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Abstract 

Background:  Breast cancer (BC) is one of the most prevalent cancers worldwide but its etiology remains unclear. 
Obesity is recognized as a risk factor for BC, and many obesity-related genes may be involved in its occurrence and 
development. Research assessing the complex genetic mechanisms of BC should not only consider the effect of a 
single gene on the disease, but also focus on the interaction between genes. This study sought to construct a gene 
interaction network to identify potential pathogenic BC genes.

Methods:  The study included 953 BC patients and 963 control individuals. Chi-square analysis was used to assess 
the correlation between demographic characteristics and BC. The joint density-based non-parametric differential 
interaction network analysis and classification (JDINAC) was used to build a BC gene interaction network using single 
nucleotide polymorphisms (SNP). The odds ratio (OR) and 95% confidence interval (95% CI) of hub gene SNPs were 
evaluated using a logistic regression model. To assess reliability, the hub genes were quantified by edgeR program 
using BC RNA-seq data from The Cancer Genome Atlas (TCGA) and identical edges were verified by logistic regression 
using UK Biobank datasets. Go and KEGG enrichment analysis were used to explore the biological functions of interac-
tive genes.

Results:  Body mass index (BMI) and menopause are important risk factors for BC. After adjusting for potential 
confounding factors, the BC gene interaction network was identified using JDINAC. LEP, LEPR, XRCC6, and RETN were 
identified as hub genes and both hub genes and edges were verified. LEPR genetic polymorphisms (rs1137101 and 
rs4655555) were also significantly associated with BC. Enrichment analysis showed that the identified genes were 
mainly involved in energy regulation and fat-related signaling pathways.

Conclusion:  We explored the interaction network of genes derived from SNP data in BC progression. Gene interac-
tion networks provide new insight into the underlying mechanisms of BC.
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Background
The World Health Organization (WHO)’s International 
Agency for Research on Cancer (IARC) showed that the 
most predominant change in global cancer data in 2020 
was a rapid increase in breast cancer (BC) incidence. 
BC has replaced lung cancer as the most common can-
cer worldwide [1]. The mortality rate of female BC is 
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particularly high in transitional versus developed coun-
tries [2]. Obesity is a recognized risk factor for many 
cancers [3, 4]. Higher estrogen levels resulting from the 
aromatization of adipose tissue, increased production of 
inflammatory cytokines such as tumor necrosis factor α, 
interleukin-6, and prostaglandin E2, insulin resistance, 
and over activation of insulin-like growth factor signal-
ing, adipokine production, and oxidative stress in obese 
women are associated with the development of cancer 
[5]. Structural variants of genes associated with BC and 
obesity, including LEP, LEPR, PON1, FTO, and MC4R, 
are associated with a higher or lower risk of BC [5].

Genome-wide association studies (GWAS) have linked 
many single nucleotide polymorphisms (SNPs) with BC 
occurrence [6–9]. In our previous studies, a potential 
relationship between the sequence variations of indi-
vidual gene and BC has been proposed. In the study of 
11 SNPs of PTPN1, rs3787345, rs718050, rs3215684, and 
rs718049 were associated with a reduction in BC risk 
[10]. Several studies have identified the genomic region 
of PTPN1 as a quantitative trait locus (QTL) in obesity 
and diabetes mellitus [11–13]. XRCC5 and XRCC6 SNP 
genotyping revealed that XRCC5 rs16855458 was asso-
ciated with BC, XRCC6 rs2267437 was associated with 
ER-/PR- BC risk, and there may be interactions with 
environmental factors [14]. However, current research 
has largely focused on the impact of a single SNP on dis-
ease, and potential SNP-SNP interactions remain less 
well studied. Most diseases, including cancers, follow a 
polygenic model, indicating that they may involve multi-
ple genes or SNPs [9]. However, little is known about how 
they interact. Understanding this issue will help to char-
acterize the biological mechanism of BC risk.

