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Abstract 

Emerging proof shows that abnormal lipometabolism affects invasion, metastasis, stemness and tumor microenviron-
ment in carcinoma cells. However, molecular markers related to lipometabolism have not been further established 
in breast cancer. In addition, numerous studies have been conducted to screen for prognostic features of breast 
cancer only with RNA sequencing profiles. Currently, there is no comprehensive analysis of multiomics data to extract 
better biomarkers. Therefore, we have downloaded the transcriptome, single nucleotide mutation and copy number 
variation dataset for breast cancer from the TCGA database, and constructed a riskScore of twelve genes by LASSO 
regression analysis. Patients with breast cancer were categorized into high and low risk groups based on the median 
riskScore. The high-risk group had a worse prognosis than the low-risk group. Next, we have observed the mutated 
frequencies and the copy number variation frequencies of twelve lipid metabolism related genes LMRGs and ana-
lyzed the association of copy number variation and riskScore with OS. Meanwhile, the ESTIMATE and CIBERSORT 
algorithms assessed tumor immune fraction and degree of immune cell infiltration. In immunotherapy, it is found that 
high-risk patients have better efficacy in TCIA analysis and the TIDE algorithm. Furthermore, the effectiveness of six 
common chemotherapy drugs was estimated. At last, high-risk patients were estimated to be sensitive to six chemo-
therapeutic agents and six small molecule drug candidates. Together, LMRGs could be utilized as a de novo tumor 
biomarker to anticipate better the prognosis of breast cancer patients and the therapeutic efficacy of immunotherapy 
and chemotherapy.
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Introduction
Breast cancer (BRCA) has become the most common 
malignancy and the second leading cause of cancer-
related deaths globally [1]. At present, there are some 
therapies for breast cancer such as classical chemother-
apy, radiotherapy, endocrine therapy and other targeted 
therapies. However, some patients can occur drug resist-
ance [2]. At the same time, immunotherapy is relatively 
rare [3]. It may be related to the immune microenviron-
ment of BRCA [4–6]. Thus, it is imperative to uncover 
new therapeutic biomarkers to guide clinical treatment.
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Lipometabolism has been proved to have a signifi-
cant relationship with invasion, metastasis and cancer 
stemness [7]. Altered lipometabolism is among the 
most remarkable metabolic changes in cancer. The 
enhanced synthesis and uptake of lipids contribute to 
the rapid growth of cancer cells and tumor progres-
sion. Lipids are a highly complex group of biomole-
cules that not only comprise the structural substratum 
of biological membranes but also act as signaling 
molecules and energy sources. It is known as the can-
cer metabolic reprogramming [8]. Some studies have 
shown that tumor cells can achieve immune escape 
through metabolic reprogramming [9]. For expamble, 
lipometabolism is the process in which breast cancer 
cells can be better growth [10, 11]. Meanwhile, lipome-
tabolism reprogramming can also induce tumor resist-
ance in chemotherapy and immunotherapy [12–14]. 
Through cellular and animal experiments, some rel-
evant markers of lipid metabolism have been identified 
in breast cancer. [15]. However, it’s rare that the mark-
ers of lipid metabolism were screened by large clini-
cal samples. Nevertheless, there are no biomarkers for 
lipometabolism-related chemotherapy and immuno-
therapy in BRCA.

In this study, a riskScore of the lipometabolism-
related gene signature consisting of twelve genes was 
constructed by univariate Cox regression and LASSO 
regression analysis. In addition, these twelve genes 
were analyzed for tumor mutation burden and copy 
number variation. This prognostic model accurately 
predicted the overall survival and reflected the effi-
cacy of TIME and immunotherapy in BRCA. And we 
examined the association between risk groups and 
BRCA stemness and successfully predicted IC50 scores 
for chemotherapy in both high- and low- risk groups. 
In addition, we proposed a treatment strategy for 
the high-risk group. In conclusion, the results of this 
study can help clinicians and oncologists to predict the 
breast cancer prognosis and the efficacy of chemother-
apy and immunotherapy.

