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Abstract 

Background Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants 
of progression of the deadliest cancer in the world – lung cancer, their interrelations are not well understood. Digital 
pathology data provides a unique insight into the spatial composition of the TME. Various spatial metrics and machine 
learning approaches were proposed for prediction of either patient survival or gene mutations from this data. Still, 
these approaches are limited in the scope of analyzed features and in their explainability, and as such fail to transfer 
to clinical practice.

Methods Here, we generated 23,199 image patches from 26 hematoxylin-and-eosin (H&E)-stained lung cancer tissue 
sections and annotated them into 9 different tissue classes. Using this dataset, we trained a deep neural network ARA-
CNN. Next, we applied the trained network to segment 467 lung cancer H&E images from The Cancer Genome Atlas 
(TCGA) database. We used the segmented images to compute human-interpretable features reflecting the heteroge-
neous composition of the TME, and successfully utilized them to predict patient survival and cancer gene mutations.

Results We achieved per-class AUC ranging from 0.72 to 0.99 for classifying tissue types in lung cancer with ARA-
CNN. Machine learning models trained on the proposed human-interpretable features achieved a c-index of 0.723 
in the task of survival prediction and AUC up to 73.5% for PDGFRB in the task of mutation classification.

Conclusions We presented a framework that accurately predicted survival and gene mutations in lung adeno-
carcinoma patients based on human-interpretable features extracted from H&E slides. Our approach can provide 
important insights for designing novel cancer treatments, by linking the spatial structure of the TME in lung adeno-
carcinoma to gene mutations and patient survival. It can also expand our understanding of the effects that the TME 
has on tumor evolutionary processes. Our approach can be generalized to different cancer types to inform precision 
medicine strategies.
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Background
In clinical practice it is common to diagnose can-
cer based on hematoxylin-eosin (H&E) stained slides 
obtained through biopsy or surgery [1]. Such slides are 
routinely stored for each patient, so there is an abun-
dance of patient-specific, disease progression-relevant 
data that until recently has not been utilized at scale in 
cancer research. This has changed with the advent of dig-
ital pathology and the development of machine learning 
approaches to various predictive tasks based on digitized 
H&E image data [2, 3].

In addition to tumor cells, H&E images portray the spa-
tial architecture of the tumor microenvironment (TME), 
including stromal cells, immune cells, and hypoxic/
necrotic tissue areas and their reciprocal spatial arrange-
ment. The TME plays an important role in cancer pro-
gression and metastasis, and thus it is critical to study 
its composition extensively [4]. Different tumors, even 
of the same type, have various genetic profiles resulting 
from gene mutations [5]. For a given cancer type, survival 
of individual patients can largely vary [6, 7]. Finally, the 
TME of different tumors is also different [8]. A burning 
question in this context is how the structure of the TME 
relates to patient survival and gene mutations.

This question is particularly relevant for lung can-
cer. Lung cancer is the deadliest cancer type worldwide, 
and lung adenocarcinoma (LUAD) is the most often 
diagnosed subtype of lung cancer [9]. LUAD includes a 
relatively higher proportion of cases without tobacco 
exposure, as compared to other lung cancer types. Thus, 
it has a more balanced molecular background and is 
more frequently associated with the presence of single 
somatic driver mutations that may be effectively managed 
with specific molecularly targeted therapies [10]. Several 
genes are known markers of response to treatment and 
survival in LUAD, including EGFR, ALK, ROS1, BRAF, 
NTRK1–3, RET, MET, KRAS, and diagnostic panels for 
targeted gene sequencing for detecting mutations in 
critical genes are routinely used in clinical practice [11]. 
H&E images are inspected for LUAD diagnosis in clinical 
practice [12]. Wide tumor spread, access to vessels, large 
areas of necrosis visible in H&E images, are associated 
with poor diagnosis [4], while abundance of immune cells 
indicates anti-tumor response of the immune system and 
associates with better survival [13, 14]. The TME plays 
an important role in LUAD response to immunotherapy. 
Expression of PD-1 and PD-L1 on cancer or immune 
cells, as well as tumor mutation burden (TMB), are 

important biomarkers of immune checkpoint inhibitor 
efficiency [15, 16]. The interconnections between the spa-
tial TME composition, gene mutations and LUAD patient 
survival are so far not well understood.

Computational prediction of patient survival from 
H&E images has been either performed based on spatial 
metrics or using deep learning approaches. In the former 
case, spatial metrics are initially used to summarize the 
spatial arrangement of different tissues and next their 
correlation with survival is investigated. Alternatively, 
these spatial metrics are used as features in traditional 
machine learning algorithms [17–20]. The TME can be 
very heterogeneous, so it is not obvious how to quantify 
it and what metrics to use. These metrics include propor-
tion-based [21], clustering-based [22], and methods bor-
rowed from ecology [23], and they have been applied to 
many different cancer types [18, 22, 24–26]. In general, 
all these metrics share a common trait, i.e., they incorpo-
rate only a limited number of tissue types at once, such 
as tumor cells and lymphocytes, tumor cells and stroma, 
etc. This approach cannot comprehensively capture the 
complexity of the TME. Thus, there is an unmet need 
for an encompassing spatial metric that would consider 
many possible TME components at once. In the latter 
case, deep neural networks are trained to predict patient 
survival directly from H&E images. Such deep learning-
based methods are increasingly used for survival predic-
tion and have been shown to perform comparably to or 
even better than spatial metric-based approaches [27, 
28]. However, one major disadvantage of deep learning 
methods is the lack of explainability. Due to the compli-
cated structure of these models and number of param-
eters, it is not easy to surmise which parts of the TME 
are the most important for patient survival. This creates 
a need for explainable H&E image-based survival models.

