there 
were positive outcomes for 9 patients (6 stable disease, 
3 partial responses), and the negative outcomes for 12 
patients (progressive disease). AUC-based performance 
of Oncobox drug score ranks in this case was higher than 
for the analysis of all available outcomes (AUC = 0.91; 
Supplementary figure S2B). We additionally tested BES 
predictive capacity in bevacizumab-only subset of the 
experimental data. BES predicted bevacizumab response 
with AUC 0.82 in the first-line therapy group (9 respond-
ers, 6 non-responders), and AUC 0.64 in non-first-line 
therapy group (1 responder, 7 non-responders). This 
suggests that using biopsy specimens obtained recently 
before RNA sequencing and BES analysis can result in 
more informative reports compared to using older bio-
samples where further lines of therapy were ongoing, 
because every additional therapy can reshape tumor gene 
expression profile. Indeed, BES AUC was only 0.64 for 
combined non-first line treatments.

We then investigated in the same way performance 
of the Oncobox drug ranking algorithm for the previ-
ously published literature datasets of CRC expression 
profiles annotated with the targeted drug treatment 
outcomes. We identified clinical response-annotated 
datasets GSE19860 and GSE19862 with Affymetrix 
Human Genome U133 Plus 2.0 microarray gene expres-
sion profiles for 12 and 14 CRC patients, respectively, 
who were treated with bevacizumab. Patients from data-
set GSE19860 were treated by the combination therapy 
of bevacizumab plus mFOLFOX6, whereas patients from 
dataset GSE19862 received bevacizumab therapy.

We calculated bevacizumab BES based on normal-
ized gene signal intensity values [83] and observed its 
high performance in predicting drug response for those 
datasets as well (AUC 0.94 and 0.90 for GSE19860 and 
GSE19862, respectively; Fig. 5AB).

We further validated BES predictive capacity on pub-
licly available gene expression dataset GSE104645. We 
found that BES value was an effective response predic-
tor for bevacizumab (AUC = 0.84) and was strongly asso-
ciated with PFS (HR = 0.53, CI 0.33–0.84, log rank test 
p-value 0.0057, Fig.  5CE). BES rank for bevacizumab 
showed the same trend (AUC = 0.73) and was strongly 
associated with PFS (HR = 2.06, CI 1.29–3.29, log rank 
test p-value 0.0019, Fig.  5DF). However, BES was inef-
fective for predicting results of second-line treatment 
with cetuximab (p-value ~ 0.48, data not shown), and in 
this case showed no association with PFS (p-value ~ 0.89, 
data not shown), which agrees with our previous results 
on lower efficacy for non-first line treatments predictions 
(Supplementary Figure S2).

Alternatively, this can be the result of a lower predictive 
capacity of BES towards EGFR-targeted monoclonal anti-
bodies, in contrast to bevacizumab.

We then investigated performance of Oncobox drug 
ranking for another relevant clinically annotated gene 
expression dataset extracted from the TCGA project 
database. We found that the Oncobox BES rank in the 
same settings as for the previous patient cohorts pre-
dicted treatment response with AUC = 0.74 (Supplemen-
tary Figure S3).

Comparison of algorithmic drug ranking and experimental 
progression-free survival data
We then assessed the ability of Oncobox drug score 
ranks to predict progression-free survival (PFS) of CRC 
patients following treatment with the respective tar-
geted drugs. Second and further treatment lines were 
prescribed to the same patients as the first line, there-
fore we included only first-line treatment outcomes into 
this analysis. Median PFS for the first line therapy data 
was 5 months in the entire experimental cohort. For the 
PFS analysis we stratified patients with the available “first 
line” targeted therapy outcomes in two groups: (i) those 
who received drug with BES > 0 (predicted as effective), 
or (ii) with BES ≤ 0 (predicted as ineffective), summa-
rized on Table 1. The threshold for BES was established 
in the previous studies [74, 84]. Univariate survival anal-
ysis showed the significant difference in PFS between 
those two cohorts: patients who received in the first line 
drugs with BES > 0 demonstrated higher PFS (Hazard 
ratio = 0.14, log-rank p = 0.00038), Fig. 6 A.