Materials and methods
Patients and clinical specimens
We searched The Cancer Genome Atlas (TCGA) 
breast cancer cohort for RNA-Seq, single nucleo-
tide variants and copy number variants in the data-
set (https://​nci.​nih.​gov/​tcga/) excluding patients with 
no clinical information. A total of 1064 samples were 
included in the study, with 1014 cancer specimens and 
60 normal samples. We annotated transcripts with 
gene transfer format (GTF) documents obtained from 
Ensembl.

Identification of lipometabolism related DEGs 
and functional richness analysis
The limma package in R V4.1.1 (https://​www.r-​proje​ct.​org; 
|log2fold change|> 1, (FDR) < 0.05) analyzes DEGs, the vol-
cano map and the differential gene heat map use the R pack-
age respectively Ggplot2 and heatmap packages in the. Then 
provide GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis (adjPvalue < 0.05) through the 
clusterProfiler package [16].

Univariate Cox analysis and construction of prognostic 
model
Using lipometabolism differential gene data, the survival 
package is used for univariate Cox regression analy-
sis. The least absolute shrinkage and selection operator 
(LASSO) regression algorithm for feature selection, using 
10-fold cross-validation, the above analysis uses the R 
software package glmnet. For Kaplan–Meier curves, 
p-values and hazard ratio (HR) with 95% confidence 
interval (CI) were generated by log-rank tests and uni-
variate Cox proportional hazards regression. All analyti-
cal methods above and R packages were performed using 
R software version 4.0.5 (The R Foundation for Statistical 
Computing, 2020). p < 0.05 was considered as statistically 
significant.

Estimation of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data (ESTIMATE)
The ESTIMATE algorithm-generated matrix and 
immune scores to estimate the level of infiltrating matrix 
and immune cells in BRCA tissue and tumor purity 
through expression profiles. Then, we used the Wilcoxon 
rank-sum test to compare the differences in tumor purity, 
stroma, and immune scores between the high and low 
risk groups.

Screening chemotherapy agents and predicting 
the effective response of Immunotherapy
Screening of chemotherapeutic agents in the high- 
and low-risk groups was performed with the R pack-
age "pRRophetic". Immunophenoscore (IPS) of BRCA 
patients was derived from the Cancer Immunology Atlas 
(TCIA, https://​tcia.​at/​patie​nts). The patient’s IPS was 
obtained without prejudice by considering four types of 
immunogenicity determinants: effector cells, immuno-
suppressive cells, MHC molecules, and immunomodula-
tors. This step is performed by evaluating gene expression 
in the four cell types. IPS is calculated based on the 
z-score representing the gene expression in the cell type 
in the range of 0–10. A higher IPS score is positively 
correlated with increased immunogenicity. Meanwhile, 
Tumor Immune Dysfunction and  Exclusion (TIDE) 

https://nci.nih.gov/tcga/
https://www.r-project.org
https://tcia.at/patients
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algorithm predicted ICB response and evaluates immune 
escape ability (http://​tide.​dfci.​harva​rd.​edu/​login/).

The prediction of potential small molecule agents in BRCA 
patients
The Connectivity Map (CMap) database (https://​porta​ls.​
broad​insti​tute.​org/​cmap/) was used to predict potential 
drugs. The full range of up-and down-regulated over-
lapping genes was submitted to the CMap database to 
predict drugs that might induce or reverse the biologi-
cal processes that characterize the expression of specific 
genes in BRCA. Enrichment scores were calculated from 
-1 to 1. Enrichment scores between -1 and 0 indicated 
that the drug might reverse gene expression (a candidate 
for BRCA). In contrast, enrichment scores between 0 and 
1 indicated that the drug might induce gene expression. 
p-values < 0.05 were considered statistically significant. 
Finally, 2D structural graphs of these drug candidates 
were obtained from PubChem (https://​pubch​em.​ncbi.​
nlm.​nih.​gov/).

Construction of Nomogram based on prognostic model
The "rms" package in R builds a nomogram based on 
overall survival (OS) with independent prognostic fac-
tors. Use the AUC value to test the ability of the Nom-
ogram to distinguish survival. Construct a calibration 
curve of the Nomogram to test the 1, 3 and 5-year sur-
vival probabilities based on the Nomogram and actual 
observations.

