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Abstract 

Background:  In recent years, it has been proved that necroptosis plays an important role in the occurrence, devel-
opment, invasion, metastasis and drug resistance of malignant tumors. Hence, further evaluation and targeting of 
necroptosis may be of clinical benefit for gynecologic cancers (GCs).

Methods:  To compare consistency and difference, we explored the expression pattern and prognostic value of 
necroptosis-related genes (NRGs) in pan-GC analysis through Linear regression and Empirical Bayesian, Univariate 
Cox analysis, and public databases from TCGA and Genotype-Tissue Expression (GTEx), including CESC, OV, UCEC, and 
UCS. We explored the copy number variation (CNV), methylation level and enrichment pathways of NRGs in the four 
GCs. Based on LASSO Cox regression analysis or principal component analysis, we established the prognostic NRG-
signature or necroptosis-score for the four GCs. In addition, we predicted and compared functional pathways, tumor 
mutational burden (TMB), somatic mutation features, immunity status, immunotherapy, chemotherapeutic drug 
sensitivity of the NRG-signature based on NRGs. We also examined the expression level of several NRGs in OV samples 
that we collected using Quantitative Real-time PCR.

Results:  We confirmed the presence of NRGs in expression, prognosis, CNV, and methylation for four GCs, thus com-
paring the consistency and difference among the four GCs. The prognosis and independent prognostic value of the 
risk signatures based on NRGs were determined. Through the results of subclass mapping, we found that GC patients 
with lower risk score may be more sensitive to PDL1 response and more sensitive to immune checkpoint blockade 
therapy. Drug susceptibility analysis showed that, 51, 45, 64, and 29 drugs with differences between risk groups were 
yielded in CESC, OV, UCEC, and UCS respectively. For OV, the expression differences of several NRGs in the tissues we 
collected were similar to that in TCGA.

Conclusion:  Our comprehensive analysis of NRGs and NRG-signature demonstrated their similarity and difference, as 
well as their potential roles in prognosis and could guide therapeutic strategies, thus improving the outcome of GC 
patients.
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Introduction
Gynecological cancers (GCs) are the main types of female 
cancers, among which uterine and ovarian cancers are 
the most common [1]. Despite the high response rate 
to chemotherapy, most ovarian cancer patients develop 
resistance to first-line chemotherapy drugs and these 
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patients have a poor prognosis [2], hence, the mortality 
rate of ovarian cancer is the highest among gynecological 
tumors [3]. Cervical cancer is the second most common 
malignancy in women, and although the development of 
early diagnosis methods has improved the rate of early 
detection of cervical cancer, the prognosis for patients 
in advanced stages remains poor [4]. The high incidence 
and mortality rate of GCs have seriously jeopardized 
women’s life, health and quality of life [5]. Therefore, new 
therapeutic strategies are urgently needed to improve the 
prognosis of patients with GCs.

Orderly cell proliferation and death is an important 
condition to maintain the homeostasis of intracellular 
environment. Tumors may arise when cells in the body 
overproliferate in a disorder that cannot be killed by nor-
mal pathways of death. Uncontrolled proliferation and 
resistance to cell death are two major markers of malig-
nant tumors [6]. Apoptosis, which was first proposed by 
Kerr JF et al. in 1972, is the earliest known programmed 
cell death phenomenon [7]. In 2005, Degterev A et  al. 
found that the form of cell necrosis caused by cell mem-
brane rupture caused by RIPK3 activation of MLKL also 
has a programmed regulation phenomenon, which is 
called necroptosis [8]. Necroptosis has similar cell mor-
phology to necrosis (early destruction of envelope integ-
rity, cell volume and intracellular organelle swelling), but 
differs from necrotic apoptosis in that it is a regulated 
caspase-independent programmed necrosis [9]. With the 
development of basic research, it is found that necropto-
sis is not only related to the mechanism of inflammatory 
pathology [10], but also closely related to the occurrence, 
development and drug resistance of tumors [11]. It has 
been proved that necroptosis and targeting necroptosis 
has dual effects on tumor occurrence and development 
[12]. Specifically, it has been shown that in pancreatic 
ductal adenocarcinoma (PDA), when RIPK3 knock-
out tumor cells undergo necroptosis, soluble cytokines 
released bind to receptors on inflammatory cells, trig-
gering an immunosuppressive tumor microenvironment 
and promoting the progression of PDA [13]. Necroptosis 
induced inflammatory response may lead to metastasis of 
breast cancer [14]. Inducting apoptosis was proven with 
low efficacy because of apoptosis-resistance, hence, trig-
gering necroptosis is a novel and effective strategy [15]. 
Necroptosis may also kill normal cells, lead to inflam-
matory reactions and promote the occurrence, develop-
ment, invasion and metastasis of tumors while playing an 
anti-tumor effect [16]. RIPK3, a key kinase of necrotiz-
ing apoptosis, is significantly down-regulated in human 
colorectal cancer (CRC), and its expression has anti-
inflammatory and anti-tumor effects in the intestine [17]. 
Hence, necroptosis may serve as a double-edged sword in 
cancer.

Some progress has been made in the study of necrop-
tosis, but there are still the following problems: First, 
the relationship between necroptosis and other forms 
of cell death and its intersection is complicated, which 
brings difficulties to clinical research [18, 19]; Sec-
ond, necroptosis lacks specific molecular markers [20]; 
Thirdly, the mechanism of necroptosis and its regula-
tion are still unknown and need to be further elucidated 
[20]. Fourthly, most studies on necroptosis are based on 
in vitro experiments [21]. Therefore, the in vivo effect of 
necroptosis on tumor cells still needs to be explored. At 
present, the triggering of necroptosis has been found to 
be effective in the treatment of colon cancer and hema-
tological tumors [22], but its clinical efficacy in other 
tumors is still controversial. The study of necroptosis may 
open a new field of cancer research and provide a broad 
prospect for the development of new anticancer drugs. 
Although the functions of necroptosis in tumorigenesis 
have been confirmed preliminarily [23–38], at present, 
the preliminary studies mainly focus on ovarian cancer, 
while the research on UCEC and UCS is still blank. Over-
all, little is known about necroptosis in GCs. To further 
explore the mechanism of necroptosis and study its role 
in the occurrence and progression of malignant tumors 
and antitumor drugs will provide clinical significance for 
the treatment of GCs.

