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Abstract 

Little is known on the relationship between the expression of pyroptosis related genes (PRGs) and prognosis of hepa-
tocellular carcinoma (HCC). In this study, a specific PRGs prognostic model was developed with an aim to improve 
therapeutic efficiency among HCC patients. In total, 42 PRGs that were differentially expressed between HCC tissues 
and adjacent tissues and we exhibited the mutation frequency, classification, the location of copy number variation 
(CNV) alteration and the CNV variation frequency of PRGs. Two clusters were distinguished by the consensus cluster-
ing analysis based on the 42 differentially expressed genes (DEGs). There were significant differences in clinical fea-
tures including T stage, grade, gender, and stage among different clusters. Kaplan–Meier curve analysis showed that 
cluster 1 had a better prognosis than cluster 2. The prognostic value of PRGs for survival was evaluated to construct a 
multigene signature using The Cancer Genome Atlas (TCGA) cohort. Based on the univariate analysis and multivariate 
analysis, a 10-gene signature was built and all HCC patients in the TCGA cohort were divided into low-risk group and 
high-risk group. HCC patients in the high-risk group showed significantly lower survival possibilities than those in the 
low-risk group (P < 0.001). Utilizing the median risk score from the TCGA cohort, HCC patients from International Can-
cer Genome Consortium (ICGC)-LIRI-JP cohort and Gene Expression Omnibus (GEO) cohort (GSE14520) were divided 
into two risk subgroups. The result showed that overall survival (OS) time was decreased in the high-risk group. Com-
bined with the clinical characteristics, the risk score was an independent factor for predicting the OS of HCC patients. 
Then, ROC curve and survival analysis were performed to evaluate the prognostic prediction value of the model. 
Finally, we constructed a PRGs clinical characteristics nomogram to further predict HCC patient survival probability. 
There were significant differences in immune cell infiltration, GSEA enrichment pathway, IC50 of chemotherapeutics, 
PRGs mutation frequency between high-risk group and low-risk group. This work suggests PRGs signature played a 
crucial role in predicting the prognosis, infiltration of cancer microenvironment, and sensitivity of chemotherapeutic 
agents.
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Introduction
Hepatocellular carcinoma (HCC), one of the most com-
mon gastrointestinal cancers, has been considered as a 
worldwide threat due to a high incidence and poor prog-
nosis. Based on the global cancer statistics in 2018, there 
were 841,080 new HCC cases and 781,631 deaths [1]. The 
disease is rapidly progressed, and most patients show 
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a 5-year survival rate of merely 5-14 % [2]. Resistance 
to apoptotic process has been considered to be closely 
related to poor prognosis among HCC patients [3]. 
Therefore, it is necessary to find a new candidate of pro-
grammed cell death in order to overcome the drug resist-
ance and develop new models for predicting the overall 
survival (OS).

Pyroptosis, designated as a novel programmed cell 
death pathway usually caused by activation of inflamma-
some and caspase, plays an important role in the progress 
of HCC [4–8]. Pyroptosis pathways include canonical 
pyroptotic pathways mediated by caspase-1 depend-
ence and non-canonical pyroptotic pathways mediated 
by caspase-4, − 5, and − 11. Currently, pyroptosis is 
reported to involve in the pathogenesis of several can-
cers through modulating the proliferation, invasion, cell 
cycle and drug-resistance of cancer cells. In colon cancer 
cells, the cleavage of GSDME by caspase-3 was crucial for 
the lobaplatin-induced pyroptosis [9]. In addition, tumor 
suppressor DRD2 could restrict the restricts NF-kappaB 
signaling to trigger pyroptosis, which played a pivotal role 
in the pathogenesis of breast cancer [10]. Moreover, the 
ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic 
pathway was closely related to the inhibition of endome-
trial cancer growth mediated by hydrogen [11]. All these 
indicated that pyroptosis may serve as a crucial factor 
for the pathogenesis of cancer. To date, extensive stud-
ies show that pyroptosis is closely linked to the cancer 
immunity, and may serve as a candidate to improve the 
prediction efficiency and immune response [12]. Unlike 
the apoptosis, pyroptosis led to massive release of inflam-
matory factors, triggering severe immune responses that 
may involve in the remodeling of the tumor microenvi-
ronment [13].