Numerous methods for predicting gene mutations 
from H&E images were introduced and applied to a spec-
trum of cancers [29–34], showing that such approaches 
can reveal links between the TME composition and 
mutations of selected genes. However, similarly to deep 
learning-based methods for patient survival, these mod-
els take raw image data as input and directly predict the 
presence of mutations. As such, it is hard to assess what 
parts of the TME are most predictive of a given muta-
tion. A recent study proved that human-interpretable 
features extracted from images segmented with deep 
learning methods can be successfully applied to predict 
phenotypic expression [35]. This suggests that the same 
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approach can be implemented to predict patient survival 
and gene mutations, which has not yet been explored.

To address these shortcomings, here we develop a 
framework for predicting survival and gene mutations in 
LUAD patients based on H&E images and using human-
interpretable features. First, we train a deep learning 
classifier and apply it to segment the H&E images from 
467 tumor LUAD samples into nine tissue classes. Next, 
we compute two human-interpretable spatial features 
that describe the composition of the TME in segmented 
H&E slides. Finally, we use these features in combination 
with clinical data to predict patient survival, as well as to 
predict tumor mutations. The predictions generated by 
our model are human interpretable, i.e., it is possible to 
pinpoint exactly which component of the TME is asso-
ciated with a change in survival hazard or with a given 
mutation. Our framework is readily generalizable to 
other lung cancer subtypes and can be extended to other 
tumor types to make predictions of patient survival and 
cancer mutations based on digital pathology. This work is 
a step forward to a better understanding of the interplay 
between the TME, gene mutations and survival of LUAD 
patients.

Methods
Clinical samples
We obtained the formalin-fixed paraffin embedded 
(FFPE) tissue samples from 55 primary tumors of lung 
cancer (35 lung adenocarcinoma, 20 lung squamous cell 
carcinoma - hereafter denoted LUSC). The material was 
derived from FFPE surgical resections at the Medical 
University of Lublin, Poland. At the moment of diagno-
sis and surgical resection of the primary cancer lesions, 
none of the patients had received neoadjuvant therapies. 
We collected clinical and demographic patients’ data in 
a manner that protected their personal information. The 
study protocol received ethical approval from the Ethics 
Committee of the Medical University of Lublin, Poland 
(no KE-0254/235/2016).

Extraction and annotation of the training dataset 
for ARA‑CNN
We extracted the training dataset from the H&E slides 
sourced from 55 lung cancer patients in total, with 1 slide 
per patient (Fig.  1a). From these 55, 26 were selected 
and from them regions of contiguous tissue were anno-
tated using QuPath [36] by an expert pathologist, mark-
ing them as one of the following nine classes: tumor with 
neoplastic epithelial cells; stroma composed of connec-
tive tissue within tumor or extra-tumoral connective 
tissue; mixed where connective tissue was strongly infil-
trated with immune cells; immune composed of lym-
phocytes and plasma cells or fragments of pulmonary 

lymph nodes; vessel composed of smooth muscle layers 
(veins and arteries) with red blood cells within lumen; 
bronchi composed of cartilage and bronchial mucosa; 
necrosis including necrotic tissue or necrotic debris; 
lung (lung parenchyma); and background of the tis-
sue scan (no tissue). In the 26 annotated slides, 13 were 
from LUAD, 10 from LUSC, 2 from large cell carcinoma 
and 1 from small-cell lung cancer patients. The TME in 
the original slides differed between patients, which gave 
us a diverse set of training examples (Sup. Figure  1 in 
Additional file 1). Some of the slides were more covered 
by tumor and necrotic cells or stroma, while in others 
immune infiltration, vessels or mixed class were domi-
nating. In most of the slides we observed the “normal” 
lung structures, so bronchi was less common and needed 
more training data from many sections. All annotated 
regions were chosen for the purpose of providing the best 
material for model training. To this end, for a given class, 
we were annotating tissue that was undoubtedly of that 
class, and there was enough of that tissue visible in the 
slides to provide enough annotated patches. For example, 
for the vessel class, we did not consider arterioles, dilated 
capillaries or venules, as these tissues were too small for 
the chosen patch scale. Lymphatics were ignored due to 
them being imperceptible on H&E slides. For the immune 
class, intrapulmonary lymph nodes were included due 
to their high concentration of well-visible lymphocytes, 
even though the presence of such lymph nodes is not cor-
related with the tumor’s immune response.

The annotated regions were then traced by a moving 
window, which cut out non-overlapping square patches 
of tissue with side size of 87 μm (which corresponded to 
172 px). In addition to 87 μm, we also tested the training 
performance for patches with sizes of 74 μm and 100 μm 
(see Sup. Table 1–3 in Additional file 1). They resulted in 
worse performance (mean classification accuracy 84.64% 
for 74 μm, 84.35% for 100 μm, 85.21% for 87 μm), so we 
proceeded with using the 87 μm sized ones. This gave us 
an initial version of the training dataset, which was then 
improved upon by utilizing human-in-the-loop active 
learning, as part of the previously proposed accurate, 
reliable and active (ARA) image classification frame-
work [37] (Fig. 1b; see below). In total, we ended up with 
23,199 patches, divided in the following manner: 3311 
tumor patches, as well as 1511 stroma, 716 mixed, 1196 
immune, 1236 vessel, 2030 bronchi, 4448 necrosis, 6031 
lung, and 2211 background patches.