In this study, we performed a comprehensive evalua-
tion to show the landscape of necroptosis-related genes 
(NRGs) in GCs and to explore the underlying mecha-
nisms, thus developing strategies for diagnosis and treat-
ment. The gene expression heterogeneity, copy number 
variation (CNV), and methylation level of 76 NRGs in 
four GCs were analyzed. Using least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis 
and principal component analysis we identified necrop-
tosis-score and constructed the reliable NRG-related 
prognostic signature to predict overall survival (OS). 
Our data showed that the NRG-related prognostic sig-
nature was associated with immunity characteristics, 
immunotherapy, and chemotherapeutic drug sensitivity. 
In a word, the signature we developed may provide new 
insight into GC treatment and prognosis.

Materials and methods
Data collection
We obtained processed datasets (TCGA TARGET GTEx) 
and clinicopathological data of four GCs, including CESC 
(cervical squamous cell carcinoma and endocervical ade-
nocarcinoma), OV (ovarian serous cystadenocarcinoma), 
UCEC (uterine corpus endometrial carcinoma), and UCS 
(uterine carcinosarcoma), from UCSC -Xena platform [39]. 
According to the gene annotation information (hg38, gen-
code.v23.annotation.gene.probemap) [40] in GENCODE 
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database (httRiskscore://www.​genco​degen​es.​org/) [40], 
we converted the Ensemble Gene into Gene Symbol. After 
filtration of low-expression genes, expression matrices of 
mRNA were obtained according to gene annotation infor-
mation. Necroptosis-related genes (NRGs) were screened 
from Gene Set Enrichment Analysis (GSEA) (http://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp) and previous reports 
about necroptosis [41, 42]. By matching with the mRNA 
expression matrices, 76 NRGs were finally matched, and 
the mRNA expression matrices related to necroptosis of a 
total of 31 tumors was extracted. Perhaps due to the differ-
ent sequencing depth of each tumor, individual NRGs were 
not annotated in individual tumors and the tumors were 
excluded from this study.

Differential and prognostic analysis of NRGs
Linear regression and Empirical Bayesian provided by 
limma package (Version3.10.3, http://​www.​bioco​nduct​or.​
org/​packa​ges/2.​9/​bioc/​html/​limma.​html) [43] were used 
to analyze the differential expression of NRGs for the four 
GCs (Tumor versus Normal), respectively, thus obtaining 
the corresponding P value and logFC. In addition, Ben-
jamini & Hochberg was used for multiple test correc-
tion to obtain the corrected P value (adjusted P-value). 
We evaluated from two levels of difference multiple and 
significance, and the threshold of difference expression 
was set as follows: adjusted P-value < 0.05&|logFC|> 0.5. 
Then prognostic NRGs were screened using the Univari-
ate Cox analysis of survival package and GSCA database. 
In order to determine the somatic mutations of NRGs, 
we generated the Mutation Annotation Format (MAF) in 
TCGA using the “maftools” R package [44].

Principal component analysis for NRGs
PCA (principal component analysis) analysis was per-
formed based on the expression values of NRGs in each 
sample, and this step was performed based on normal, 
tumor and all tissues respectively, to observe whether 
there was a specific necroptosis pattern among the four 
GCs [45]. The prognostic NRGs were selected for PCA 
analysis to construct the necroptosis-score [46].

Establishment of the prognostic signature based on NRGs
The NRGs with survival prognosis were screened using 
the Univariate Cox analysis of survival package [47] to 
obtain prognostic NRGs (P < 0.05). The samples were 
randomly divided into training set, validation set and 
total set in the ratio of 7:3 [48–52]. The training set was 
used for subsequent model construction, and the valida-
tion and total sets were used for model verification. Fur-
ther, we used the LASSO Cox regression model [53] of 
glmnet package (version 2.0–18, httRiskscore://cran.r-
project.org/web/packages/glmnet/index.html) [54] to 

further screen the combination of prognostic NRGs and 
obtain the prognostic coefficient of each NRG by 20-fold 
cross-validation analysis. Next, according to the LASSO 
regression prognostic coefficient of each NRG and the 
expression level of mRNA in TCGA, the risk-score (RS) 
model was constructed as follows:

Here, βNRG represented the LASSO regression coeffi-
cient of model gene, and ExpNRG represented the expres-
sion level of NRG in TCGA dataset. And then we took 
the median value of the RSs, TCGA sets were divided 
into high-risk group (HRG, with a RS higher than or 
equal to the median value of RSs) or low-risk group 
(LRG; RS lower than the median value of RSs). Kaplan–
Meier curves of survival packages were used to assess 
the association between survival outcomes and the risk 
groups.

To determine whether the RS model based on NRGs 
was as an independent prognostic factor, we performed 
Univariate Cox regression analysis for risk groups and 
clinicopathological parameters. Variables with P < 0.05 
were included in Multivariate Cox regression analysis, 
and variables with P < 0.05 were screened out to draw 
Normgram.

Characteristics of functional pathways, immunity status, 
and anti‑tumor therapy
GSVA (Gene set variation Analysis) algorithm was 
used to calculate the enrichment scores of each HALL-
MARK gene set in each sample of four GCs by using 
GSVA package [55]. The enrichment background was 
h.all.v7.4.symbols in MsigDB V7.1 database [56] and the 
scoring matrices were obtained. Then, limma package of 
R was used to analyze the difference between HRG and 
LRG, and the corresponding t score with P values were 
obtained. The greater the absolute value of t score was, 
the more significant the difference was considered.

The occurrence and development of tumor is also 
closely related to the immune microenvironment [57]. 
CIBERSORT was a tool for deconvolution of expression 
matrix of immune cell subtypes based on linear sup-
port vector regression [58, 59]. We used CIBERSORT 
to calculate the proportion of 22 types of immune cells 
based on the expression levels of all genes in GC sam-
ples, and Wilcox test was used to compare whether there 
were significant differences in each type of immune cells 
between the HRG and LRG. Stromal cells and immune 
cells in malignant solid tumors are believed to play an 
important role in tumorigenesis, development and drug 
resistance [60]. Further, we estimated the immune score, 
stromal score, ESTIMATE score, and tumor purity 

RiskScore = β
NRG

× ExpNRG

http://www.gencodegenes.org/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html)
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html)
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using ESTIMATE algorithm [60]. By feeding in the gene 
expression matrix, we could obtain scores for the levels of 
immune cells, stromal cells, and the purity of the tumor 
sample [60]. In general, the higher the purity of the tumor 
sample, the more malignant it is [60].

We predicted potential responses to ICB using the 
TIDE algorithm [61]. We also compared the discrepancy 
between the two risk groups in immunotherapy using sub-
map [62]. The chemotherapy drugs were extracted from 
the GDSC database (https://​www.​cance​rrxge​ne.​org/) [63] 
and used R3.6.1 pRRophetic [64] to assess IC50 levels.