Statistical analysis
Statistical analysis is performed by R (version 4.1.1). The 
Wilcoxon rank-sum test presents comparisons between 
the two groups, while the Kruskal–Wallis test assesses 
multiple comparisons. The survminer package deter-
mines the demarcation point of each subgroup in R. 
The Kaplan–Meier curve of OS analysis was presented 
between different subgroups, and then the log-rank test 
was performed. Multivariate cox regression analysis is 
used to evaluate the association between OS and clinico-
pathological characteristics and risk scores. The Forest-
plot package visualizes these in R. AUC depicts 1, 3, and 
5-year survival rates and is used to assess the predic-
tive power of risk scores. Bonferroni’s test corrects the 
P-value. P < 0.05 on both sides was considered statisti-
cally significant.

Results
Differential gene expression of lipometabolism‑related 
genes in breast cancer
A total of 751 LMRGs were identified from previous 
studies for enrollment in this study (Table S1). To deter-
minate the differential expression levels of LMRGs in 

breast cancer and normal tissues from the TCGA data-
set (TCGA_BRCA), we identified 294 differential genes 
(|logFC|> 0.5, p < 0.05, Table S2). As the volcano map 
revealed, 136 genes were upregulated and 158 genes were 
downregulated in breast cancer (Figure S1A). Meanwhile, 
we performed the relationship between differential genes 
and the overall survival of BRCA patients in the TCGA 
dataset. Univariate Cox regression indicated thirty genes 
were significantly associated with independent prognos-
tic risk factors (Figure S1B, p < 0.05).

Construction and verification of riskSore 
of lipometabolism‑related genes
To construct a risk score for lipid metabolism associated 
with BRCA, we performed LASSO regression analysis on 
the thirty genes mentioned above, generating signatures 
for twelve genes (ABCA1, PIK3CA, OSBPL1A, ACSL1, 
APOA5, NDUFAB1, ENPP6, PLA2G2D, SRD5A3, PLE-
KHA4, SRD5A2, CEBPD) (Fig.  1A-B). The risk score 
for each patient is calculated through the formula: 
riskScore =  n

i=1
βiχ i . We categorized BRCA patients 

into high-and low- risk groups based on the median 
risk score. We used TCGA_BRCA as the internal train-
ing set, Kaplan–Meier analysis showed that high-risk 
patients had a poorer prognosis (Fig. 1C, p < 0.001). And 
the  1-,  3-, and 5-year AUC  values were 0.699,0.682 and 
0.698 in the TCGA_BRCA (Fig. 1D). Risk curves showed 
that riskScore was positively correlated with risk values 
of BRCA patients (Fig. 1E). Further, we used GEO dataset 
(GSE20685) as the validation cohort. Kaplan–Meier anal-
ysis showed that high-risk patients had a poorer progno-
sis (Fig. 1F, p < 0.01) and the 1-, 3-, and 5-year AUC values 
were 0.589, 0.708 and 0.637 (Fig. 1G). Risk curves showed 
that riskScore was positively correlated with risk values 
for BRCA patients in the validation cohort (Fig. 1H).

Association between riskScore and clinicopathological 
features of BRCA​
To clarify the relationship between riskScore and the 
clinicopathological features and molecular subtypes of 
BRCA, we observed that high riskScore was positively 
correlated with age (Figure S2A-D, p < 0.01), but not sta-
tistically significant with T stage, N stage and M stage 
(p > 0.05). The risk scores for the late stage (stage III/IV) 
were not statistically different from those for the early 
stage (stage I/II) (Fig.  2A, p = 0.099). Due to the clas-
sification of BRCA into Luminal A, Luminal B, HER2-
positive and triple-negative types based on ER, PR and 
HER2 expression, we further elaborated on the relevance 
of riskScore to the molecular subtypes of BRCA. Inter-
estingly, riskScore was significant difference in ER and 
HER2 states (Figure S3A-C, p < 0.05). Meanwhile, in 
HER2-positive riskScore was significant different from 

http://tide.dfci.harvard.edu/login/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Fig. 1  Construction and verification of prognostic model of lipometabolism-related genes. A Tuning parameter (λ) selection cross‐validation error 
curve. B Distribution of LASSO coefficients for the 141 survival-related LMRGs. C Kaplan–Meier curve for internal training set. D 1, 3 and 5 year time 
dependent ROC curves for internal training set. E Risk score and survival time based on the LMRGs of internal training cohort. F Kaplan–Meier curve 
for external validation sets. G 1, 3 and 5 year time dependent ROC curves for external validation sets. H Risk score and survival time based on the 
LMRGs of external validation sets