Recently, the potential application of differentially 
expressed genes have been a new hot in the research of 
cancer. Therefore, it is beneficial to investigate the poten-
tial application of pyroptosis-related genes (PRGs) in the 
treatment and prognosis of HCC. In this study, we deter-
mined the expression of PRGs between the HCC tissues 
and the adjacent tissues, with an aim to investigate the 
correlation between pyroptosis and the tumor micro-
environment, which could guide the target therapy and 
immune therapy for HCC patients.

Materials and methods
Datasets
The TCGA-liver cancer dataset consisted of the RNA-seq 
data, somatic mutation data, and copy number variation 
(CNV) data from 374 liver cancer tissue and 50 adjacent 
normal samples. Their clinical characteristics were down-
loaded from the TCGA database. Gene expression profile 
of GSE14520 was downloaded from the GEO database. 

The TCGA dataset was enrolled as a training cohort and 
the GEO dataset was regarded as the external validation 
cohort. Besides, the ICGC-LIRI-JP cohort was down-
loaded from the ICGC database also served as external 
validation cohort. As these data were open-access, there-
fore, the ethical approval by an ethics committee was not 
required.

Identification of differentially expressed pyroptosis related 
genes (PRGs)
In total, 52 PRGs were extracted from prior publications 
[14–17], previous pyroptosis-related studies [18–31] 
and MSigDB database (v7.4), [32], respectively (Supple-
mentary Table S1). The expression data in all the three 
datasets were normalized to fragment per kilobase mil-
lion (FPKM) values before comparison. Limma statistical 
package was used to identify DEGs with a P value of less 
than 0.05. A PPI network for the differentially expressed 
PRGs was constructed with Search Tool for the Retrieval 
of Interacting Genes (STRING, version 11.0).

Unsupervised clustering analysis of PRG
Unsupervised cluster analysis was performed to identify 
different pyroptosis type using the ConsenSuClusterPlus 
R package. Patients from TCGA database were divided 
into different groups for subsequent analysis. A total of 
2000 repeats were performed to ensure the stability of 
the classification. The correlation between different clus-
ters and clinical information was further determined by 
Chi-square test. The OS of each cluster was performed 
using the Kaplan–Meier survival curve.

Development and validation of the PRGs prognostic model
To assess the prognostic value of the PRGs, Cox regres-
sion analysis was employed to evaluate the correlations 
between each gene and survival status in the TCGA 
cohort. Univariate and multivariate COX analyses were 
performed on the PRGs. The expression data of the 
PRGs associated with prognosis in the TGCA dataset 
were used to establish the risk score model. GSE14520 
and ICGC-LIRI-JP were then used to verify the reli-
ability of the model. The risk score was calculated after 
centralization and standardization of the TCGA expres-
sion data, based on the following formula: Risk Score= 

10

i
Xi × Yi , with X and Y represented the coefficients 

and gene expression level, respectively. TCGA HCC 
patients were divided into low-risk group and high-risk 
group according to the median risk score. A log-rank test 
was used to compare the survival difference between the 
two groups. The OS of each group was analyzed using 
the Kaplan–Meier survival curve. The 1-year, 3-year and 
5-year survival ROC curve was analyzed using the “sur-
vival”, “survminer” and “timeROC” R packages.
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Independent prognostic analysis of the risk score
In the prognostic analysis of risk score, we extracted the 
clinical information from the TCGA cohort, including 
age, gender, grade, stage, T stage, N stage, and M stage. 
These variables were analyzed in combination with the 
risk score in our regression model based on the univari-
ate and multivariable Cox regression models.