To identify somatic mutations between HRG and 
LRG in GC patients, the “maftools” R package was used 
to generate the Mutation Annotation Format from the 
TCGA database [44]. And the tumor mutation burden 
score for each patient with OC in both two groups were 
also calculated.

Quantitative real‑time PCR
After approval by the Ethics Committee of Fujian Can-
cer Hospital, we collected 30 OC tissue samples and 10 
normal ovarian tissues to perform Quantitative Real-
time PCR (qPCR). Total RNA from the tissue samples 
was extracted applying TRNzol Universal Reagent 
from Tiangen Biotech (Beijing, China). Following RNA 
extraction, we reverse transcribed total RNA using 
FastKing gDNA Dispelling RT SuperMix from Tiangen 
Biotech (Beijing, China) to obtain cDNA. In order to 
detect the expression level of NRGs in the signature, 
we conducted qPCR using SuperReal PreMix Plus 
from Tiangen Biotech (Beijing, China). We purchased 
the primers of the NRGs from Sangon Biotech (Shang-
hai, China) and the sequences were listed in Supple-
mentary Table 1.

Statistical analyses
Statistical analyses and data plotting were performed 
using R program or GraphPad Prism 9. Spearman’s cor-
relation analysis test was used to analyzed the correlation 
relationship in data types. A threshold of 0.05 was used 
to deem significance from p values of statistical tests. 
Other special analyses have been described in the previ-
ous section.

Results
Expression differences and prognostic value 
of necroptosis‑related genes
We explored differences in expression of 76 NRGs 
between normal and cancer tissues in 31 tumors. The 
results of the pan-cancer analysis showed that all the 
76 NRGs were abnormally expressed in one or more 
tumors (Supplementary Table  2). CDKN2A was highly 
expressed in a total of 28 tumors, ranking first, while 
FASLG was only highly expressed in seven tumors (Sup-
plementary Table 2). Comparing the expression levels of 
76 NRGs in TCGA samples, several NRGs (ATRX, AXL, 
BACH2, BCL2, BRAF, CFLAR, KLF9, NDRG2, NR2C2, 
SIRT1, SIRT3, TLR4, TSC1, USP22) were found at lower 
expression levels in four gynecological tumors (Fig. 1A), 
and several NRGs (CDKN2A, CXCL1, DIABLO, EZH2, 
GATA3, HSPA4, IDH2, PGAM5, PLK1, TERT, TNF, and 
TNFRSF21) were found at higher expression levels in 
four gynecological tumors (Fig. 1A). Some of the differ-
ential NRGs are unique to a particular GC (Supplemen-
tary Figure S1E), such as BCL2L11 and OTULIN were 
unique differential NRGs of CESC, MAP3K7 was unique 
differential NRGs of OV, and TLR2 was unique to UCS. 
It was worth mentioning that RNIP3, CASP8, DDX58, 
FLT3, HDAC9, ID1, LEF1, RIPK3, TLR3, and TNFSF10 
were found heterogeneous among the four GCs (Sup-
plementary Figure S1E). However, in general, there was 
no significant difference in the number of genes with 
high or low expression among the four gynecological 
tumors. For the four GCs in the TCGA database, more 
than 20% of the samples had mutated NRGs and ATRX 
had the highest mutation frequency (Supplementary 
Figure S1A-D, Fig.  1B-E). Overall, UCEC (Supplemen-
tary Figure S1C) had the most mutations, while OV had 
the fewest (Supplementary Figure S1B). After evaluating 
the correlation of expression values, we found the cor-
relations among NRGs were mostly positive in the four 
GCs, whether they have synergistic effects remains to 
be explored (Supplementary Figure S2).

GO enrichment analysis of the four GCs revealed that 
the differential NRGs were mainly enriched in necrop-
totic process, necroptotic cell death, and programmed 
necrotic cell death (Fig.  2A-D). In addition to UCS 
(Fig.  2D), the differential NRGs of the other three GCs 
were enriched in neuron dearth. In addition to CESC 

(See figure on next page.)
Fig. 1  Expression variation and mutation frequency of filtered necroptosis-related genes (NRGs). A Expression levels of mutual differentially 
expressed NRGs in the four gynecological cancers (GCs). The color of the dots represents the degree of variance. Redder dots represent higher 
expression in cancer tissue. Bluer dots represent higher expression in normal tissue. The size of the bubbles indicates the adjusted P-value. Larger 
bubbles represent a lower adjusted P-value. The NRGs with adjusted P-value < 0.05 & |logFC|> 0.5 and NRGs that were significantly differentially 
expressed in all the four GCs were retained to produce the figure. B-E Top 10 NRGs with mutation rates in patients with CESC (B), OV (C), UCEC (D), 
and UCS (E). The small figure above shows the TMB, the number on the right shows the mutation frequency of each NRG, and the figure on the 
right shows the proportion of each variant

https://www.cancerrxgene.org/
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Fig. 1  (See legend on previous page.)
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(Fig.  2C), the differential NRGs of the other three GCs 
were enriched in cellular response to chemical stress. In 
addition, the differential NRGs of the GCs were enriched 
in the same pathway, such as extrinsic apoptotic signal-
ing pathway of CSEC (Fig. 2A) and UCEC (Fig. 2C), and 
cellular response to oxidative stress of OV (Fig. 2B) and 
UCS (Fig.  2D). It was interesting to note that extrinsic 
apoptotic signaling pathway via death domain receptors 
in OV (Fig.  2A) and regulation of DNA-binding tran-
scription factor activity in UCS (Fig. 2D) were exclusive. 
The differential NRGs were further selected to construct 
the PPI network and perform KEGG analysis [65] using 
Cytoscape software. We demonstrated the top five KEGG 
pathways in significance, and the results showed that 
Necroptosis was significantly enriched in all four GCs 
(Fig. 3A-D). Although not one of top five KEGG pathways 
in CSEC (Fig.  3A), TNF signaling pathway also showed 
great value in the other three GCs (Fig.  3B-D). The top 
ten hub genes were selected by ranking degree. We found 
that TNF, CDKN2A, and HSPA4 were hub genes in all 
the four GCs (Fig. 3E-H), indicating their central role in 
the mechanism study of necroptosis.

Among the four GCs, the levels of CNV and NRGs 
were positively correlated, and the higher association was 
observed in OV (Fig.  4A). As for the methylation level, 

most NRGs were negatively correlated (Fig.  4B), which 
may be a reference for subsequent studies on epigenetic 
modifications of these NRGs. According to the method, 
PCA analysis was conducted based on the expression val-
ues of the 76 NRGs. Here, PCA analysis was conducted 
among all (Fig. 4C), normal (Fig. 4D), and tumor samples 
(Fig. 4E) respectively. It can be seen that no GC showed 
obvious specific pattern (Fig.  4C-E), while normal and 
tumor showed obvious separation (Fig.  4C), suggesting 
the assured distinction between non-cancer and cancer.