We then compared the significance of drug score 
ranks for PFS with the possible impact of patient age, 
sex, cancer stage and presence of RAS family gene 
mutation using Cox proportional hazards multivari-
ate analysis (Fig.  6B). This type of analysis also con-
firmed PFS differences between the two cohorts of 
patients with BES > 0 and BES ≤ 0 (p < 0.001). RAS 
family mutation status was insignificant which agrees 
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Fig. 5  BES performance for the literature CRC gene expression profiles. (a) GSE19860 dataset, AUC = 0.94, 5 responders and 7 non-responders.(b) GSE19862 
dataset, AUC = 0.90, 7 responders and 7 non-responders. (c) GSE104645 dataset, AUC = 0.84, 75 responders and 6 non-responders. (d) GSE104645 dataset by 
Drug Rank AUC = 0.73, 75 responders and 6 non-responders. (ef) PFS analysis of GSE104645 cohort stratified by BES value (e) or rank (f)
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Fig. 6  Survival analysis of experimental dataset for association of PFS and drug BES value. (a) – Kaplan-Meier plot based on grouping by BES score (n = 21). 
(b) – results of the Cox proportional hazards multivariate analysis (n = 21 lines). AIC- Akaike Information Criterion. Hazard Ratios (black squares) for the 
features are presented on X-scale (log-transformed), whiskers indicate 95% confidence interval. Right column shows Cox proportional-hazards model 
p-values for Hazard Ratios
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with the previous report [85] that on the background 
of adjuvant chemotherapy (as in this study) RAS fam-
ily mutation is not linked with PFS in CRC. Number 
of previous lines of therapy was not significant in this 
analysis possibly due to low variability of this param-
eter between the patients: 9 patients did not receive 
prior therapy, 6 patients received one line, 3 patients 
– 2 lines, 1 patient – 3 lines and 2 patients – 5 lines 
(Table S1).

Discussion
In this paper we experimentally investigated RNA 
sequencing gene expression profiles for fourteen CRC 
patient FFPE tumor biosamples linked with the data 
on clinical response for 39 lines of therapy containing 
nine different targeted cancer drugs. Molecular data, 
such as gene expression and molecular pathway activa-
tion levels, is a rich source of information for attempt-
ing to personalize cancer drug prescriptions [29, 86, 
87]. By using bioinformatic platform Oncobox [34, 36, 
39] we modeled here the possible outcomes of nine 
targeted drugs based on RNA sequencing data and 
compared the output results with the observed clinical 
response data.

To this end, the Oncobox drug score (BES) ranks 
were compared with the therapy response records. We 
found that the BES ranks could effectively predict tumor 
response for the experimental CRC patients for the sets 
of all available therapeutic lines (AUC = 0.77) and for 
the first lines of therapy after obtaining tumor biopsies 
(AUC = 0.91). This is in line with the previous literature 
on the Oncobox method ability to predict gastric cancer 
outcomes after treatment with ramucirumab, a VEGF 
receptor-specific targeted therapeutic, also for the FFPE-
derived RNA sequencing profiles. In that case AUC was 
0.75 for using ramucirumab as the monotherapy, or 0.7 
for its use in combinations with other non-targeted che-
motherapy drugs [88]. The performance of drug score 
ranks for the first line of therapy was significantly higher 
than for all lines of therapy, thus suggesting that using 
more recent biopsy specimens is highly influential for 
the quality of drug treatment response predictions using 
RNA sequencing data.

Metastatic lesions may have strongly different molecu-
lar features than the primary tumors. Liu et al. analyzed 
matched primary and metastatic CRC samples and did 
not find significant differences in oncogenic mutations 
and copy number variations, however identified gene 
networks associated with CRC metastasis, which may 
have an impact on treatment outcomes [89]. To further 
investigate this issue, we performed an additional analy-
sis and excluded metastatic tumors from our experimen-
tal dataset (three out of twelve samples). In this case, 
we obtained AUC 0.7 for all therapy lines analysis, 0.92 

for the first-line therapy only, and 0.83 for bevacizumab 
as the first-line therapy. These results did not differ sig-
nificantly from the analysis of the entire experimental 
dataset.