(See figure on next page.)
Fig. 2  The correlation of riskScore with patients’ clinicopathological characteristics. A Association between clinical stage and riskScore. B 
Association between molecular subtypes and riskScore. C Survival rates of Luminal A breast cancer in high and low risk groups. D Survival rates of 
Luminal B breast cancer in high and low risk groups. E Survival rates of HER2 breast cancer in high and low risk groups. F Survival rates of Basal-like 
breast cancer in high and low risk groups
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Fig. 2  (See legend on previous page.)
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Luminal A subgroup (Fig. 2B, p < 0.05). We also validated 
age, ER and HER2 in the GSE6130 dataset and the results 
showed that the risk scores were higher in ER nega-
tive group, but no significant difference in age or HER2 
group. (Figure S3D-F, p < 0.05). Further, we revealed the 
clinicopathological characteristics between the high-risk 
and low-risk groups. According to the age, the high-risk 
group had a lower OS (Figure S4A-B, p < 0.05). BRCA 
patients had worse OS in the high riskScore model on 
the clinical stage I/II (Figure S5A-B, p < 0.05). In terms of 
ER, PR and HER2, the prognosis of high-risk group was 
worse in the ER-positive/negative, PR-positive/negative 
and HER2-negative BRCA subgroups from TCGA-BRCA 
(Figure S6A-F, p < 0.05). Meanwhile, we used GSE6130 
dataset and found the prognosis was no statistical signifi-
cance in different subgroups (Figure S6G-J). Further, in 
the case of molecular subtypes, the prognosis was worse 
in the high-risk group in Luminal A and TNBC subtypes 
while no statistical significance was showed in HER2 and 
Luminal B subtypes (Fig. 2C-F, p < 0.05). We also plotted 
the relationship between risk score and molecular type 
and analyzed survival prognosis in the GSE6130 dataset 
(Figure S7).

Prognostic model based on Nomogram to foresee 
the survival of BRCA patients
Univariate and multivariate Cox regression demon-
strated that the riskScore was an independent predic-
tor for poorer overall survival (Fig.  3A-B). Therefore, 
we constructed the Nomogram based on the riskScore 
model (Fig.  3C) and the calibration diagram was listed 
in Fig.  3D. Meanwhile, the Nomogram was constructed 
with the GSE6130 dataset (Figure S8). These data sug-
gested that the riskScore-based Nomogram might serve 
as a robust tool for the prediction of survival in patients 
with BRCA.

Transcriptome, single nucleotide mutations and copy 
number variations in LMRGs of breast cancer
To ascertain the relationship between genetic alterations 
and interactions of LMRGs in BRCA, we first observed 
the differential expression of these twelve genes at the 
transcriptome level in cancerous and paraneoplastic tis-
sues (Fig.  4A). Naturally, we appraised the interaction 
network diagram among the twelve LMRGs (Fig.  4B). 
Subsequently, we assessed the prevalence of somatic 
mutations (SNVs) and copy number variants (CNVs). 
333 of the 986 samples were detected as carrying muta-
tions in the LMRGs, with the highest mutation frequency 
being PI3KCA (Fig. 4C). The location of CNV alterations 
on the chromosomes of the 12 LMRGs was shown in 
Fig. 4D. And the frequency of CNV mutations was shown 
in Fig.  4E. We looked at the relationship between CNV 

characteristics and risk scores. The results showed that 
the Gain group had a higher risk score than the diploid 
group (Fig. 4F, p < 0.024). Survival differences were found 
in the diploid, Gain and Loss groups in both the high and 
low risk groups (Fig. 4G-I, p < 0.05).