The Univariate Cox regression analysis was performed 
on the NRGs to gain prognostic NRGs. The pan-cancer 
analysis revealed RNF31 had no prognostic value in 
any of the 31 tumors (Supplementary Table  3). ALDH2 
showed prognostic value in a total of 12 tumors, and was 
mainly a malignant factor (Supplementary Table 3). The 
prognostic NRGs were selected for principal component 
analysis (PCA) for GCs to construct the necroptosis-
score. We further carried out Kaplan–Meier analysis to 
evaluate the survival prognosis of patients with higher 
necroptosis-score (higher than or equal to the cutoff 
value) or lower necroptosis-score (lower than the cutoff 
value). Although it did not reach statistical significance 
in UCS (Supplementary Figure S3D, P = 0.16), our results 
showed that necroptosis-score showed a tendency to 

Fig. 2  GO enrichment analysis of differentially expressed necroptosis-related genes (NRGs) in the four gynecological cancers (GCs). A-D GO 
enrichment analysis for CESC (A), OV (B), UCEC (C), and UCS (D). FC represents fold change. Blue dots indicate genes that were downregulated in 
the GCs, and red dots indicate genes that were upregulated in the GCs. The size of the z-score is shown by the color
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promote GC (Supplementary Figure S3A-D). We also 
counted the number of differential NRGs and prognostic 
NRGs in each GC as shown in Supplementary Figure S4.

Establishment of the prognostic signature based on NRGs
Based on the LASSO regression coefficient of the opti-
mized NRGs screened and the expression level of them 
in TCGA, we constructed a prognostic model and calcu-
lated RSs. The patients from TCGA database were divided 
into high-risk group (HRG) or low-risk group (LRG) sub-
groups based on the median value of RSs. Patients with 
an RS greater than the median RS were placed in HRG, 
while those with an RS less than the median RS were 
classified as an LRG. Kaplan–Meier curves revealed that 
patients in the LRG had good prognosis (Fig. 5A-L). The 
same results were observed in training, validation, and 
total sets, which is sufficient to illustrate the accuracy of 
the prognostic signature we constructed in prognostic 
prediction. Combined with the survival time and survival 
status, as well as the RS values of each sample, the ROC 
curves of 1-year, 3-year and 5-year survival prediction 
were drawn, showing the promising ability to predict OS 
(Supplementary Figure S5).

The expression values of five NRGs in cancer tissues 
and part of normal ovarian tissues in the signature for 
OV were also determined by qPCR. In TCGA dataset, 

BACH2, MLKL, MYC and SIRT2 were low expressed in 
OV tissues, while MYCN was high expressed in OV tissues 
(Supplementary Figure S6A-E). Similar to the expression 
differences mentioned above, our data also yielded consist-
ent conclusions. It is worth mentioning that although the 
difference in the expression value of SIRT2 did not reach 
statistical significance (P = 0.058), the trend was consistent 
with that in TCGA (Supplementary Figure S6F-J).

Considering the inconvenient clinical application of 
prognostic NRG features in predicting survival in GC 
patients, a nomogram containing risk groups and clin-
icopathological parameters was developed. According 
to the method, we performed Univariate Cox regres-
sion analysis for risk group and clinicopathological 
parameters. The variables with P < 0.05 were included in 
the Multivariate Cox regression analysis, and the vari-
ables with P < 0.05 were further screened out, as shown 
in Supplementary Figure S7. The risk model based on 
NRGs was considered as independent prognostic fac-
tors for the four GCs (Fig. 6, Supplementary Figure S7), 
we reduced the clinicopathological parameters to the 
ones all GCs shared (Age, Stage, Risk Score) as shown 
in Fig. 6 for consistency. In addition, it was worth men-
tioning that Stage was also an independent prognostic 
factor for UCEC and UCS (Fig. 6F and H). The nomo-
grams were shown in Supplementary Figure S8.

Fig. 3  KEGG enrichment analysis and PPI analysis of necroptosis-related genes (NRGs) in the four gynecological cancers (GCs). A-D ClueGO results 
of KEGG analysis of NRGs for CESC (A), OV (B), UCEC (C), and UCS D. The size of the dots indicates the number of genes attributed to the category. 
E–H The top 10 hub genes were selected by degree to establish PPI network for CESC (E), OV (F), UCEC (G), and UCS (H)
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Fig. 4  Principal component analysis for necroptosis-related genes (NRGs). A Pearson correlation between CNV and NRGs expression level. The 
bubble color indicates the degree of correlation index. The bubble size indicates the FDR. B Spearman correlation between methylation of the 
NRGs and their expression. The bubble color indicates the degree of correlation index. The bubble size indicates the P-value. C-E PCA analysis was 
conducted among all (C), normal (D), and tumor samples (E) respectively. Different gynecological cancers (GCs) are shown in different colors
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Evaluation of HALLMARK pathways and mutation 
between the two risk groups
We first calculated the HALLMARK gene aggregation 
score of each sample in each GC, and further analyzed 
the difference between risk groups by using limma pack-
age. Unfortunately, we did not find that a single signaling 
pathways was up- or down-regulated in the HRG of all the 
four GCs (Fig. 7A-D). Consistent signaling pathways were 
shown in three of the GCs as follows (Fig. 7A-D): NOTCH 
SIGNALING (up-regulated, CESC, OV, and UCEC); 
SPERMATOGENESIS (up- regulated, OV, UCEC, and 
UCS); ALLOGRAFT REJECTION (down-regulated, 
CESC, OV, and UCEC); DNA REPAIR (down-regulated, 
CESC, UCEC, and UCS); E2F TARGETS (down-regu-
lated, CESC, OV, and UCS); ESTROGEN RESPONSE 
LATE (down-regulated, CESC, OV, and UCS); FATTY 
ACID METABOLISM (down-regulated, CESC, OV, and 

UCEC); IL2 STAT5 SIGNALING (down-regulated, OV, 
UCEC, and UCS); IL6 JAK STAT3 SIGNALING (down-
regulated, CESC, OV, and UCS); INTERFERON ALPHA 
RESPONSE (down-regulated, CESC, OV, and UCS); 
INTERFERON GAMMA RESPONSE (down-regulated, 
CESC, OV, and UCS); REACTIVE OXYGEN SPECIES 
PATHWAY (down-regulated, CESC, UCEC, and UCS). 
There were many more pathways that showed consistency 
between the two GCs. The distribution variations of the 
somatic mutations between the two risk groups were also 
analyzed. The top 20 mutated genes in the HRG and LRG 
were consistent in the four GCs (Supplementary Figure 
S9). We found that TTN had the highest mutation fre-
quency in CESC (Supplementary Figure S9A-B), TP53 in 
OV (Supplementary Figure S9C-D) and UCS (Supplemen-
tary Figure S9G-H), and PTEN in UCEC (Supplementary 
Figure S9E-H).