Training and validation of the ARA‑CNN model
The main component of the ARA framework is ARA-
CNN, a Convolutional Neural Network (CNN) archi-
tecture inspired in part by Microsoft ResNet [38] and 
DarkNet 19 [39]. It includes standard techniques for 
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such models: Batch Normalization [40] (for normali-
zation and to reduce overfitting) and dropout [41] (to 
reduce overfitting). The latter allowed us to apply vari-
ational dropout [42] during testing. Variational dropout 
is used to estimate uncertainty for every input image, 
which is returned together with its predicted class. For 
the overview of the model architecture, refer to Fig. S1 in 
Rączkowska et al. [37].

The model was trained in three active learning rounds, 
each one improving upon the previous ones. After the 
first training process, the distribution of uncertainty 
for images in each class was measured separately and 
due to higher median uncertainty, it was concluded 
that there are three classes in need of more training 

examples: mixed, vessel and bronchi. These were passed 
on to the pathologist, who labeled new regions belong-
ing to these classes. The resulting new training samples 
were extracted and added to the previous training data-
set. After each iteration of the adaptive training proce-
dure, the uncertainty for each class was measured again. 
After three iterations it was decided that the uncertainty 
results, with median uncertainty level below 1.5 for each 
class, were at a satisfactory level (uncertainty was meas-
ured using the entropy of the predictions [37]; see Sup. 
Figure  2 for the obtained entropy levels after the last 
iteration).

For training and evaluation of the ARA-CNN model on 
the lung cancer tissue patches, we used stratified 10-fold 

Fig. 1 Overview of training ARA-CNN for lung cancer tissue classification. a We sourced H&E tissue slides from 55 lung cancer patients. b 26 
of these slides were annotated by an expert pathologist in an active learning loop with ARA-CNN, which resulted in the LubLung dataset 
and a trained tissue classification model. c Example annotations of various tissue regions. d Segmentation results from ARA-CNN show that tissue 
heterogeneity in the TME is captured correctly. e Precision-recall curves for each tissue class obtained in a 10-fold cross-validation scheme 
on the LubLung dataset. The mean AUC is 0.94. f Confusion matrix for ARA-CNN trained with LubLung. Row labels indicate true classes, while column 
labels describe classes predicted by the model
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cross-validation. This was the case during the active 
learning process as well. In a given iteration, the whole 
gathered dataset of images was split into a training data-
set and a test dataset used for evaluation. For the final 
evaluation, the full dataset of 23,199 patches was divided 
into the test dataset containing 2316 patches and the 
training dataset consisting of 20,883 patches. Each class 
was split in exactly the same proportion: 10% were sent 
to the test dataset and 90% to the training dataset.

Additionally, in each training epoch the training data 
was split into two datasets: the actual training data and a 
validation dataset. The latter was used for informing the 
learning rate reducer - we monitored the accuracy on the 
validation set and if it stopped improving, the learning 
rate was reduced by a factor of 0.1. This split was in pro-
portion 90 to 10% between actual training data and the 
validation set, respectively.

Each training process included real-time data augmen-
tation, chosen at random from the following set of trans-
formations: horizontal flip, vertical flip, rotation (up to 90 
degrees), zoom (up to 40%), width shift (up to 10%) and 
height shift (up to 10%).

For parameter optimisation, we used the Adam opti-
miser [43]. The training time was set to 100 epochs. The 
training data was passed to the network in batches of 32, 
while the validation and test data was split into batches 
of 128 images. The loss function used during train-
ing was the categorical cross-entropy. The final ARA-
CNN model was trained on the whole dataset of 23,199 
patches (which was still split into the training and valida-
tion parts in proportion 90 to 10%). This final model was 
used in further experiments, segmentation of slides from 
an independent TCGA dataset, predictions of mutations 
and patient survival (see below).

TCGA data extraction and processing
Independent patient data, including H&E images, muta-
tions, and clinical information was extracted from the 
TCGA database (as of 2020-05-14) through a REST API 
provided by TCGA. The database contained 478 LUAD 
cancer patients with at least one H&E tissue slide per 
patient. Out of these, frozen tissue slides were filtered 
out, which left 514 images. We developed a parallelized 
pipeline that downloaded the slides, ran all necessary cal-
culations and then removed the processed images.

Each processed slide was split into non-overlapping 
patches with side size of 87 μm, same as for the patches 
in LubLung. As an optimisation step, we filtered the 
extracted patches and excluded the ones where most of 
the area was empty. To perform this filtering, we first 
converted each patch to grayscale using the standard Rec. 
601 luma formula. Then, we mapped each pixel to either 

black (pixel  value < 200) or white (pixel value ≥ 200) and 
counted them. The patch was deemed as relevant if the 
proportion of black pixels to white pixels was larger than 
0.05.