Correlation analysis between immunity and the risk groups
Spearman correlation was used to analyze the correla-
tion between risk score values and tumor-infiltrating 
immune cells (TIIC) based on XCELL, TIMER, QUAN-
TISEQ, MCPCOUNTER, EPIC, CIBERSORT, and CIB-
ERSORT-ABS algorithms. In addition, the heatmap was 
utilized to depict the component differences of immu-
nocytes between the high- and low-risk groups.

Function analysis between high‑ and low‑risk groups
GSEA was used to investigate the biological func-
tion of PRGs. To assess the signature in clinical trials 
for HCC treatment, R ggplot2 and pRRophetic pack-
ages were utilized to calculate the lower half inhibitory 
concentration (IC50) of commonly used chemothera-
peutic drugs (e.g. lapatinib) in TCGA-HCC. Moreo-
ver, somatic mutations were explored among high- and 
low-risk groups using maftools, which was an R pack-
age for analyzing and visualizing mutation annotation 
format (MAF) files from large-scale sequencing studies.

Quantitative reverse transcription PCR (qRT‑PCR)
Cell total RNA was extracted using Trizol reagent (Inv-
itrogen, USA) following the manufacturer’s instruc-
tions. The quantity and quality of extracted RNA were 
assessed by the spectrophotometric (Dojindo Labo-
ratories, Kumamoto, Japan) determination of absorb-
ance ratio (A260/A280). Then, the prepared RNA was 
reversely transcribed into cDNA using reverse tran-
scriptase (Invitrogen, USA) using random primers. One 
microliter of synthesized cDNA was used in each PCR 
reaction. The qRT-PCR was conducted using SYBR 
Green on ABI PRISM 7300HT Sequence Detection Sys-
tem (Applied Biosystems, USA) using specific primers 
listed in Supplementary Table 2. β-Actin was used as a 
control for normalization.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion 4.0.2). The differences between the groups were 
compared using the log-rank test. Cox proportional 
hazard model was used to analyze the significant PRGs 

affecting OS. P < 0.05 was considered to be statistically 
significant.

Results
Differentially expressed PRGs in the TCGA cohort 
and landscape of genetic and expression variation of PRGs 
in HCC
The flowchart of data analysis was shown in Fig.  1. We 
compared the expression of 52 PRGs in TCGA data from 
50 adjacent tissues and 374 tumor tissues, and finally 
42 DEGs were identified. Among these DEGs, 5 genes 
were down-regulated in tumor group including IL1B, 
AIM2, IL6, NLRP3, and NLRP6. The other 37 genes 
were enriched in the tumor group, including BAK1, 
BAX, CASP3, CASP4, CHMP2A, CHMP2B, CHMP3, 
CHMP4A, CHMP4B, CHMP4C, CHMP6, CHMP7, 
CYCS, GSDMD, GSDME, HMGB1, IL1A, IRF2, TP53, 
TP63, CASP6, CASP8, CASP9, GPX4, GSDMA, GSDMB, 
GSDMC, NLRP1, NLRP7, NOD1, NOD2, PJVK, PLCG1, 
PRKACA, PYCARD, SCAF11, and TIRAP (Fig. 2A). We 
then demonstrated the incidence of CNVs and somatic 
mutations of 52 PRGs in HCC. As shown in Fig.  2B, 
genetic mutation was identified in 157 of 364 (43.13%) 
HCC samples. Missense mutation was the most common 
variant. In addition, TP53 gene showed the highest muta-
tion frequency, followed by NLRP2 and NLRP3 genes 
(Fig. 2B). Figure 2C presented the location of CNV alter-
ations of the 52 PRGs on chromosomes. For the CNV 
alteration frequency, all the 52 PRGs showed prevalent 
CNV alteration. More than half of the 52 PRGs had copy 
number amplification, while the CNV deletion frequen-
cies of CASP9, CASP3, HMGB1, ELANE, CASP6, IRF2, 
GSDMB, GSDMA, GPX4, CASP4, CASP5, CASP1, IL18, 
TIRAP, CHMP2B, NLRP1, TP53 and CHMP7 were wide-
spread (Fig. 2D).