Fig. 5  Construction of the prognostic signature based on the optimal NRGs. A-D Kaplan–Meier survival curves show survival probability of 
high-risk or low-risk for CESC (A), OV (B), UCEC (C), and UCS (D) in training sets. E–H Kaplan–Meier survival curves show survival probability of 
high-risk or low-risk for CESC (E), OV (F), UCEC (G), and UCS (H) in validation sets. I-L Kaplan–Meier survival curves show survival probability of 
high-risk or low-risk for CESC (I), OV (J), UCEC (K), and UCS (L) in total sets. The blue curve represents patients in the low-risk group, and the red 
curve represents patients in the high-risk group
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Fig. 6  Clinical value of risk score by independent prognostic analysis. A-H The Univariate Cox regression analysis and Multivariate Cox regression 
analysis for CESC (A-B), OV (C-D), UCEC (E–F), and UCS (G-H). We reduced the clinicopathological parameters to the ones all GCs shared (Age, Stage)
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Fig. 7  Evaluation of HALLMARK pathways between the two risk groups. A-D The bar plots indicate the distribution of the t values of the 
GSVA scores calculated for several pathways for CESC (A), OV (B), UCEC (C), and UCS (D). The blue bars represent HALLMARK pathways that are 
upregulated in the high-risk group, and the green bars represent HALLMARK pathways that are downregulated in the high-risk group
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Evaluation of immune activity and immunotherapy 
between the two risk groupsactivated/Mast cells resting
To further explore the relationship between immune 
activity and NRG-signature, CIBERSORT was used to 
analyze immune activity between the two risk groups. 
We found that except for UCS, B cells naive and T cells 
follicular helper were different between the high- and 
low-risk groups of CESC, OV and UCEC (Fig.  8A-D). 
There was clearly heterogeneity in the immune micro-
environment of individual GCs, as more immune cells 
showed differences in only one GC, such as T cells 
CD8/T cells CD4 memory resting/T cells CD4 memory 
activated/T cells regulatory (Tregs)/ Macrophages M0/
Dendritic cells resting/Dendritic cells activated/Mast 
cells resting/Mast cells activated/Neutrophils in CESC 
(Fig.  8A), B cells memory/T cells CD8/NK cells acti-
vated/Macrophages M1/Dendritic cells activated in OV 
(Fig.  8B), B cells memory/Mast cells resting in UCEC 
(Fig.  8C), Macrophages M1/Dendritic cells resting in 
UCS (Fig.  8D). Therefore, the prognostic signature of 
CESC could better distinguish the immune microenvi-
ronment, while UCS was poor in this respect. Further, 
for each GC, spearman correlation coefficient between 
22 immune cells was calculated, and the relationship of 
P < 0.05 was displayed by bubble heat map to observe 
the differences among the four GCs (Supplementary 
Figure S10), and it was observed that cervical and ovar-
ian cancer showed more correlation.

Furthermore, we investigated the association between 
our risk model and immune checkpoints (Supplemen-
tary Figure S11). Among them, CD200R1 and CD44 were 
statistically different in CESC, UCEC, and UCS, while 
CD244 and CTLA4 were statistically different in CESC, 
OV, and UCEC (Supplementary Figure S11). Through the 
results of subclass mapping, we found that GC patients in 
the LRG may be more sensitive to PDL1 response, except 
for UCEC (Fig. 9A-D). In line with this, the ICB response 
rates were higher in the LRG, suggesting that GC patients 
with low RSs are more sensitive to immune checkpoint 
blockade therapy (Fig. 9E-H).

Subsequently, we estimated immune score, stromal 
score, ESTIMATE score, and tumor purity using ESTI-
MATE algorithm, thus comparing their distinction 
between the risk groups (Fig.  10). On average, the GC 
patients in the LRG had higher ESTIMATE score (Fig-
ure A, E, I, and M), immune score (Fig.  10 B, F, J, and 
N) and stromal score (Fig. 10 C, G, K, and O), while GC 
patients with higher RSs had higher tumor purity (Fig. 10 
D, H, L, P). From the overall trend, the higher the ESTI-
MATE score /immune score /stromal score, the lower 
the tumor purity, which was consistent with earlier study 
[60]. These score differences may also partly explain why 

low-risk patients were more responsive to immunother-
apy and had a better prognosis.

Drug susceptibility analysis
According to the method, based on the drugs provided 
by pRRophetic package and combined with the gene 
expression value, we estimated the IC50 value of each 
drug, and further compared the difference between the 
two risk groups. The results showed that, 51, 45, 64, 
and 29 drugs with differences between risk groups were 
yielded in CESC, OV, UCEC, and UCS respectively. Only 
the drug with the most significant IC50 difference in each 
tumor (higher RS or lower RS) was shown in Fig. 11A-H. 
From these drugs with IC50 values that differ between 
risk groups, we may be able to target different treatment 
regimens to different patients with GC. According to 
the method, spearman correlation coefficients between 
NRGs in NRG-signature of each GC and drugs with 
significant differences in IC50 obtained above were cal-
culated respectively. According to the threshold setting, 
only significant relationship pairs with absolute correla-
tion coefficients greater than 0.3 were shown in Supple-
mentary Figure S12. We can see that most of them are 
negatively correlated.