In addition to the slides, clinical and mutation data 
was also extracted from TCGA. The former was down-
loaded using the curatedTCGAData R package [44] and 
it contained data for 518 LUAD patients. We removed 
data for Asian patients, where the race was determined 
by the ‘race’ column present in the TCGA clinical data. 
These patients are noted to be very distinct when it 
comes to disease progression [45, 46] and mutational 
profile. In particular, for Asians EGFR is mutated in up 
to 45% of cases, while for Caucasians it is closer to 10%. 
These factors and the low number of such cases when 
compared to the whole dataset contributed to omitting 
Asian patients in further analysis. This left us with clini-
cal data for 510 patients. Mutation data for 563 LUAD 
patients was downloaded from the UCSC Xena Browser 
[47] (dated 07-20-2019), in the form of a TCGA-LUAD.
muse_snv.tsv file. In addition, it was downsized to include 
only genes selected as relevant to lung cancer. To this 
end, we examined a set of genes that are either known to 
be frequently mutated in lung cancer and are important 
for patient prognosis and treatment, as characterized 
by the SureSelect Cancer All-In-One Catalog and Cus-
tom Assays [48], or were studied previously by Kather 
et  al. [34]. Specifically, we selected such genes from the 
Kather et  al. study, which showed an AUC higher than 
70% or p-value < 0.001 in the task of mutation prediction 
by a deep learning model. From this set of 24 genes, we 
filtered out such genes for which there were only up to 
15 LUAD patients carrying their mutation. This resulted 
in the following set of 13 selected genes: ALK, BRAF, 
DDR2, EGFR, KEAP1, KRAS, MET, PIK3CA, RET, ROS1, 
STK11, TP53, PDGFRB.

All datasets were merged together by the TCGA 
patient identifier. This left an intersection between the 
image, clinical and mutation datasets, which contained 
444 patients and 506 slides.

As a last step, the clinical variables were pre-pro-
cessed in the following manner. Age was quantified 
into two groups: 65 years and older, as well as younger 
than 65 years. Sex was set to 1 for male and 0 for 
female patients. Pack years were quantified into three 
groups: non-smoker (0 pack years or smoking history 
set as ‘lifelong non-smoker’ or, if information about 
pack years was missing, smoking history set to ‘current 
reformed smoker for > 15 years’), light smoker (less 
than 30 pack years or, if information about pack years 
was missing, smoking history set as ‘current reformed 
smoker for < or = 15 years’) and heavy smoker (30 
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or more pack years, or smoking history set to ‘cur-
rent smoker’). Pathologic stage was mapped into three 
groups as well: early (stage I, Ia, Ib), locally advanced 
(stage II, IIa, IIb, IIIa) and advanced (stage IIIb, IV).

Due to its limited availability, we did not include 
treatment information in the main dataset. For the sake 
of additional analyses, we prepared a smaller dataset, 
containing 377 patients, with treatment data included 
(Sup. Methods in Additional File 1).

TCGA H&E patch normalization
Due to the fact that the tissue slides stored in TCGA 
exhibit high color variation, they needed to be normal-
ized to a common color space, matching that of the 
training dataset. Three normalization algorithms were 
considered: Reinhard et  al. [49], Macenko et  al. [50] 
and Vahadane et al. [51]. To decide which of these three 
should be used on the TCGA data, a series of experi-
ments was conducted, in which the LubLung training 
dataset was normalized with each of these algorithms 
and then ARA-CNN was trained in a cross-validation 
schema. The results showed that the best classifica-
tion performance (mean accuracy 81.52% for Macenko 
et al., 82.39% for Vahadane et al., 85.76% for Reinhard 
et al.) was achieved for the dataset variant normalized 
with the Reinhardt et al. algorithm. Consequently, each 
relevant patch extracted from the TCGA slides was 
normalized individually with the Reinhardt et  al. pro-
cedure. The normalization was performed with a region 
of interest image selected at random from the train-
ing dataset. All image patches from the TCGA data-
base were transformed to match the color space of that 
image.

TCGA image data segmentation using ARA‑CNN
The normalized patches served as input to ARA-CNN. 
For each input patch, the model returned a classifica-
tion probability into each of the nine predefined classes. 
With these results, each patch was labeled with the 
class with the highest probability and then the labeled 
patches were merged back into their full respective 
slides and colored by the label. This created segmented 
slides, with clearly visible continuous areas of differing 
tissue.

The segmented slides were next validated by an expert 
pathologist, who assessed that 39 slides needed to be 
excluded from further analysis. There were two reasons 
for that. The first one involved erroneous classifications 
returned by ARA-CNN - 21 out of 506 slides contained 
errors of such nature. The other 18 slides were excluded 

due to colored ink markings and other staining errors. 
After this process, the final dataset contained 467 slides 
from 411 patients.

Quantification of spatial features for the segmented tumor 
tissues
The obtained segmented images from TCGA were then 
processed further in order to extract spatial information 
in the form of two types of features, which we referred 
to as tissue prevalence (TIP) and tumor microenviron-
ment composition (TMEC). TIP is a distribution of tis-
sue classes within the whole tissue area, i.e. excluding the 
background class. TMEC measures a distribution of tis-
sues that neighbor the tumor tissue within a predefined 
margin.