Relationship between prognosis models and immune 
microenvironment
To elucidate potential pathways for gene enrichment 
in high- and low- risk groups, we analyzed 23 up-
regulated and 97 down-regulated differential genes 
(DEGs) between the high-risk group and low-risk group 
(p < 0.05, |logFC|> 1.5, Table S3). GO enrichment analy-
sis indicated that DEGs were enriched in immuno-
globulin production, complement activation, classical 
pathway, production of molecular mediator of comple-
ment response, humoral immune response mediated by 
circulating immunoglobulin in BP, MF, and CC functions 
(Fig.  5A). In addition, KEGG pathway analysis showed 
that the IL-17 signaling pathway, cytokine interaction 
receptor, and viral protein interaction with cytokine and 
cytokine receptor pathway were the central pathways 
in the riskScore (Fig.  5B). We postulated that riskScore 
might play an important role in the tumor immune 
microenvironment (TIME). ESTIMATE algorithms were 
used for the immune microenvironment of BRCA. The 
results showed that ImmuneScore and ESTIMATEScore 
were lower in the high-risk group while TumorPurity was 
higher (Fig. 5C, p < 0.05). We also observed that naive B 
cells, Plasma cells, CD8 + T cells, follicular helper T cells, 
Tregs cells and activated NK cells were higher in the low-
risk group, while M0, M2 macrophages and resting Mast 
cells were higher in the high-risk group (Fig. 5D). Heat-
map indicated the distribution of immune cells in high- 
and low- risk groups (Fig.  5E). Further, we investigated 
the relationship between HLA genomes and risk scores. 
The results showed that the expressions of HLA genomes 
were markedly higher in the low-risk group (Fig.  5F). 
These data suggested that immune response was more 
active in the low-risk group.

The negative correlation between riskScore and immune 
checkpoint expression
To further investigate the variation between prognos-
tic models and immunotherapies, we first assessed the 
correlation between eleven immune checkpoint mole-
cules and riskScore. We found that immune checkpoint 
molecules were negatively correlated with risk scores 
(Fig. 6A). Following this, we looked at the differences in 
their expression in the high and low risk groups, with 
the commonly used immune checkpoints PD1 and 
CTLA4 both highly expressed in the low-risk group 
(Fig.  6B-C, p < 0.05), and all other immune checkpoint 
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molecules, except TIM-3 and IAP, which were not sta-
tistically significant, highly expressed in the low-risk 
group (Figure S9, p < 0.05). Additionally, we validated 
the above immune checkpoints in the GSE6130 data-
set (Figure S10). Further, we validated the immune 
efficacy of the prognostic models via two publicly avail-
able data (TCIA and TIDE). The results showed that 
immunotherapy had better effectiveness in the low-risk 
group (Fig.  6D-I). Taken together, these data demon-
strated that the low-risk group was more sensitive to 
ICB (immune-checkpoint blockade) treatment than the 
high-risk group.

Chemotherapy agents and small molecule targeted drugs 
for breast cancer patients with high‑risk LMRGs
Previous studies have shown that LMRGs were asso-
ciation with chemoresistance through the activation of 
tumor stem cells. Therefore, we addressed the relation-
ship between tumor stemness index (TSI) and riskScore 
in BRCA. The results revealed that both mRNAsi and 
epigenetically regulated mRNAsi (EREG-mRNAsi) were 
positively correlated with riskScore (r = 0.088, p = 0.005; 
r = 0.121, p < 0.001, respectively, Fig. 7A-B). The pod plots 
showed that both mRNAsi and EREG-mRNAsi were 
higher in the high-risk group (Fig. 7C, p < 0.05, p < 0.001). 

Fig. 3  Prognostic model based on Nomogram to foresee the survival of BRCA patients. A Forest plot summary of univariate regression analyses of 
riskScore and clinicopathological characteristics in TCGA-BRCA cohort. B Forest plot summary of multivariate regression analyses of riskScore and 
clinicopathological characteristics in TCGA-BRCA cohort. C Nomograms for predicting the probability of patient mortality at 1-,3- or 5-year OS based 
on riskScore. D Calibration curves of the nomogram for predicting the probability of OS at 1-,3-, and 5-years
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Further, we performed IC50 to estimate cisplatin, pacli-
taxel, doxorubicin, gemcitabine, etoposide and vinorel-
bine (Fig. 7D-I). The data showed that compared with the 
low-rated group, the IC50 of cisplatin, paclitaxel, doxoru-
bicin, gemcitabine, etoposide and vinorelbine in the high-
risk groups were increased. These data indicated that 
riskScore might serve as an indicator for chemotherapy.