Discussion
The main ways of cell death include autophagy, apopto-
sis, necrosis, ferroptosis, oncosis, paraptosis, necropto-
sis and so on [66]. In the past, apoptosis was considered 
to be the only programmed process of cell death, while 
cell necrosis was considered to be an uncontrollable 
passive biological behavior. However, recent studies 
have shown that necroptosis is also regulated by intra-
cellular signaling pathway networks [8, 67]. Necrop-
tosis is a different way of cell death from apoptosis. It 
often does not depend on Caspase, the key regulator 
of apoptosis, and can mediate cell death when apop-
tosis is inhibited. It has necrotic cell morphology and 
loss of cell membrane integrity is often present, which 
can be inhibited by the specific small molecule Nec-1 
[67]. Many studies have shown that necroptosis is often 
inhibited during the genesis and development of tumor 
cells. For example, in chronic lymphocytic leukemia 
cells, RIP3 and CLYD, which are important regula-
tors of necroptosis, are significantly down-regulated 
[68]. However, it has also been proved that necropto-
sis plays a dual role in cancer progression and devel-
opment [12]. Among them, targeted necrosis proteins 
have dual effects on the occurrence and development 
of tumors [14]. Due to the dual role of necroptosis in 
tumor development and antitumor therapy, it is nec-
essary to further explore the exact molecular mecha-
nisms of the key molecules of necroptosis and their 
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Fig. 8  Evaluation of immune activity between the two risk groups. A-D The distribution of 22 different immune cells between high and low risk 
groups for CESC (A), OV (B), UCEC (C), and UCS (D). The blue violins represent the low-risk group, and the red violins represent the high-risk group
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interactions with other proteins, especially MLKL, the 
executor of necroptosis and its downstream unknown 
structures. MLKL protein is widely found in many 
human organs and low expression in many tumor tis-
sues, such as brain tumors [69]. Through differential 
analysis of NRGs in pan-GCs, we found that MLKL 
was low expressed in OV, UCEC, and UCS, and the low 
expression of MLKL in OV was also confirmed in the 
samples we collected. Ulteriorly, through Univariate 
Cox and LASSO Cox regression analyses, we found that 
MLKL may be more important for the occurrence and 
development of OV, since it is involved in the construc-
tion of the prognostic NRG-signature of OV. Compared 
with normal control tissue, other common differential 

NRGs in pan-GCs were also found in our study, includ-
ing up-regulated NRGs (CDKN2A, CXCL1, DIABLO, 
EZH2, GATA3, HSPA4, IDH2, PGAM5, PLK1, TERT, 
TNF, and TNFRSF21) and low-expressed NRGs (ATRX, 
AXL, BACH2, BCL2, BRAF, CFLAR, KLF9, NDRG2, 
NR2C2, SIRT1, SIRT3, TLR4, TSC1, USP22). In the 
subsequent PPI network, we were surprised to observe 
that TNF, CDKN2A, and HSPA4 were the hub genes 
of the four GCs. Most of the current understanding of 
the molecular mechanism of necroptosis comes from 
the study of TNF-induced necroptosis signaling path-
way [70]. Although CDKN2A and HSPA4 are also the 
necroptosis-related proteins, there are still few stud-
ies on it [33, 71]. Hence, these common differential 

Fig. 9  Evaluation of immunotherapy between the two risk groups. A-D The subclass mapping for CESC (A), OV (B), UCEC (C), and UCS D. E–H The 
ICB response rates for CESC (E), OV (F), UCEC (G), and UCS H 
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NRGs play an important role in female reproduc-
tive system tumors, but the specific mechanism still 
needs to be further studied. Some of the differential 
NRGs are unique to a particular gynecologic tumor, 
such as BCL2L11 and OTULIN in CESC, MAP3K7 in 
OV, TLR2 in UCS. Interestingly, the expression status 
of RNIP3, CASP8, DDX58, FLT3, HDAC9, ID1, LEF1, 
RIPK3, TLR3, and TNFSF10 (high or low expression) 

was heterogeneous among the four tumors, indicat-
ing the dual role of NRGs in gynecological tumors to 
a certain extent. Ulteriorly, we performed enrichment 
analysis on the differential NRGs of various GCs, and 
the results showed that these NRGs were indeed sig-
nificantly enriched in necroptotic process, necroptotic 
cell death, programmed necrotic cell death and necrop-
tosis which further confirmed the important role of 

Fig. 10  Evaluation of estimate-related scores between the low-risk and high-risk groups. A-D Comparison of Estimate Score (A), Immune Score (B), 
Stromal Score (C) and Tumor Purity (D) for CESC. E–H Comparison of Estimate Score (E), Immune Score (F), Stromal Score (G) and Tumor Purity (H) 
for OV. I-L Comparison of Estimate Score (I), Immune Score (J), Stromal Score (K) and Tumor Purity (L) for UCEC. M-P Comparison of Estimate Score 
(M), Immune Score (N), Stromal Score (O) and Tumor Purity (P) for UCEC. ∗ P < 0.05; ∗  ∗ P < 0.01; ∗  ∗  ∗ P < 0.001; ns: not significant. The blue violins 
represent the low-risk group, and the red violins represent the high-risk group
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these genes in necroptosis. However, the enrichment 
pathways of the four GCs were also different to some 
extent, as explained in the RESULTS section. The com-
mon characteristics or differences in enrichment path-
ways can provide references for subsequent mechanism 
verification.

Current studies believe that CNV is not only the basis 
of individual genetic differences, but also plays an impor-
tant role in somatic malignant transformation, tumo-
rigenesis, progression and metastatic colonization [72]. 
CNV related indicators may become ideal tumor diag-
nostic markers. Our data indicated that the levels of CNV 
and NRGs were positively correlated among the four GCs 
in the mass. Methylation is an important modification of 
proteins and nucleic acids that regulates the expression 
and shutdown of genes and is closely related to cancer 
[73]. In our study, most NRGs were negatively correlated 
with methylation level, which may be a reference for 
subsequent studies on epigenetic modifications of these 
NRGs.

Necroptosis, as a newly discovered mode of death, has 
attracted more and more attention in the field of gyneco-
logic tumor. The induction of necroptosis was observed 
in ovarian cancer and the expression of catalytically 

active RIPK3 (receptor-interacting protein kinase-3) was 
necessary for death [23]. RIPK3 expression status could 
critically influence immunotherapy of cervical cancer 
[24, 25]. Li Liu et  al. found that necroptosis induced by 
the combination therapy of Berberine and Cisplatin can 
kill ovarian cancer cells and improve treatment [26]. Two 
ALDH1A family selective inhibitors (ALDH1Ai) were 
identified to overcome chemotherapy resistance and out-
comes of ovarian cancer through the necroptotic death 
of CSCs (cancer stem-like cells) [27]. It was reported 
that RIP1 could mediate cisplatin-induced necroptosis 
[28]. Xuewei Zhang et  al. found that ceramide nanoli-
posomes could serve as necroptosis-inducing chemo-
therapeutic reagent [29]. Necroptosis was identified to 
be the main anticancer mechanism of CuS-MnS2 nano-
flowers + NIR [74]. A novel process-enzyme-instructed 
self-assembly (EISA) could also cause necroptosis to kill 
ovarian cancer cell [75]. DEBIO 1143, a SMAC (second 
mitochondria-derived activator of caspase) mimetic 
was able to reverse carboplatin resistance by necropto-
sis and potentiate carboplatin treatment [30]. Caspase8 
could promote necroptosis by stabilizing RIPK1 [31] and 
necroptosis was reported to be induced by RETrA (REac-
tivation of Transcriptional Reporter Activity) through 