Pentheroudakis et al. previously aimed at identification 
of a gene expression signature associated with progres-
sion-free survival after bevacizumab treatment in CRC. 
The authors developed potentially effective two-gene 
signatures, which however were not validated indepen-
dently [90]. We also performed progression free survival 
(PFS) analysis for the experimental patients to assess the 
ability of algorithmic drug score to predict PFS in CRC 
patients. It was found a significant PFS predictor in both 
univariate (Hazard ratio = 0.14, log-rank p = 0.00038) and 
multivariate (Hazard ratio = 0.066, log-rank p < 0.001) 
survival analysis: patients who received drug with BES > 0 
showed higher PFS. However, the current experimental 
sampling was limited, and further clinical investigations 
are needed to provide sufficient line of evidence for intro-
ducing algorithmic RNA-based drug scoring to the clini-
cal routine.

The results obtained are in agreement with the hypoth-
eses (i) that RNA sequencing data can help personalizing 
cancer drug prescriptions, and (ii) that not only the fresh 
or freshly-frozen specimens can be used for the analysis, 
whereas the FFPE-derived materials can be also infor-
mative. The latter is important in terms of feasibility of 
storing tumor biosamples, as FFPE tissue blocks can be 
stored at room temperature for years, still serving as the 
source of RNA of acceptable quality for gene expression 
studies [33]. While RNA is usually degraded in FFPE 
biosamples, RNAseq still can be used to produce gene 
expression profiles that give a highly correlated figure 
with the profiles obtained for the respective fresh tissues 
biosamples, e.g. as shown by Ben-Moshe et al. [89].

The method of algorithmic drug scoring completely 
relies on the gene profiling data; thus, RNA sequencing 
procedure should be standardized for obtaining repro-
ducible results. Another limitation is that due to its ratio-
nale it can only rank cancer drugs with characterized 
molecular specificities (called targeted drugs), whereas 
many useful non-targeted chemotherapeutics remain 
outside the analysis.

When comparing treatment responders versus non-
responders we also found five molecular pathways that 
can be indicative of good or poor CRC treatment out-
come (Supplementary Table S4).

The most strongly activated pathway connected with 
poor prognosis was the KEGG Bladder cancer Main 
Pathway and the most strongly activated pathway linked 
with the favorable prognosis was the NCI p73 tran-
scription factor network Pathway apoptosis and DNA 
repair. The latter was activated in the favorable progno-
sis group and had several upregulated tumor suppressor 
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genes promoting DNA repair and apoptosis [91]: BUB1/
BUB3, BRCA2/PALB2, MCM8, CIDEA, WWOX, EP300, 
PLK3, CDK5 and PRKCQ (Fig.  3). It had upregulated 
VEGF (target of bevacizumab, Table  3) which indicates 
that favorable prognosis is connected with activation of 
molecular signaling that can be targeted by bevacizumab. 
This is also in line with previous study by Kotulak et al., 
where the authors revealed decreased expression of 
p73 in colorectal cancer [92]. Moreover, Uboveja et al. 
showed that p73 plays a critical role in suppression of 
colon cancer metastasis [93], which in turn may be asso-
ciated with prognosis. On the contrary, KEGG Bladder 
cancer Main Pathway, which was activated in the poor 
prognosis group, had no molecular targets of any drug 
explored in this study. Thus, contrast activation features 
of these pathways in CRCs may be important for drug 
response. However, this observation needs to be vali-
dated in further independent research using cohorts with 
a more controlled set of patients with less diverse tumor 
characteristics e.g. focused on particular molecular sub-
type as described previously [97].

Taken together, our results support the hypothesis that 
utilizing targeted therapies in CRC can be improved by 
using RNA sequencing based algorithmic analysis. How-
ever, current study has certain limitations: first, different 
types of colon and rectal cancers were analyzed alto-
gether. Second, nine targeted drugs were prescribed to 
the patients in experimental cohort. In future studies, 
separate analyses for individual drugs and specific cancer 
subtypes should be conducted to evaluate predictive val-
ues of gene expression profiling for prescribing therapy in 
colorectal cancer.

Conclusion
In this study we analyzed experimental and publicly avail-
able gene expression profiles with linked targeted drug 
treatment outcomes. Oncobox bioinformatical platform 
was used to simulate targeted drug efficiencies in indi-
vidual patients. Oncobox demonstrated high predictive 
capacity, especially when freshly obtained biopsies were 
used to predict sensitivity to bevacizumab. Our results 
suggest that gene expression profiling of tumor FFPE 
materials may be helpful for personalizing prescriptions 
of targeted therapeutics in CRC.
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