The prevalence ti of tissue i is expressed as:

where ni is the number of patches for tissue i and N is 
the total number of tissue patches (excluding the back-
ground class) and i∈ {TUMOR, STROMA, MIXED, 
IMMUNE, VESSEL, BRONCHI, NECROSIS, LUNG}. The 
vector with entries given by ti makes up the TIP features. 
The background class was omitted, as it’s not relevant to 
the tissue structure.

The microenvironment composition mj for tissue j is:

where bj is the number of patches of class j that 
neighbor the tumor class and B is the total number 
of all patches neighboring the tumor class (exclud-
ing the tumor itself and the background class), with j∈ 
{STROMA, MIXED, IMMUNE, VESSEL, BRONCHI, 
NECROSIS, LUNG}. The TMEC features are organized 
in a vector with mj as its entries. The neighbor patches 
are considered only within a margin around the borders 
of tumor regions. Each tumor patch is considered sepa-
rately and up to eight neighbors around it are counted. 
These patches are summed up to bj for each class j and 
to B in total.

Using the microenvironment and prevalence data, we 
also calculated three spatial metrics that were previ-
ously defined in the literature: intra-tumor lymphocyte 
ratio (ITLR) [21], Simpson diversity index [52], Shan-
non diversity index [53]. We used a simplified version of 
these metrics - instead of cell-wise, we calculated them 
patch-wise. Specifically, these metrics were computed 
as follows:

ti =
ni

N
,

mj =
bj

B
,
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where bIMMUNE is the number of immune patches that 
neighbor the tumor and tTUMOR is the number of tumor 
patches in the whole slide.

Multivariate survival modeling using Cox model
The aforementioned predictors were used as input to the 
Cox proportional hazards model. They were organized 
into the following basic variants: clinical, clinical + ITLR, 
clinical + Shannon diversity index, clinical + Simpson 
diversity index, clinical + TMEC, clinical + TIP, clinical 
+ TMEC + TIP. In addition, variants with mutation data 
added on top of clinical data were considered. Each vari-
ant was trained in a 10-fold cross-validation schema. For 
categorical variables, the hazard ratio of their basal val-
ues was set to 1. For the sex variable, the basal value was 
‘Female’. For the Stage variable, the basal value was ‘Early 
stage’. For mutation variables (EGFR, STK11 and TP53) 
the basal value was the absence of alteration. Finally, for 
smoking status, non-smoker was set as basal.

Mutation classification
The processed data from TCGA served as input in the 
mutation classification task. The predictor variables were 
the same as in the survival prediction task (minus muta-
tion status). The response variables were binary and were 
defined by the mutation status for the 13 previously cho-
sen frequently mutated LUAD genes (see TCGA data 
extraction and processing).

For each classification task, where the class was speci-
fied by the presence of mutation of a given gene, the data-
set was oversampled so that positive (mutation occurred) 
and negative (mutation did not occur) subsets of exam-
ples were equal in size. Oversampling was done by insert-
ing multiple copies of the positive examples so that their 
number reached that of the negative ones.

Eight combinations of predictive features were tested: 
clinical, clinical + ITLR, clinical + Shannon diversity 
index, clinical + Simpson diversity index, clinical + 
TMEC, clinical + TIP, clinical + TMEC + TIP, TMEC 
only. To classify the mutation status for each gene, two 
distinct machine learning models were trained and com-
pared. The first one was a simple linear model in the 
form of logistic regression. It was fitted using the Lib-
linear solver [54], with the L2 (ridge) penalty [55] and 
up to 2000 iterations. The second one was the Random 

ITLR =

bIMMUNE

nTUMOR

Shannon = −

i
tilog(ti)

Simpson =

∑
i
t2i ,

Forest algorithm [56]. We used the implementation from 
the sklearn Python library [57] with default parameter 
values.

All models were trained 100 times with 10-fold cross-
validation and the resulting classification accuracy met-
rics were averaged. Classification performance was 
evaluated using the AUC metric.

Results
Validation of ARA‑CNN
To quantify the classification performance of ARA-CNN, 
we first inspected how well the final trained model per-
forms in segmenting the whole LubLung H&E slides. 
The segmentation allowed to correctly capture the TME 
heterogeneity in terms of all trained classes, which was 
confirmed by an expert pathologist who compared the 
original H&E slides with the final output of the model 
(Fig.  1c, d). Next, we used a 10-fold cross-validation 
procedure on the final set of 23,199 annotated patches 
obtained in the LubLung dataset (Methods). The best 
performance in a single class versus rest classification 
was achieved for the background, lung, necrosis, tumor, 
and immune classes (area under the curve, AUC range: 
0.97–0.99) (Fig. 1e). The lowest AUC (0.83) was obtained 
for the mixed class, which is not surprising given that 
it is a tissue that is a mix of two other classes (stroma 
and immune). We then computed a confusion matrix, 
which confirmed that the best trained classes were back-
ground, necrosis, lung, immune and tumor (accuracy 
range: 92.36%–98.01) (Fig.  1f ). In terms of errors, the 
model most often confused the mixed class with tumor 
(9.72% of the patches annotated as mixed were classified 
as tumor) or immune (8.17% of the patches); the vessel 
class with stroma or lung (8.73 and 10.79% of the patches, 
respectively); and the bronchi class with tumor or lung 
(7.30 and 8.53% of the patches, respectively). Given that 
patches of these classes were also often hard to distin-
guish by an expert pathologist, we conclude that our 
trained ARA-CNN model can reliably classify different 
tissue types in H&E images of LUAD and LUSC tissue 
sections.