Differential network analysis provides information 
about how genes interact. Recent studies suggest that 
cancer occurrence and development are not only caused 
by gene mutations but also by abnormal gene regulation 
[15]. Thus, it is important to assess the impact of both a 
single gene and gene–gene interactions on cancer onset 
and progression. Network analysis can effectively capture 
gene–gene interactions and genetic data can be used to 
establish gene regulation networks that characterize the 
biological mechanisms of disease [16]. A recent study 
analyzed the genetic and clinical data from gastric can-
cer patients using weighted gene co-expression network 
analysis (WGCNA) to explore new prognostic markers 
and therapeutic targets of gastric cancer [17]. Jubair et al. 
proposed a novel network-based method by integrating 
a protein–protein interaction network with gene expres-
sion data to identify biomarkers for different BC sub-
types and predict patients ‘ survivability [18]. Another 
study constructed the multi-omics markers associated 
with BC by high-dimensional embedding and residual 

neural network [19]. To date, network analysis has relied 
on DNA methylation and RNA-seq data [17–20]. Mean-
while, genetic effects of combinations of functionally 
related SNPs may affect genes in a synergistic manner, 
thereby increasing BC risk [21, 22]. Network analysis 
using SNP data can provide insights into the mechanisms 
of disease.

The joint density-based nonparametric difference 
interaction network analysis and classification (JDINAC) 
method [23] was used to identify the differential gene 
interaction network between individuals in the BC and 
healthy control groups. Unlike previous studies, gene 
interaction network results were based on SNP data, pro-
viding new insight into potential pathogenic BC genes.

Methods
Participants
The study population has been described previously [10]. 
In brief, a hospital-based case–control study was used 
that included patients diagnosed with BC by pathology 
between April 2012 and April 2013 in the second hospi-
tal of Shandong University and 21 collaborative hospi-
tals. Non-BC patients were selected as controls using 1:1 
matching on age group (±3  years), hospital, and treat-
ment time period (within 2  months). The subjects were 
25 to 70 years of age. Patients with clinical or pathologi-
cal diagnoses of recurrence or metastasis or other malig-
nant tumor complications were excluded. The selection 
of cases and controls was carried out in strict accordance 
with project research design standards.

Data collection
The data used for this study were obtained from a key 
project of clinical discipline dataset belonging to the 
hospitals under the Ministry of Health (administered) 
of the People’s Republic of China [24]. The present 
study collected data from a face-to-face interview and, 
clinical breast and imaging examinations. The interview 
included questions relating to demographics, physiology, 
reproductive factors, chronic disease, and family his-
tory. Height, weight, hip and waist circumference were 
also obtained, body mass index (BMI) and the waist-hip 
rate (WHR) were calculated. Clinical examination results 
were also collected, including visual examination, palpa-
tion, and related diagnostic tests, including breast ultra-
sound, mammography, and blood testing. Blood samples 
were collected using an EDTA vacuum collector.

RNA-seq expression and clinical data from BC patients, 
including 112 tumor tissue samples and matched nor-
mal tissue samples, were downloaded from The Cancer 
Genome Atlas (TCGA; https://​cance​rgeno​me.​nih.​gov/). 
SNP data from 4,030 and 3,494 women with and without 

https://cancergenome.nih.gov/


Page 3 of 9Liu et al. BMC Cancer         (2022) 22:1070 	

BC, respectively, were screened using UK Biobank BC 
data [25]. These data were used as validation datasets.

Genotyping and laboratory methods
The blood samples consisting of fasting venous whole 
blood were injected into EDTA anticoagulant tubes. 
These were placed fully upside-down in a 4  °C refrig-
erator and vertically placed in a -80 °C refrigerator after 
sedimentation. DNA was extracted using the Wizard 
Genomic DNA Purification Kit (a1120, Promega) and 
genotyped using the Sequenom MassARRAY SNP sys-
tem (CapitalBio Technology, Beijing, China).

Statistical analysis
Differential network analysis using JDINAC method
A Chi-square test was used to analyze differences in 
demographic and BC-related factors between the case 
and control groups. BMI data from the cases and con-
trols was represented as the mean ± standard deviation. 
First, 101 SNPs were matched to their respective genes 
and the mean value of SNP for each gene was calculated 
for each sample. The gene difference interaction network 
was obtained using the JDINAC method. The 95% con-
fidence interval (95% CI) and odds ratio (OR) were also 
estimated for hub gene polymorphisms in the gene dif-
ference interaction network. Significance was defined as 
a p-value < 0.05. All data were statistically analyzed using 
R × 64 4.1.0.