Fig. 11  Analysis of chemotherapeutic sensitivity based on the NRG-signature. A-H Relationships between risk scores and IC50 level of drugs. Only 
the drug with the most significant IC50 difference in each tumor was shown. A-D Drugs with IC50 values most significantly higher in the high-risk 
group for CESC (A), OV (B), UCEC (C), and UCS (D). E–H Drugs with IC50 values most significantly higher in the low-risk group for CESC (E), OV (F), 
UCEC (G), and UCS (H). The blue bars represent the low-risk group, and the red bars represent the high-risk group
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the phosphorylation of RIPK1 and RIPK3 thus playing a 
therapeutic role in cervical cancer [76]. It was reported 
that BMI1 [33] or ARHI (DIRAS3) [34] could induce 
autophagy-mediated necroptosis and necroptosis could 
augment tumor-associated macrophages M1 polariza-
tion [35] and autophagy through other pathways [36, 37]. 
Xiaofeng Chen et al. found that Youdujing extract could 
promote the combination of RIP1 with RIP3 and MLKL 
to facilitate necroptosis [38]. Further study of the regu-
lation mechanism of necroptosis and blocking revulsant, 
is not only beneficial to deepen the understanding and 
awareness of cell death, and is helpful to the research of 
different diseases. The relationship between necroptosis 
and cancer will continue to become a research hotspot 
a long time in the future. In-depth study on the role of 
necroptosis in the pathogenesis of GCs will promote 
the development of new therapeutic targets and provide 
valuable clues and means for the research and devel-
opment of related molecular target drugs. Obviously, 
necroptosis has great potential in tumor research, which 
is worthy of continuous exploration and in-depth study. 
At present, the preliminary studies mainly focus on ovar-
ian cancer, while the research on UCEC and UCS is still 
blank. Based on PCA analysis, we found that necropto-
sis-score showed a tendency to make the prognosis of 
GCs worse. It is worth noting that although this tendency 
was also shown in UCS, it did not reach statistical sig-
nificance, which may be due to the scarcity of samples 
in UCS. According to the existing studies, the induction 
of necroptosis can promote the development of breast 
cancer [77] and pancreatic ductal adenocarcinoma [13]. 
However, evidence for the role of necroptosis in GCs is 
still lacking, therefore, the net effect of necroptosis in 
GCs needs to be conclusively determined.

Screening and risk assessment of GCs are very impor-
tant for the diagnosis and treatment of diseases. With 
the development of molecular biology, more studies are 
devoted to screening polygenes as prognostic biomark-
ers. In this study, we carried out LASSO Cox regression 
analysis and then we established the prognostic NRG-sig-
nature based on corresponding poly-NRGs. The survival 
curves showed the significantly worse clinical outcomes 
of patients with higher risk-scores (RSs) while the prog-
nosis of patients with lower RSs was better. The same 
results were observed in training, validation, and total 
sets, which is sufficient to illustrate the accuracy of the 
prognostic signature we constructed in prognostic pre-
diction. The AUCs of 1-year, 3-year, and 5-year survival 
ROC curves predicted by the NRG-signature were large, 
suggesting the efficiency of NRG-signature in predicting 
prognosis for GCs. Furthermore, NRG-signature was an 
independent prognostic factor for GCs demonstrated 
by Univariate and Multivariate Cox regression analyses. 

In a word, the prognosis and independent prognostic 
value of the NRG-signature was determined for the four 
GCs sufficiently. Our study was the first to report NRG-
signature in pan-GC and we performed extensive analy-
ses to identify signature and its biological implications. 
Although there have been articles published on prognos-
tic signature of one type of GC, all prognostic features 
were different and there is no uniform prognostic feature 
in clinical practice. Other studies were mainly based on 
one GC, and the pan-GC analysis based on necroptosis 
we conducted can more intuitively reflect the common-
ality and heterogeneity among gynecologic tumors. As 
for genes in the prognostic NRG-signature, three genes 
(DNMT1, MYC, and SIRT2) could be used to construct 
prognostic signatures for CESC and OV, revealing the 
great value of these three genes in predicting the progno-
sis of CESC and OV. The remaining NRG-signature genes 
showed outstanding prognostic value in their respective 
tumors. Therefore, the prognostic characteristics of the 
four GCs were both common and heterogeneous.

To further clarify when necroptosis exerts its antitu-
mor effect, how to regulate necrotic anti-tumor therapy, 
and maximize the antitumor effect of necroptosis, tumor 
cell types and tumor microenvironment (TME) and other 
factors should be considered, so as to provide new targets 
for tumor targeted therapy. More importantly, it is neces-
sary for us to select appropriate schemes to induce differ-
ent forms of cell death of tumor cells according to tumor 
cell types, combined with chemotherapy, radiotherapy 
and immunotherapy, so as to jointly exert anti-tumor 
effects, and explore the internal relationship and coordi-
nation mechanism between different types of cell death. 
In recent years, it has been found that many compounds 
and anticancer drugs can induce tumor cells to produce 
necroptosis in various ways, thus killing tumor cells 
[78–80]. For example, a sphinolipid ceramide analogue, 
FTY720, has been found to induce necroptosis in tumor 
cells. This effect depends on the intraconuclear binding of 
FTY720 with I2PP2A/SET tumor protein to release inhi-
bition of tumor suppressor protein PP2A protein, thereby 
activating its expression [81]. Tumor therapy based on 
necroptosis is a new strategy for anti-tumor therapy, but 
its feasibility is still controversial. Proponents believe that 
because necroptosis and apoptosis function through dif-
ferent signaling pathways, inducing necroptosis of tumor 
cells has potential as an alternative therapy for anti-apop-
totic malignancies. According to the current research, 
this hypothesis has been preliminarily verified. However, 
skeptics argue that congenital or acquired defects in the 
mechanism of necrosis have been observed in many can-
cer cells, and further research remains to be done on 
whether the use of necrosis inducers can selectively kill 
cancer cells without interfering with normal cell activity 
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and whether they lead to deinflammatory effects in vivo. 
Herein, we explore the relationship between TME 
(mainly immune activity) and NRG-signature, our results 
showed that except for UCS, B c©naive and T cells fol-
licular helper were different between the high- and 
low-risk groups of CESC, OV and UCEC. As for immu-
notherapy, we observed that GC patients with lower RSs 
may be more sensitive to PDL1 response and immune 
checkpoint blockade therapy. In addition, the sensitivity 
of chemotherapeutic agents to prognostic signatures and 
NRGs of four gynecologic tumors was also investigated, 
which may provide preliminary evidence for future thera-
pies targeting necroptosis.