Identification of TME spatial composition features in TCGA 
slides
We then sought to apply our trained ARA-CNN model to 
study the spatial architecture of the TME in H&E images 
from 411 LUAD patients downloaded from the TCGA 
database (Methods and Additional file 2). Due to the fact 
that LUAD is more affected by genetic alterations, we 
focused the further analysis on this particular subtype of 
lung cancer. We split each image into 87 × 87 μm patches 
and then normalized each patch to the same color 
space as the images in the LubLung dataset (Methods). 
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We used each patch as input to our ARA-CNN model, 
which returned the probabilities of assigning each patch 
to one of the nine tissue classes. We then segmented 
each image by assigning the most probable class to each 
patch (Methods). For each image, we computed two sets 
of human-interpretable features that reflect the spatial 
structure of the TME: tissue prevalence (TIP) and tumor 
microenvironment composition (TMEC) (Methods and 
Fig. 2a). TIP is represented by a vector of values ti, com-
puted as the fraction of patches assigned to class i out 
of all non-background patches in the whole slide image. 
TMEC is represented by a vector of values mi, computed 
as the fraction of patches assigned to class i out of all 
non-tumor and non-background tissue types in a prede-
fined margin around the tumor tissue.

Across the investigated tissue classes, tumor and lung 
classes dominated the entire tissue composition, with 
a median tTUMOR of 0.36 and a median tLUNG of 0.22 
(Fig.  2b). The next three most abundant classes in the 
LUAD slides were mixed, immune and bronchi (with 
median prevalence of around 0.07). Finally, the least 
abundant classes were stroma, vessel, and necrosis. The 
most dominant classes of the tumor microenvironment 
were lung (median mLUNG = 0.32), immune (median 
mIMMUNE = 0.18) and mixed (median mMIXED = 0.17). 
These classes were followed by bronchi (median 
mBRONCHI = 0.11). The least abundant in the tumor 

microenvironment were stroma, vessel and necrosis 
classes. This indicates that in many patients, the tumor is 
surrounded by normal lung tissue and is confronted with 
an immune response. The abundance of all features, how-
ever, showed large variability across the analyzed TCGA 
slides, indicating high heterogeneity of both the entire 
tissue and the tumor microenvironment composition.

TME features are predictive of patient survival
We then explored if our spatial features can be used to 
predict patient survival (Fig. 2c), given that the composi-
tion of the TME has been previously shown to influence 
disease aggressiveness and survival in various cancer 
types [4, 58]. To this end, we first stratified the 411 LUAD 
patients into two groups based on their TIP and TMEC 
feature levels (High vs. Low). The stratification was per-
formed using the survminer R package, which selects 
the cut-off point between high and low values based on 
the significance to the survival outcome. Specifically, the 
method implements a test of independence of a response 
variable and the given feature using maximally selected 
rank statistics. For each feature, we compared survival 
between the two groups using the Kaplan-Meier esti-
mator. Six TIP features (vessel p  = 0.0016, immune 
p = 0.0058, necrosis p = 0.0001, stroma p = 0.0352, bron-
chi p  = 0.0079 and mixed p  = 0.0040) and five TMEC 
features (vessel p = 0.0001, immune p = 0.0045, necrosis 

Fig. 2 Calculation and utilization of TIP and TMEC features. a H&E slides from TCGA were downloaded and split into tissue patches. Each patch 
was classified with ARA-CNN, producing tissue segmentations. These segmentations were next used to calculate the TIP and TMEC features. 
b Distribution of individual component features in TIP and TMEC. The most often occurring features for TIP were tTUMOR and tLUNG. For TMEC, these 
were mLUNG, mIMMUNE and mMIXED. c Tasks performed with the help of the TIP and TMEC features. In addition to the TIP and TMEC features, clinical 
and mutation data was also sourced from TCGA. These datasets were combined and served as input in two tasks: survival prediction and gene 
mutation classification. The results were compared to those obtained using previous spatial metrics instead of TIP and TMEC
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p = 0.0009, stroma p = 0.0086, and bronchi p = 0.0254) 
showed statistically significant (p  < 0.05, log rank test, 
two-sided) differences in survival between High and 
Low groups (Fig. 3a-k). Additionally, these same features 
were found to be significant in the Benjamini-Hochberg 
procedure (from the total of 15 TIP and TMEC features, 
significance confirmed if pr  < c, where pr is a p-value 
ranked in ascending order), assuming the False Discov-
ery Rate of 0.1 (Fig.  3a-k). The cut-off values identified 
for the TIP and TMEC features were chosen to yield the 
most significant stratification of patients into better and 
worse surviving groups. Additional Kaplan-Meier analy-
sis, stratifying patients using median values as cut-offs 
for patient stratification, showed less clear differences in 
survival between the resulting patient subgroups (Sup. 
Figure 4 in Additional file 1). We thus consider the identi-
fied cut-offs for the features as important findings, since 
they give additional insights about the corresponding 
tissues and the way their prevalence or abundance in 
the proximity of the tumor might affect patient survival. 
The identified cut-offs are yet to be verified on additional 
cohorts to validate that they would again yield significant 
differences in patient survival.