The JDINAC method assumes that the network-level 
difference between BC patients and healthy controls is 
the result of the collective effect of differential pairwise 
gene–gene interactions that are characterized by the 
conditional joint density of two genes [23]. Formally, Yl 
(l = 1,2,…,n) is the binary response vector and if the lth 
subject is BC, Yl = 1, otherwise Yl = 0. Pr is the probabil-
ity of the subject with BC, i.e., Pr = P(Yl = 1), and Si is the 
ith gene risk score. The JDINAC method based on the 
logistic regression is then represented as:

Zt (t = 1,…,T) denotes covariates such as BMI and age, 
p is the number of genes. f kij (k = 0, 1)  denotes the group 
conditional joint density of Si and Sj for group k, respec-
tively, i.e.,

and

(1)logit(Pr) = α0 +
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which represents the strength of interaction between 
Si and Sj for group k [23]. βij indicates the dependency 
between specific conditional groups.

JDINAC adopted a multiple randomly split algorithm 
to improve the accuracy and robustness of the results. 
A Lasso penalty was added to the logistics regression to 
estimate the coefficient βij and a cross-validation method 
was used to determine the best penalty parameter. The 
importance score for each pair Si, Sj was obtained by the 
following formula:

where ωij    was the importance score, I(·)    was an 
indicative function, ̂βij,t(t = 1, . . . ,T )  was the tth esti-
mation of the coefficient βij  . The importance scores 
represented the differential dependency weight of each 
pair 

(

Si, Sj
)

  between two groups [23]. The difference net-
work was inferred by connecting pairs with high impor-
tance scores through their shared genes.

Differential expression analysis and enrichment analysis
The edgeR package [26] was utilized to identify differen-
tially expressed genes in TCGA breast cancer data to test 
the reliability of the JDINAC results. Multiplicity correc-
tion was performed by applying the Benjamini–Hoch-
berg method on the p-values.

To explore the biological functions of the identified 
interaction genes, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
ways in enrichment analysis were performed by the 
R package "clusterProfiler" [27]. Only terms with a 
multiple-test adjusted p-value < 0.05 were considered 
significant.

Results
Participant demographic and lifestyle characteristics
There were 1,916 subjects in the study, including 953 and 
963 in the BC and control groups, respectively. There 
were significant differences in BMI and menopausal sta-
tus between the two groups (p-value < 0.05) (Table  1). 
Women with BC had a higher BMI than that of healthy 
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women (24.36 ± 3.46 vs. 24.01 ± 3.11, respectively), indi-
cating that obesity may be a risk factor for BC.

Differential network of gene interaction
Twenty genes that might be related to the pathogen-
esis of BC and 101 SNPs associated with these genes 
were selected. The differential gene interaction network 
was estimated based on four scenarios: no adjustment 
for covariates, adjustment for BMI, adjustment for the 

menopause status (Fig. 1), and adjustment for BMI and 
menopause status simultaneously (see Additional file 1). 
The number of edges selected under the four scenarios 
was 18, 14, 19 and 16, respectively. The orange nodes 
in the figure represent the central genes with at least 
four adjacent genes in the network. All scenarios had 
the three genes, LEP, LEPR, and XRCC6 in common. 
Gene pairs were ranked based on the importance scores 
derived from JDINAC and the top ten pairs in the net-
work with no covariate adjustment are summarized in 
Table  2. Among them, six pairs had evidence of inter-
action in STRING database [28]. Additional data are 
shown in Additional files 2, 3, 4 and 5.

Association between polymorphisms and BC risk
Next, the association between SNPs in the hub genes of 
differential networks and BC risk was assessed (Table 3). 
Most SNPs were not associated with BC significantly. 
Rs1137101 (OR = 0.728, p-value = 0.002) and rs4655555 
(OR = 0.825, p-value = 0.015) contained in LEPR were 
significantly associated with BC risk, while the LEP, 
XRCC6, and RETN polymorphisms were not signifi-
cantly. Functional consequences of SNPs on genes were 
also shown in Table  3. Rs4655555 is an intron variant. 
Rs1137101 is a missense variant and coding sequence 
variant reported as benign [29].

Identification of the interaction network
RNA-seq expression and clinical data from BC patients 
were obtained from TCGA to analyze and verify the 
identified hub genes. The validation dataset included 
112 subjects for whom both tumor and matched normal 
samples were available. All genes available in the TCGA 
dataset were analyzed to detect differences between 
tumor and normal samples, and 10 common genes in 
Fig. 1 were screened out from the results. LEP, LEPR and 
XRCC6 expression was significantly different between 
two groups (Table  4). RETN was not differentially 
expressed in the TCGA data.