The PPI network analysis was given to further explore 
the interactions of these PRGs. As shown in Supplemen-
tary Fig. S1A, the minimum interaction score was set at 
0.9 with the highest confidence. Seven hub genes were 
screened including IL1B, NLRP3, PYCARD, CASP8, 
CASP3, TP53, as well as CHMP2A. The correlation net-
work containing all PRGs was presented in Supplemen-
tary Fig. S1B.

Differentially expressed PRGs between HCC tissues 
and adjacent Normal tissues
We found 42 differential PRGs in normal paracancer 
samples and tumor samples of HCC by analyzing TCGA 
database. The Volcano plots of DEGs is shown in Sup-
plementary Fig. S2. To explore the correlation between 
the expression of the 42 DEGs and HCC clusters, we 
performed a consensus clustering analysis involving 374 
HCC patients in the TCGA cohort. When the clustering 
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variable (k) was set at 2, the intragroup correlations were 
the highest and the intergroup correlations were the low-
est, indicating that the 374 HCC patients could be well 
divided into two clusters based on the 42 DEGs (Fig. 3A). 
The gene expression profile and the clinical features were 
presented in a heatmap, which showed significant differ-
ences in the distribution of T stage, stage, grade and gen-
der between the two cluster groups (P < 0.05). In contrast, 
there was no statistical difference in the distribution of N 
stage, M stage and age between the two groups (P > 0.05, 
Fig. 3B). There is a significant difference in the OS time of 
two clusters (P < 0.001, Fig. 3C).

Development of a prognostic gene model in the TCGA 
cohort
A total of 374 HCC samples were matched with the 
corresponding patients with complete survival infor-
mation. Univariate Cox regression analysis was used to 
screen the survival-related pyroptosis genes (Fig.  4A). 
Then, these genes were performed by multivariate 
Cox regression analysis. In total, 10 genes were identi-
fied and used for the subsequent modeling, including 
BAK1, BAX, CHMP2A, GSDME, IL1A, TP53, TP63, 

GPX4, PRKACA and SCAF11. The risk score was cal-
culated as follows: risk score = (0.368611051021708 
* expression of BAK1) + (0.308688517099686 * 
expression of BAX) + (− 0.52007432297355 *expres-
sion of CHMP2A) + (0.330587747807719 * expres-
sion of GSDME) + (− 0.807361948750797 * 
expression of IL1A) + (− 0.323671479794998 * expres-
sion of TP53) + (− 0.604855494168515* expres-
sion of TP63) + (0.512445054990862 * expression 
of GPX4) + (− 0.283264209118667 * expression of 
PRKACA) + (0.432681763927682 * expression of 
SCAF11). Based on the median score calculated by the 
risk score formula, 374 patients were equally divided 
into low-risk group and high-risk group (Fig.  4B). 
Patients in the high-risk group showed a higher death 
rate and a shorter survival time than those in the low-
risk group (Fig.  4C). A notable difference in OS time 
was detected between the low-risk group and high-risk 
group (P < 0.001, Fig. 4D). Time dependent ROC analy-
sis was applied to evaluate the sensitivity and specific-
ity of the prognostic model, yielding AUC of 0.766 for 
1-year, 0.694 for 3-year, and 0.676 for 5-year survival, 
respectively (Fig. 4E).