To systematically assess the added value of the TIP 
or TMEC and to compare them to other predictive fea-
tures, we trained several versions of a multivariate Cox 
proportional hazards model of the death hazard for the 
analyzed LUAD patients and assessed the performance 
of each model with Harrell’s c-index [59]. The versions in 
question were based on different combinations of input 
features (Methods). The best performing model yielded a 
median c-index of 0.723 and included clinical data (age, 
sex, pathologic stage, and smoking status), EGFR, STK11 
and TP53 gene mutations, as well as TIP features. Inclu-
sion of TMEC instead of TIP features yielded the second 
best model, with a slightly lower, but still high c-index of 
0.709 (Fig. 3l). All other models – including those based 
on spatial diversity metrics such as Shannon index [53], 
Simpson index [52] and ITLR [21] – resulted in lower 
c-index values. These results indicate that the TIP and 
TMEC features, which respectively reflect the repertoire 
of different tissues and their proportions across the entire 
examined tissue and across the TME, are superior to 
other spatial metrics in predicting patient survival.

Next, we inspected the two best performing Cox mod-
els for the association between TIP and TMEC features 
and the death hazard accounting for the context of other 
features. A hazard ratio of 1 for a given feature indi-
cates that the feature has no effect on survival, whereas 
a feature with hazard ratio larger than 1 indicates an 
increased death hazard and, therefore, a negative impact 
on survival. According to the best performing model, 
high abundances of tNECROSIS and tVESSEL features in the 

H&E image were associated with increased hazard. Simi-
larly, abundance of tBRONCHI and tSTROMA features had a 
negative effect on survival (Fig. 3m). In contrast, tIMMUNE 
and tMIXED features were associated with a decreased 
death hazard and therefore longer survival (Fig.  3m), in 
line with the established role of the immune system as 
a barrier against tumor progression [4, 19, 58]. Among 
mutation features, TP53 and STK11 mutations signifi-
cantly increased (p < 0.05, Wald test, two-sided) the death 
hazard, in agreement with the results of the independent 
Kaplan-Meier analysis (Sup. Fig.  3 in Additional file  1). 
The second best model, trained with TMEC instead of 
TIP features yielded very similar results (Fig.  3n). The 
impact of clinical features on the hazard agreed with pre-
viously published results and our independent Kaplan-
Meier analysis (Sup. Results in Additional file 1).

Since the TIP and TMEC features included in the Cox 
model were binarized into high and low values based on 
the found cut-offs, we further confirmed the utility of 
these cut-offs by investigating the results obtained from 
Cox models where the feature values were used as con-
tinuous variables (Sup. Fig.  5 in Additional file  1). For 
the continuous Cox models, only the features related to 
necrosis obtain significant p-values (with p  < 0.001 in a 
two-sided Wald test, both for tNECROSIS and mNECROSIS). 
The hazard ratios of the real-valued features are more dif-
ficult to interpret than for the binarized features, as the 
relation of their values to the values of the hazard ratios 
is less clear.

Finally, since the treatment information may be an 
additional, critical predictive factor for patient survival, 
we repeated the survival analysis presented in Fig. 3 l-n 
on a smaller dataset of LUAD patients for which the treat-
ment information was available (Sup. Methods in Addi-
tional File 1). To this end, we first trained several versions 
of a multivariate Cox proportional hazards model of the 
death hazard for that smaller dataset and evaluated the 
performance of each model with the Harrell’s c-index. 
The best performing model yielded a median c-index 
of 0.718 and included clinical data (age, sex, pathologic 
stage, and smoking status), EGFR, STK11 and TP53 gene 
mutations, treatment information (targeted therapy, 
chemotherapy, radiotherapy, combined chemo- and radi-
otherapy), as well as TIP features. The next best model, 
with c-index of 0.716, included the same set of features, 
sans treatment information. Then, replacing TIP features 
with TMEC features produced two next best models, 
where including treatment information yielded a c-index 
of 0.716 and excluding it led to a c-index of 0.707. All 
other models resulted in lower c-index values. However, 
in all cases, including treatment information improved 
the results when compared to feature sets without it 
(Sup. Fig. 6a). The best obtained c-index of 0.718 for the 
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dataset with treatment information was lower than the 
best c-index, 0.723, for the dataset without treatment, 
presented in Fig. 3l. However, these results should not be 
compared directly, as the datasets used to generate them 
differed in size.

Next, we inspected the two best performing Cox mod-
els that included treatment information as predictors 
in terms of inferred hazard ratios (Sup. Fig.  6b,c). The 
first model, utilizing TIP, yielded results very similar to 
those presented in Fig.  3m. In terms of the additional 
treatment features, combined chemo- and radiotherapy 
had a statistically significant positive impact on survival, 
while radiotherapy alone had a statistically significant 
negative impact (in both cases p < 0.05, Wald test, two-
sided). We speculate that the latter is not an effect of the 
therapy itself, but rather of the patients’ clinical state in 
general, which might have necessitated the use of this 
method of treatment [60]. Additionally, as expected, 
both chemotherapy and targeted molecular therapy 
were positive survival predictors (Sup. Fig. 5b). The sec-
ond best model that included treatment information, 
trained with TMEC instead of TIP features, yielded 
again very similar results (Sup. Fig.  6c). Interestingly, 
including treatment information increased statistical 
significance of spatial image features that were found 
significant when the treatment was not included in the 
model, as p for tNECROSIS, mNECROSIS, mVESSEL decreased 
when compared to results shown in Fig. 3m,n, although 
this finding may be a side effect of the reduction in the 
size of the dataset.