Genetic data from 4,030 BCs and 3,494 controls in 
the UK Biobank was used to verify the eight identi-
cal edges of the three networks in Fig. 1 using logistic 
regression. The data were randomly divided into two 
parts, the kernel density function of the BC and con-
trol groups were estimated, and logistic regression was 
used to assess the corresponding p-value of the eight 
edges (Table 5). The results showed that the first four 
edges were significantly different (p-value < 0.05). The 
genes connected by these four edges were the identi-
fied hub genes, indicating that the interaction between 
hub genes in this network is more significant than it is 
for other genes.

Table 1  Clinical characteristics of the study population

Variables Control n (%) BC case n (%) X2 p value

Age, y 3.563 0.468

  25- 76(7.89) 62(6.51)

  35- 329(34.16) 302(31.69)

  45- 352(36.55) 364(38.2)

  55- 183(19) 200(20.99)

  65- 23(2.39) 25(2.62)

BMI, kg/m2 6.412 0.011

   ≤ 28 849(90.90) 799(87.23)

   > 28 85(9.10) 117(12.77)

WHR 3.344 0.067

   < 0.85 458(53.82) 389(49.30)

   ≥ 0.85 393(46.18) 400(50.70)

Age at menarche, y 1.036 0.596

  7–11 16(1.66) 11(1.15)

  12–13 231(24.01) 223(23.4)

   ≥ 14 715(74.32) 719(75.45)

Number of births 0.501 0.479

  0 25(2.63) 20(2.13)

   ≥ 1 926(97.37) 918(97.87)

Diabetes mellitus 
history

0.094 0.759

  Yes 32(3.36) 34(3.62)

  No 921(96.64) 906(96.38)

Plasma glucose, mM 0.593 0.441

   < 7 739(76.22) 776(95.45)

   ≥ 7 29(3.78) 37(4.55)

Smoking 2.406 0.121

  Yes 10(1.04) 18(1.89)

  No 950(98.96) 932(98.11)

Alcohol consumption 3.089 0.079

  Yes 3(0.31) 9(0.95)

  No 956(99.69) 939(99.05)

Menopause 6.251 0.012

  Yes 260(28.11) 309(33.48)

  No 665(71.89) 614(66.52)

Cholesterol, mmol/L 0.239 0.625

   ≤ 5.18 505(70.53) 500(69.35)

   > 5.18 211(29.47) 221(30.65)
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Enrichment analysis
GO analysis showed that the biological processes of the 
identified genes were mainly related to glucose homeo-
stasis and carbohydrate homeostasis (Fig.  2). KEGG 
pathway analysis showed that these genes were mainly 
enriched in adenosine-monophosphate-activated protein 
kinase (AMPK) signaling pathway, adipocytokine signal-
ing and non-alcoholic fatty liver disease (Fig. 2).

Discussion
This study sought to identify potential pathogenic genes 
associated with BC by constructing a BC gene interaction 
network. This study extended the results of prior studies 
[14] by not only assessing the effect of a single gene on 

BC but also the gene interaction network, providing new 
insight into how genetic factors impact complex human 
diseases. These results suggest that BMI and menopau-
sal status may be risk factors for BC. The gene interaction 
network obtained using the JDINAC method showed 
that LEPR, LEP, XRCC6, and RETN have significant 
interactivity difference between BC patients and healthy 
women, and are associated with higher BC risk. How-
ever, analysis of hub gene polymorphisms indicated that 
only LEPR rs1137101 and rs4655555 were strongly linked 
to BC. Other independent datasets and bioinformatics 
analysis tools were used to verify the hub genes and the 
edges, increasing the reliability of the results. The expres-
sion of LEPR, LEP and XRCC6 was significantly associ-
ated with BC in TCGA dataset. Meanwhile, UK Biobank 
SNP data validated their interaction on BC.

GO enrichment analysis showed that the interacting 
genes were closely related to cell energy and cell metabo-
lism, such as glucose homeostasis, carbohydrate homeo-
stasis, muscle cell proliferation and regulation of small 
molecules. The results in KEGG analysis were consist-
ent with those by GO analysis. Studies have shown that 
AMPK is the main cellular energy sensor [30]. Reduced 
activity of AMPK is associated with altered cellular meta-
bolic processes that drive BC tumor growth and progres-
sion. If AMPK is activated, it can respond to adenosine 
triphosphate (ATP) depletion, glucose starvation, and 
metabolic stress [31]. Obesity-related factors modulate 
metabolic pathways in BC, providing a molecular link 
between obesity and BC.