Fig. 1  The specific workflow graph for this study
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External validation of the risk signature
Patients from GSE14520 and ICGC-LIRI-JP cohorts 
were utilized as the validation set. Kaplan–Meier analy-
sis indicated a significant difference in the survival rate 
between the low-risk group and high-risk group in the 
ICGC-LIRI-JP cohort (P = 0.008, Fig.  5A), as well as 
the GSE14520 cohort (P = 0.027, Fig.  5B). ROC curve 
analysis of the ICGC cohort showed that our model had 
good predictive efficacy for 1-year (AUC = 0.614) and 
3-year surivival (AUC = 0.683) (Fig.  5C), respectively. 
The GSE14520 cohort showed that the model had good 
predictive efficacy for 3-year survival (AUC = 0.571) and 
5-year survival (AUC = 0.637) (Fig. 5D).

Independent prognostic value of the risk model
Univariate and multivariable Cox regression analy-
ses were performed to evaluate whether the risk score 
derived from the gene signature model could serve as 
an independent prognostic factor. The univariate Cox 
regression analysis indicated that the risk score was an 

independent factor for poor survival in the TCGA cohort 
(HR = 1.601, 95% CI: 1.374–1.864, Fig.  6A). The multi-
variate analysis also implied that, after adjusting for other 
confounding factors, the risk score was an independent 
prognostic factor for patients with HCC in the TCGA 
cohort (HR = 1.485, 95% CI: 1.261–1.750, Fig.  6B). In 
addition, a heatmap of clinical features for the TCGA 
cohort indicated that the T stage and grade were differ-
ently distributed between the low-risk group and high-
risk group (Fig. 6C).

Establishment and evaluation of a nomogram 
for predicting patient 1‑year, 3‑year and 5‑year OS
Four prognostic factors were combined to establish a 
nomogram for predicting 1-year, 3-year and 5-year OS 
based on the TCGA dataset (Fig.  7A). The calibration 
curves for predicting 1-year, 3-year and 5-year OS were 
in good agreement with the observed values (Fig.  7B). 
The AUC for predicting 1-year, 3-year and 5-year OS was 
0.81, 0.80 and 0.76, respectively (Fig. 7C).

Fig. 2  Differentially expressed PRGs in the TCGA cohort and landscape of genetic and expression variation of PRGs in HCC. A 42 Differentially 
expressed PRGs were identified in HCC tissues and adjacent tissues. B Mutation frequency and classification of 52 PRGs in HCC. C Location of CNV 
alteration of 52 PRGs on 23 chromosomes in the HCC cohort. D CNV variation frequency of 52 PRGs in the HCC cohort. The height of the column 
represented the alteration frequency. ***P < 0.001, **P < 0.01, *P < 0.05
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Relationship between prognostic signature and immune 
infiltration
Firstly, we examined component differences of immune 
cells between high- and low-risk groups, as well as risk 
score values. Spearman correlation analysis was per-
formed using different algorithms, with a resulting lolli-
pop shape, as displayed in Fig. 8A. The results indicated 
that most immune cells were positively correlated with 
the risk score, which was consistent with our GSEA 
finding that the high-risk group was predominantly 
enriched in immune-related pathways. The heatmap 
demonstrated that the infiltration of most immune cells 
was higher in the high-risk group than in the low-risk 
group (Fig.  8B). We further elucidated the correlation 
of PRGs expression with each type of immune cell infil-
tration. The infiltration of NK cells was positively cor-
related with the expression of CHMP2A, while the 
infiltration of macrophages M1 was negatively corre-
lated with the GSDME (Supplementary Fig. S3).

Gene set enrichment analysis (GSEA) and mutation data 
analysis of PRGs between the high‑ and low‑risk group
GSEA had an advantage in exploring the involved sign-
aling pathways, which revealed that the genes in the 
high-risk group of TCGA cohorts were significantly 
enriched in tumor and immune-related pathways such 
as B cell receptor signaling pathway, T cell receptor 
signaling pathway, P53 signaling pathway, pathways 
involved in the pathogenesis of cancer and cell cycle. 
In contrast, the low-risk group genes were significantly 
enriched in metabolism-related pathways such as com-
plement and coagulation cascades, drug metabolism 
cytochrome p450, retinol metabolism, fatty acid metab-
olism, as well as linoleic acid metabolism (Fig.  9A). 
Meanwhile, the top 2 driver genes TP53 and CTNNB1 
were significantly different between high (Fig.  9B) and 
low-risk groups (Fig. 9C).