Further, the CMap database (https://​porta​ls.​broad​insti​
tute.​org/​cmap/) was used to screen for small molecule 
drugs. The eight small molecule drugs were screened 
based on DEGs in high- and low- risk groups (p < 0.05, 
enrichment < 0, Table S4). 2D structural imagings of tol-
naftate, rifampicin, clenbuterol, anisomycin, fusaric acid, 

withaferin A, spironolactone, MG-262, desipramine were 
displayed in PubChem (Figure S11).

Discussion
In view of the highly variable prognosis of BRCA, it 
is crucial to establish a robust categorizer to stratify 
patients with different risks and prognoses. It is essen-
tial to maximize the benefits from personalized treat-
ment and timely follow-up. There have been invested in 
exploring the complex mechanisms of BRCA. However, 
it remains far from satisfactory via understanding TME, 
treatment targets and prognostic factors. In this study, 
we constructed predictive models of twelve LMRGs 
and comprehensively explored their transcriptomes, 

Fig.4  Transcriptome, single nucleotide mutations and copy number variations in LMRGs of breast cancer. A Variance analysis of twelve LMRGs 
in breast cancer Waterfall diagram of LMRGs of breast cancer. B Chord diagram of the interrelationship of the twelve LMRGs in breast cancer. C 
Waterfall plot of twelve LMRGs mutations in breast cancer. D LMRGs copy number variation circle map of breast cancer. E Copy number variation 
frequency of LMRGs in breast cancer. F Correlation of LMRGs expression levels with different CNV patterns. G-I KM survival curve of patients with 
diploid,gain and loss LMRGs in high and low risk groups

https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
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gene mutations, copy number variants, immune micro-
environment and tumor stemness, which intended to 
construct a novel strategy to solve important clinical 
question.

We found that LMRGs screened by LASSO regression 
analysis were associated with survival in BRCA patients 
in the training, test, and external validation sets. Sur-
prisingly, the trained model showed that 5-year survival 

Fig. 5  Relative proportion of immune infiltration in high-risk and low-risk groups. A GO analysis of DEGs. B KEGG pathway analysis of DEGs. C 
The immune microenvironment among the two risk groups. D Heatmap of immune cell differences between two subgroups. E Immune cells the 
between two subgroups. F Gene expression of HLA gene sets between two distinct clusters
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prediction was higher accuracy on the training set com-
pared to the results for 1-year survival prediction. The 
same results were also shown in the test set. Further-
more, the inverse effect of LMRGs was significantly asso-
ciated with prognosis, even after stratifying patients by 
clinicopathological risk factors. And the LMRGs showed 
different values of risk scores in the context of differ-
ent molecular subtypes in breast cancer. For instance, 
the relationship between prognosis and the subgroups 
(Luminal A and TNBC) was associated, which has been 
reported previously [17–19]. Further, we found that the 

riskScore could be an independent prognostic factor 
for BRCA using univariate and multivariate Cox regres-
sion analysis. The hazard ratio of riskScore was higher 
than the stage, which means a better prognostic value. 
Through combining risk score with age, stage and ER, 
PR, HER2 receptor, we constructed a prognostic model 
of BRCA using nomogram and validated its accuracy.

Previous studies only have examined the effects of 
LMRGs at the transcriptome level and single-nucleo-
tide mutations and copy number variants have not been 
thoroughly studied in breast cancer [20]. This study 

Fig. 6  The estimation of prognosis model in immunotherapy response. A Correlation of riskScore with immune checkpoints. B PD1 expression in 
high and low risk groups. C CTLA4 expression in high and low risk groups. D-F PD1 and CTLA4 immunotherapy in TCIA. E CTLA4 immunotherapy in 
TCIA. F PD1 immunotherapy in TCIA. G Relationship between high and low risk groups and TIDE scores. H Relationship between high and low risk 
groups and exclusion. I Relationship between high and low risk groups and Dysfunction
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systematically analyzed the interaction and prognos-
tic network of the twelve LMRGs. And in this study, it 
performed a comprehensive analysis of their mutations 
and copy number variants which could provide a more 
thorough understanding of the LMRGs.