Many studies have shown that LEP and LEPR play an 
important role in obesity. LEP is a hormone secreted by 
adipose tissue, which regulates eating and energy con-
sumption through the hypothalamic region of the brain 
[32]. Circulating leptin binds to LEPR, activating Janus 
kinase 2 (JAK2), phosphorylating three tyrosine residues 

Fig. 1  The differential interaction networks inferred by the joint density-based nonparametric difference interaction network analysis and 
classification (JDINAC). The hub genes are colored orange. A no adjustment for covariates. B adjustment for BMI. C adjustment for the menopause 
status

Table 2  Top 10 gene interaction pairs identified by JDINAC with 
no covariate

Y indicates that the pair of genes has an interaction in the STRING database, and 
N indicates not

Gene1 Gene2 Importance 
scores

STRING

1 PPARD UCP2 13 Y

2 LEP XRCC6 12 N

3 LEP LEPR 11 Y

4 LEPR RETN 10 Y

4 T-cadherin XRCC6 10 N

6 IFI30 XRCC6 9 N

7 LEPR T-cadherin 8 N

7 VISFATIN XRCC6 8 N

9 GPR30 XRCC5 6 N

10 ADIPOQ LEP 5 Y

10 ADIPOR1 RETN 5 Y

10 GPR30 STAT3 5 N

10 RETN UCP2 5 Y
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in LEPR, and inducing phosphorylation of STAT tran-
scription factors, STAT5 and STAT3, which are involved 
in the development of BC [32]. Leptin may stimulate the 
expression of estrogen by increasing aromatase expres-
sion, which is also involved in BC development [33]. The 
LEPR rs1137101 polymorphism results from a noncon-
servative A to G substitution at codon 223, reducing lep-
tin binding and impairing signaling [34]. While the effect 
of LEPR rs4655555 on the development of BC has not 
yet been reported, one study has shown that rs4655555 
is significantly correlated with plasma soluble leptin 

receptor levels and may inform diabetes prognosis [35]. 
The findings from the current study further support the 
evidence that LEP and LEPR play an important role in BC 
pathogenesis.

The impact of RETN on BC has been reported previ-
ously. RETN is highly expressed in BC tissues and may 
serve as a biomarker for disease stage and the degree 
of inflammation [36, 37]. Low-grade systemic inflam-
mation is one of the characteristics of obesity [38], and 
RETN is shown to exert pro-inflammatory properties by 
upregulating pro-inflammatory cytokines [39] through 
the NFκB signaling pathway [40] that lead to inflamma-
tion and tumorigenesis. Several studies have also linked 

Table 3  The association of SNPs in hub genes with breast cancer (BC) adjusted for BMI and menopause status

SNP IDs Gene CHR Alleles OR 95% CI p value Functional consequence

rs2167270 LEP 7 G > A 1.007 0.851–1.191 0.937 5_prime_UTR_variant

rs4731426 LEP 7 C > G 0.991 0.846–1.161 0.911 intron_variant

rs10487506 LEP 7 A > G 0.970 0.829–1.135 0.702 upstream_transcript_variant,2KB_upstream_variant

rs10954173 LEP 7 G > A 0.998 0.846–1.178 0.981 intron_variant

rs3828942 LEP 7 A > G 0.985 0.843–1.151 0.854 intron_variant

rs4655555 LEPR 1 A > T 0.825 0.706–0.934 0.015 intron_variant

rs10244329 LEPR 1 A > T 0.971 0.830–1.136 0.715 intron_variant

rs1137101 LEPR 1 G > A 0.728 0.598–0.885 0.002 missense_variant, coding_sequence_variant

rs1137100 LEPR 1 G > A 0.956 0.810–1.128 0.595 missense_variant, coding_sequence_variant

rs3745369 RETN 19 G > C 1.085 0.945–1.247 0.246 500B_downstream_variant

rs34861192 RETN 19 G > A 0.975 0.813–1.170 0.789 2KB_upstream_variant, upstream_transcript_variant

rs3219175 RETN 19 G > A 0.964 0.728–1.273 0.794 2KB_upstream_variant, upstream_transcript_variant