Fig. 3  Tumor classification based on the pyroptosis-related DEGs. A HCC patients (n = 370) were divided into two clusters according to the 
consensus clustering matrix (k = 2). B Heatmap and the clinicopathologic characters of the two clusters classified by these DEGs. C Kaplan–Meier 
OS curves for the two clusters
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IC50 of chemotherapeutic drugs between the high‑ 
and low‑risk group
We further examined whether the risk score can pre-
dict the sensitivity of patients to chemotherapy, which 
showed that patients in the high-risk group were more 
sensitive to Axitinib, Dasatinib, Erlotinib, Lapatinib 
(p < 0.001) (Fig. 10A). The patients in the low-risk group 
were more sensitive to Gemcitabine, Nilotinib, Campto-
thecin, and Tipifarnib (p < 0.001) (Fig. 10B). These results 
suggested that PRGs were of great significance in tar-
geted drug therapy.

Validated PRGs between HCC tissues and adjacent Normal 
tissues
To explore the expression of BAK1, BAX, CHMP2A, 
GSDME, IL1A, TP53, TP63, GPX4, PRKACA and 
SCAF11 in HCC tissues, we detected PRGs expres-
sion in HCC tissues from 30 patients by qRT-PCR assay. 
The results of qRT-PCR suggested that BAK1, BAX, 
CHMP2A, GSDME, IL1A, TP53, TP63, GPX4, PRKACA 

and SCAF11 were highly expressed in HCC tissues 
(Fig. 11A-J).

Discussion
As a novel programmed cell death, pyroptosis played 
dual roles in the pathogenesis and treatment of several 
malignancies. It could promote the cancer cell apoptosis, 
which may serve as a treatment target for cancer [33]. In 
contrast, it could simulate the transformation of normal 
somatic cells to the cancer cells through releasing inflam-
matory factors [16]. Besides, it could regulate the cancer 
cell proliferation, invasion, migration and resistance to 
the chemotherapeutic agents, thereby affecting the tumor 
progression that was closely related to the patient prog-
nosis [34]. Due to our understanding on the regulation of 
pyroptosis in the HCC is still limited. This led us to inves-
tigate the roles of pyroptosis in the HCC by establishing a 
predictive model for the prognosis of HCC.

In this study, we studied the mRNA expression of 52 
currently known PRGs that had been well acknowledged 

Fig. 4  Construction of risk signature in the TCGA cohort. A Univariate Cox regression analysis for screening the survival-related pyroptosis genes. B 
Distribution of patients based on the risk score in the TCGA cohort. C The survival status for each patient in the TCGA cohort (low-risk population: on 
the left side of the dotted line; high-risk population: on the right side of the dotted line). D Kaplan–Meier curves for the OS of patients in the low-risk 
group and high-risk group in the TCGA cohort. E ROC curves demonstrated the predictive efficiency of the risk score in the TCGA cohort
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to be expressed in HCC samples and normal tissues. 
Among these PRGs, 42 were differentially expressed. 
Then two clusters were generated by the consensus clus-
tering analysis based on the DEGs. There were significant 
differences in clinical features including T stage, grade, 
gender, and stage among different clusters. KM curve 
analysis showed that cluster 1 had a better prognosis than 
cluster 2.