Lipid metabolic reprogramming played a vital role in 
the tumorigenesis and progression of BRCA [21, 22]. 
It has been reported that the ability of lipid metabo-
lism in tumor was an essential mechanism to evade 
immune surveillance [23, 24]. Cancer cells require 
large amounts of energy to undergo division, and con-
ventional glycolysis can no longer satisfy its energy 
requirements [25, 26]. Hence, cancer cells resort to 
lipid metabolism to provide their needs for growth. In 

this process, lipid metabolism inhibitd the release of 
chemokines which affected the recruitment of immune 
cells to cancer cells [27–29]. It is well reflected in our 
GO and KEGG analysis in the high- and low- risk 
groups. Interestingly, tumor purity was higher in the 
high-risk group, and immune and stromal components 
were higher in the low-risk group. The data suggested 
that tumor tissues with a higher proportion of tumor 
cells had a more remarkable ability to reprogram lipo-
metabolism, which inhibited the immune microenvi-
ronment in some extent [30–32]. In addition, B cells 
and T cells were lower in the high-risk group, con-
firming that lipometabolism can cause immune cell 
depletion. Interestingly, M2-type macrophages were 

Fig. 7  The tumor stemness index of breast cancer reflects its response to chemotherapy. A and B Relationship between TSI and risk score. C Pod 
plot showing the relationship between risk scores and TSI (*: p < 0.05;**: p < 0.01;***: p < 0.001). D-I The chemotherapy response of two prognostic 
subtypes for six common chemotherapy drugs ((D) Cisplatin; (E) Paclitaxel; (F) Doxorubicin; (G) Gemcitabine; (H) Etoposide and (I) Vinorelbine)
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more numerous in the high-risk group, and it has been 
shown that tumor metabolic reprogramming induced 
the transformation of macrophages from M1-type to 
M2-type [33].

Previous studies show a relationship between breast 
cancer stem cells and chemotherapy resistance [34]. 
In our research, low-risk patients had a low stemness 
index and were more sensitive to chemotherapeutic 
agents, which suggested twelve genomes were as tar-
gets for therapeutic intervention. There was different 
in the immune checkpoint between the high- and low-
risk group and it’s better to immunotherapy response 
in low-risk group. This data suggested that risk scores 
can influence the outcome of immunotherapy and prog-
nostic models can determine which types of patients 
are more likely to respond to immunotherapy in BRCA. 
With the popularization of DNA sequencing technol-
ogy, we have entered the era of precision medicine. 
They found the abnormality of gene expression and saw 
the difference between each patient and therapeutic 
efficacy [35, 36]. Immunotherapy has become a prob-
lem that every clinical need to solve. Interestingly, lipids 
are an important fuel source for energy production and 
most of signaling pathways and enzymes are affected in 
cancer cells, which means lipid metabolism is a central 
role in cancer biology [9]. According to current con-
cepts, cancer is mainly driven by oncogenes to promote 
unlimited growth and metastasis. It usually involves the 
constitutive activation of growth factor receptors and 
downstream signaling. Still, it also consists of repro-
gramming metabolic processes to provide substrates 
and energy for cancer cells in the changing microenvi-
ronment [37].

We predicted these potential targets using riskScore 
and constructed from twelve lipometabolism genomes. It 
enabled chemotherapy and immunotherapy to be used in 
patients who were not sensitive to drugs. However, there 
are still some challenges to translating these targets into 
clinical therapeutics. In particular, the molecular types 
of BRCA has not been included in subsequent treatment. 
Secondly, how the twelve genes cause the tumorigenesis 
and development of BRCA and the related mechanisms 
still need further verification using in  vivo and in  vitro 
experiments.

In summary, this study comprehensively evaluated the 
role of LMRGs in the prognosis and immune microen-
vironment and explored the molecular mechanisms in 
BRCA. The LMRG-based risk model was successfully pre-
dicted the overall survival of patients and pointed out the 
tumor immune microenvironment. In addition, our results 
showed that the characteristics of tumor stemness could 
affect the chemotherapeutic efficacy and immune-related 
signaling pathways might mediate the function of LMRGs 

in BRCA. Our work provided an innovative perspective 
for future research and targeted therapies. Further stud-
ies were required to verify the prognostic value of LMRG-
based risk model and its potential mechanisms. In a word, 
it’s important for the riskScore to serve as a preventive or 
therapeutic strategy in BRCA.
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