rs3219177 RETN 19 C > T 1.011 0.716–1.428 0.949 intron_variant

rs34124816 RETN 19 A > C 1.168 0.926–1.476 0.190 2KB_upstream_variant, upstream_transcript_variant

rs1862513 RETN 19 C > G 1.083 0.941–1.247 0.265 2KB_upstream_variant, upstream_transcript_variant

rs3745367 RETN 19 G > A 0.969 0.844–1.113 0.657 intron_variant

rs2267437 XRCC6 22 C > G 0.985 0.843–1.151 0.851 intron_variant, upstream_transcript_variant,2KB_upstream_variant

rs2284082 XRCC6 22 T > C 0.973 0.852–1.111 0.683 intron_variant

rs5751129 XRCC6 22 T > C 0.903 0.726–1.120 0.353 intron_variant, upstream_transcript_variant,2KB_upstream_variant

rs5751131 XRCC6 22 A > G 0.995 0.871–1.136 0.938 intron_variant

Table 4  The validation results of the 10 identical genes in Fig. 1 
using TCGA data

logFC, log2 fold-change; logCPM, log2 counts-per-million

Gene logFC logCPM p value p-adjust

LEPR -2.52777 5.193642 1.65 × 10–39 8.38 × 10–38

LEP -5.98334 7.009349 2.35 × 10–32 5.20 × 10–31

T-cadherin -1.17561 4.687897 7.96 × 10–23 6.45 × 10–22

IFI30 0.872733 -0.95925 8.69 × 10–11 2.42 × 10–10

UCP2 0.827575 6.632093 1.06 × 10–9 2.71 × 10–9

PPARD 0.328611 4.92447 1.74 × 10–6 3.41 × 10–6

XRCC6 0.276328 7.708723 3.52 × 10–6 6.70 × 10–6

GPR30 -0.79614 2.56532 0.000122 0.000203

RETN 0.10441 -3.79534 0.683576 0.714306

Visfatin -0.01691 6.395228 0.866491 0.881913

Table 5  The validation results of the 8 identical edges in Fig.  1 
using UK Biobank data

Gene1 Gene2 p value

LEP XRCC6 0.047

LEP LEPR 0.005

LEPR RETN 0.002

GPR30 LEPR 0.010

IFI30 XRCC6 0.206

T-cadherin XRCC6 0.052

LEPR T-cadherin 0.051

PPARD UCP2 0.318
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XRCC6 with an increased risk of BC [14, 41, 42]. Inter-
action between XRCC6 genetic polymorphisms and 
reproductive risk factors is thought by some research-
ers to contribute to estrogen exposure, which results in 
double-strand breaks on BRCA1 and BRCA2 DNA and 
induces BC [41]. XRCC6 is also involved in the produc-
tion of proinflammatory cytokines induced by lipopoly-
saccharide (LPS) in human macrophages and monocytes. 
Proinflammatory cytokine production is, in turn, associ-
ated with obesity and BC [42].

Recent studies have used gene expression data to 
explore the pathogenesis of BC [18] and other diseases 
[17, 20]. However, no genetic interaction network has 
been constructed to identify potential BC pathology 
genes using SNP data. As discussed previously, single 
genetic variants often explain only a small fraction of 
phenotypic variation, that is, the problem of missing 
heritability [43]. Gene–gene interactions are proposed 
as a potential source of this problem [44]. The current 
study built gene interaction networks based on SNP 
data to explain the etiology of complex human traits. 
While high-throughput SNP genotyping methods have 
been developed, the computational and statistical chal-
lenges of simultaneously analyzing large SNP datasets 
still exist [9]. The method used here provides ideas for 
handling SNP data. In addition, because BC incidence 
is affected by demography [45, 46] the gene network 
was constructed adjust the influence of confound-
ing factors such as BMI and menopause, making the 
results more reliable. This study does have some limi-
tations, however. Only the interaction between paired 
genes was assessed. For BC, the relationship between 
genes may be more complicated. Future studies should 

assess more complex interactions associated with this 
disease.

Conclusions
Potential pathogenic BC genes were investigated by 
constructing a gene interaction network. LEP, LEPR, 
XRCC6, and RETN had significant interactions during 
BC, and LEPR polymorphisms may also be associated 
with BC development. Gene network analysis can pro-
vide more detailed information about the pathogenesis 
of complex diseases.
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