To date, our understanding on the correlation between 
PRGs and the survival time of HCC is still limited. In 
this study, we established a model for predicting OS 
of HCC patients based on 10 PRGs, including BAK1, 
BAX, CHMP2A, GSDME, IL1A, TP53, TP63, GPX4, 
PRKACA and SCAF11. In a previous study, Hu et  al. 
suggested that single BAK or BAX, or BAK/BAX-cas-
pase-3-GSDME pathway involved in the chemotherapy-
induced pyroptosis, together with palmitoylation of 
GSDME [35]. Yu et  al. showed that GSDME mediated 

lobaplatin-induced pyroptosis downstream of the ROS/
JNK/Bax-mitochondrial apoptotic pathway and cas-
pase-3/− 9 activation in colon cancer cellsx [9]. Zhang 
et  al. demonstrated that miltirone inhibited HCC cells 
growth through BAX–caspase–GSDME-dependent 
pyroptotic by regulating ROS/mitogen-activated and 
extracellular signal-regulated kinase (MEK)/extracellu-
lar regulated protein kinases 1/2 (ERK1/2) pathway [36]. 
Hattori et al. provided evidence that CHMP2A depletion 
induced signaling complexes (iDISC)-mediated nonca-
nonical Caspase-8 activation on immature autophagoso-
mal membranes and inhibited tumor growth in a mouse 
xenograft model [37]. GSDME was identified as a pore 
forming molecule, which was activated following cas-
pase-3-mediated cleavage resulting in so-called second-
ary necrosis following apoptotic cell death, or in primary 
necrotic cell death without an apoptotic phase [38]. Jiang 
et  al. found that the caspase-3/GSDME signal pathway 

Fig. 5  Validation of the risk model in the ICGC cohort and GEO cohort. A Kaplan–Meier curves for the OS of patients in the low-risk group and 
high-risk group in the ICGC cohort. B Kaplan–Meier curves for the OS of patients in the low-risk group and high-risk group in the GEO cohort. C ROC 
curves demonstrated the predictive efficiency of the risk score in the ICGC cohort. D ROC curves demonstrated the predictive efficiency of the risk 
score in the GEO cohort
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was a switch between apoptosis and pyroptosis in can-
cer [39]. Yu et al. suggested that cleavage of GSDME by 
caspase-3 determines lobaplatin-induced pyroptosis in 
colon cancer cells [9]. Zhang et  al. demonstrated that 

miltirone induced cell death in hepatocellular carcinoma 
cell through GSDME dependent pyroptosis [36]. Lach-
ner indicated that expression of pro-inflammatory IL1A, 
IL1B and pyroptotic pore-forming gasdermin (GSDM) 

Fig. 6  Univariate and multivariate Cox regression analyses for the risk score. A Univariate analysis of risk score and clinicopathological 
characteristics. B Multivariate analysis of risk score and clinicopathological characteristics. C Heatmap for the connections between 
clinicopathologic features and the risk groups (*P < 0.05)

Fig. 7  Establishment and evaluation of a nomogram based on the TCGA dataset. A A nomogram for predicting 1-year, 3-year and 5-year OS. B The 
calibration curves for predicting 1-year, 3-year and 5-year OS. C The areas under the ROC curves for predicting 1-year, 3-year and 5-year OS
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Fig. 8  Relationship between prognostic signature and immune infiltration. A The correlation between risk score and immune cell infiltration was 
analyzed by Spearman correlation analysis using different algorithms. B The heatmap of immune infiltration based on different algorithms among 
the high- and low-risk group
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Fig. 9  Gene set enrichment analysis (GSEA) and mutation data analysis of PRGs between the high- and low-risk group. A GSEA results suggested 
that the two risk groups were mainly enriched in tumor immunity and metabolism. B The top 20 driver genes with the highest alteration in the 
high-risk group. C The top 20 driver genes with the highest alteration in the low-risk group
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Fig. 10  IC50 of chemotherapeutic drugs between the high- and low-risk group based on the pyroptosis-related genes signature in TCGA dataset. 
A Patients in the high-risk group were more sensitive to Axitinib, Dasatinib, Erlotinib, and Lapatinib (p < 0.001). B Patients in the low-risk group were 
more sensitive to Gemcitabine, Nilotinib, Camptothecin, and Tipifarnib (p < 0.001)