We carried out comprehensive pan-cancer analysis of 
necroptosis molecules in four gynecologic cancers, thus 
evaluating the similarities and differences in necroptosis. 
Furthermore, our study proposed new prognostic signa-
ture based on necroptosis for GCs, whose clinical appli-
cability deserves further exploration. Our study still has 
some limitations. The analytical data were from TCGA, 
hence, we need use the tissues we collected to verify 
this model in subsequent studies and closely follow GC 
patients. Due to the lack of samples, we only detected the 
expression values of several NRGs in the prognostic sig-
nature of OV. Since the samples were recently collected, 
further follow-up is needed to determine the outcome of 
the OV patients, thus further verifying the accuracy of 
this signature in predicting prognosis. Due to the lack of 
time and money for follow-up, the specific mechanism of 
NRGs identified by us has not been developed yet. Cur-
rently, we are committed to the study of mRNAs based 
on the regulation of necroptosis in GCs, so as to over-
come the clinical thorny problem of difficult diagnosis 
and poor prognosis of GCs.

Conclusions
Our integrative analysis of necroptosis molecules revealed 
a broad regulatory mechanism affecting clinicopathologi-
cal features, immune activity and prognosis. Furthermore, 
we identified the therapeutic responsibility of necropto-
sis-related genes in immunotherapy and targeted therapy. 
These features were well compared in four gynecologic 
cancers. These findings demonstrate the important clini-
cal significance of necroptosis-related genes, and will 
afford new thoughts to direct the personalized immuno-
therapy strategy for patients with gynecologic cancers.
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Additional file 1: Supplementary Figure S1. Mutation frequency and 
expression variation of the 76 necroptosis-related genes (NRGs). A-D 
Mutation frequency of NRGs in patients with CESC (A), OV (B), UCEC (C), 
and UCS D. The small figure above shows the TMB, the number on the 
right shows the mutation frequency of each NRG, and the figure on the 
right shows the proportion of each vari©. E Expression levels of NRGs in 
four gynecological tumors. The color of the dots represents the degree of 
variance. Redder dots represent higher expression in cancer tissue. Bluer 
dots represent higher expression in normal tissue. The size of the bubbles 
indicates the adjusted P-value. Larger bubbles represent a lower adjusted 
P-value. The genes with adjusted P-value<0.05 & |logFC|>0.5 were retained 
to produce the figure.

Additional file 2: Supplementary Figure S2. Correlation analysis of the 
76 NRGs for CESC (A), OV (B), UCEC (C), and UCS D. Red indicates a positive 
correlation; blue indicates a negative correlation.

Additional file 3: Supplementary Figure S3. The survival curves of 
necroptosis-score. A-D Kaplan–Meier curve was used to analyze the 
survival rate of CESC (A), OV (B), UCEC (C), and UCS (D) patients with high 
or low necroptosis-score. Black curves indicate low necroptosis-score and 
red curves indicate high necroptosis-score.

Additional file 4: Supplementary Figure S4. Statistical analysis of the 
number of differential NRGs and prognostic NRGs of the four GCs. Red 
bars show up-regulated NRGs in cancer tissue. The green bars show NRGs 
that are downregulated in cancer tissue. The blue bars show the sum of 
the differential NRGs. Yellow bars indicate prognostic NRGs.

Additional file 5: Supplementary Figure S5. The ROC curves for the 
risk model in the four GCs. A-C The ROC curves of CESC for training (A), 
validation (B), and total (C) sets. D-F The ROC curves of OV for training (D), 
valida©n (E), and total (F) sets. G-I The ROC curves of UCEC for training (G), 
validation (H), and total (I) sets. J-L The ROC curves of UCS for training (J), 
validation (K), and total (L) sets.

Additional file 6: Supplementary Figure S6. Expression values of NRGs 
in prognostic signature of OV. A-D Expression values of NRGs in TCGA 
for BACH2 (A), MLKL (B), MYC (C), MYCN (D), and SIRT2 (E). F-J Expression 
values of NRGs in our cohort for BACH2 (F), MLKL (I), MYC (G), MYCN (H), 
and SIRT2 (J).

Additional file 7: Supplementary Figure S7. Clinical value of risk score 
by independent prognostic analysis. A-H The Univariate Cox regression 
analysis and Multivariate Cox regression analysis for CESC (A-B), OV (C-D), 
UCEC (E-F), and UCS G-H.

Additional file 8: Supplementary Figure S8. The Nomogram model 
based on risk model and clinical features for GCs. A-B The Nomogram (A) 
and calibration curve (B) for CESC. C-D The Nomogram (C) and calibration 
curve (D) for OV. (E-F) The Nomo©m (E) and calibration curve (F) for UCEC. 
G-H The Nomogram (G) and calibration curve (H) for UCS.

Additional file 9: Supplementary Figure S9. The waterfall plot of 
somatic mutation features established with risk scores. A-B The waterfall 
plot of somatic mutation in CESC for high-risk group (A) and low-risk 
group B. C-D The waterfall plot of somatic mutation in OV for high-risk 
group (C) and low-risk group D. E-F The waterfall plot of somatic mutation 
in UCEC for high-risk g©p (E) and low-risk group F. G-H The waterfall plot 
of somatic mutation in UCS for high-risk group (G) and low-risk group H.

Additional file 10: Supplementary Figure S10. Spearman correlation 
coefficient between 22 immune cells was calculated for CESC (A), OV 
(B), UCEC (C), and UCS D. Red bubbles indicate positive correlations and 
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blue bubbles indicate negative correlations. The numbers in the bubbles 
represent the correlation coefficients.

Additional file 11: Supplementary Figure S11. Expression of immune 
checkpoints in the low and high-risk groups for CESC (A), OV (B), UCEC (C), 
and UCS D. ∗P<0.05; ∗∗P<0.01; ∗∗∗P<0.001; ns: not significant. The blue 
bars represent the low-risk group and the red bars represent the high-risk 
group.

Additional file12: Supplementary Figure S12. Spearman correlation 
between NRGs expression level and IC50 level of drugs. A Bubble chart for 
CESC. B Bubble chart for OV. C Bubble chart for UCEC. D Bubble chart for 
UCS. The bubble color indicates the degree of correlation index. The bub-
ble size indicates the P-value. The correlation with P<0.05 & |Cor|>0.3 were 
retained to produce the figure.

Additional file 13: Supplementary Table 1. The primer sequences in 
PCR analysis.

Additional file 14: Supplementary Table 2. The results of expression 
differences for pan-cancer analysis.

Additional file 15: Supplementary Table 3. The results of Univariate Cox 
regression analysis for pan-cancer.
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