Fig. 11  Validated PRGs between HCC tissues and adjacent tissues. A-J BAK1, BAX, CHMP2A, GSDME, IL1A, TP53, TP63, GPX4, PRKACA and SCAF11 in 
HCC tissues
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D was downregulated during terminal differentiation of 
human keratinocytes in vitro. They screened pyroptosis-
related protein families for members with predominant 
expression in the skin and provided evidence for normal 
keratinocyte differentiation-associated expression of 
specific IL1F cytokines and proteins related to pyrop-
tosis [40]. Zhang et  al. found that transcription factor 
p53 suppressed tumor growth by prompting pyroptosis 
in non-small-cell lung cancer [41]. N-terminal isoforms 
of p63 are TAp63 and ΔNp63 [42]. These findings sug-
gested that lncRNA RP1-85F18.6 may trigger colorectal 
cancer cell proliferation, invasion and cell cycle disrup-
tion, and suppressed the apoptosis and pyroptosis of 
colorectal cancer cells through regulating ΔNp63 expres-
sion [43]. Zhu et al. suggested that GPx4, as a requisite 
gateway to both ferroptosis and pyroptosis, may serve as 
a critical molecular target for developing effective drugs 
for controlling infection and sepsis [44]. PRKACA was 
identified to be PRG and used to construct prognostic 
risk prediction models in colon adenocarcinoma and gli-
oma [20, 45]. SCAF11 was identified to be PRG and used 
to construct prognostic risk prediction models in breast 
cancer [28].

To further assess the prognostic value of these PRGs, 
prognostic model constructed by 10 PRGs in the TCGA 
database was validated to perform well in external data-
sets (GSE14520 and ICGC-LIRI-JP). We revealed that 
the relationship between PRGs signature and immune 
infiltration by TIMER, CIBERSORT, CIBERSORT-ABS, 
QUANTISEQ, MCPCOUNTER, XCELL and EPIC algo-
rithms [46]. GSEA revealed that the genes in the high-
risk group of TCGA cohorts were significantly enriched 
in tumor and immune-related pathways. In contrast, 
the low-risk group genes were significantly enriched 
in metabolism-related pathways. Therefore, we specu-
late that our prognostic signature is related to tumor 
immunity and metabolism. Following that, we exam-
ined whether the risk score can predict the sensitivity of 
patients to chemotherapy and found that a low-risk score 
was linked to IC50 of chemotherapeutics such as Gem-
citabine, Nilotinib, Camptothecin, Tipifarnib (p < 0.001), 
whereas a high-risk score was linked to Axitinib, Dasat-
inib, Erlotinib, Lapatinib (p < 0.001), implying that signa-
ture served as a prospective predictor for targeted drug 
therapy. Meanwhile, the top 2 driver genes TP53 and 
CTNNB1 were significantly different between high and 
low risk groups. Furthermore, PCR was given to detect 
the expression of PRGs expression in the tissue samples 
obtained from 30 HCC patients. The results of qRT-PCR 
suggested that BAK1, BAX, CHMP2A, GSDME, IL1A, 
TP53, TP63, GPX4, PRKACA and SCAF11 were highly 
expressed in HCC tissues.

Some related studies have been on pyroptosis-related 
gene signatures in HCC, which proved that PRGs 
played important roles in predicting the prognosis 
of HCC [6–8]. Unlike these studies, we firstly added 
mutation data analysis of PRGs, and the ICGC-LIRI-
JP dataset to verify the validity of the model. Secondly, 
our data showed that PRGs signature were related to 
the sensitivity of chemotherapy. Finally, different algo-
rithms such as TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL and 
EPIC were used to analyze the infiltration of immune 
cells in high and low risk groups. Our study provides 
a novel gene signature for predicting the prognosis of 
HCC patients and offers a significant basis for future 
studies of the relationships between PRGs and immu-
nity in HCC.
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