TME features are predictive of disease‑relevant mutations
Next, we sought to investigate the association of the 
human-interpretable spatial composition features of H&E 
images with mutations in lung cancer genes (Fig. 2c). To  
this end, we trained classifiers for the mutation status of 
13 genes that are frequently mutated in LUAD (Methods). 
We evaluated eight different feature sets (Methods)  
with two machine learning algorithms: logistic regres-
sion and random forest. Out of all 104 feature set and 
gene combinations, logistic regression was the better 

performing algorithm in 55 cases, while random forest 
performed better in the remaining 47 cases, indicating 
that for some genes non-linear relationships between the 
predictive features may be relevant for prediction of their 
mutations (Table  1). For 8 out of 13 considered genes 
(namely, RET, KRAS, KEAP1, TP53, BRAF, PDGFRB, 
ROS1, STK11), using the TIP or TMEC features gave the 
best result. For the remaining 5 genes (MET, ALK, DDR2, 
PIK3CA, EGFR), the best AUC was reached for models 
that utilized one of previously existing spatial metrics as 
features.

The best AUC (73.5%) was reached for the PDGFRB 
gene mutation by a classifier using clinical data and both 
TIP and TMEC as features (Table  1). The best model 
without TIP and TMEC, and with the Simpson met-
ric as a feature, yielded an AUC smaller by 3.4 percent-
age points (p.p.). This shows that for the PDGFRB gene 
mutation, the full information about tissue distribution, 
not reduced to a single value using entropy and without 
focusing on only selected tissues, is highly relevant for 
its mutation status. The classification performance of 
the best model using both TIP and TMEC for that gene 
is only slightly smaller than AUC of 75%, as previously 
reported for a deep learning model trained on raw H&E 
images [34], but is less difficult to interpret. For eight 
other genes (RET, KRAS, KEAP1, ROS1, STK11, MET, 
ALK, EGFR), the best AUC ranged between 60 and 70%, 
while for the four remaining ones (TP53, BRAF, DDR2, 
PIK3CA) the best AUC ranged between 55 and 60%. For 
some of the genes, the inclusion of TIP or TMEC features 
resulted in impressive improvements compared to other 
feature sets. For RET, the model trained with clinical data 
and TMEC outperformed the best model without TIP 
and TMEC features, but including the Shannon metric, 
by around 9.1 p.p. Similarly, for KEAP1 the classifica-
tion performance increased by 7 p.p. compared to mod-
els without TIP or TMEC. These results indicate that, 
in LUAD, there exists a subset of tumor mutations that 
correlate with how the TME is structured, and that both 
TIP and TMEC features are predictive of the presence of 
these mutations.

Fig. 3 Survival prediction results. a‑k Kaplan-Meier plots for TIP and TMEC features that result in patient stratification into two groups: with high 
and low values of the feature. Only features with statistically significant differences in patient survival are shown, as measured using the log rank 
test and the Benjamini-Hochberg procedure (p-values and critical values c in the top right corner, significance confirmed if p < 0.05 or pr < c, 
where pr is a p-value ranked in ascending order). For the latter, we set the False Discovery Rate at 0.1 and included all TIP and TMEC features. 
The cutoff value ρ (lower left corner) indicates the selected threshold yielding patient strata with high and low values of the feature. The results 
correlate with previous studies of the relationship between these features and patient survival. l c-index scores for Cox models from survival 
prediction experiments performed with different feature sets. The best results were obtained for models with such feature sets that included 
TIP and TMEC features. m Hazard ratios for the best model that utilized the TIP features. The prevalence of the necrosis tissue class in the whole 
slide has a statistically significant negative effect on survival. n Hazard ratios for the best model that utilized the TMEC features. The presence 
of the necrosis tissue class and the vessel tissue class in the TME has a statistically significant negative effect on survival

(See figure on next page.)
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We then inspected the two best performing models 
in the mutation classification task that utilized TIP and 
TMEC features to find which predictor features were the 

most important for identifying mutations. Both of the 
algorithms used – logistic regression and random for-
est – are easily interpretable because they allow effective 

Fig. 3 (See legend on previous page.)
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identification of the most important features. First, we 
analyzed the logistic regression classifier of PDGFRB 
mutations with clinical, TMEC and TIP features (Fig. 4a). 
The most important features positively correlated with 
PDGFRB mutation were sex, mMIXED – corresponding to 
the proportion of the mixed tissue in the tumor microen-
vironment – and tTUMOR – corresponding to the fraction 
of the entire slide occupied by the tumor. The positive 
correlation of the male sex with PDGFRB mutation is 
not well explored. We hypothesize that there could be 
a relationship between tobacco carcinogens, to which 
male patients are more exposed, and the TME composi-
tion, which is corroborated by our results. On the other 
hand, the most negatively correlated (i.e., decreasing the 
chance of mutation) features were non-smoker status, 
tIMMUNE, and mBRONCHI. Next, we inspected the random 
forest classifier of RET mutations, which included clinical 
and TMEC features in its feature set (Fig. 4b). The latter 
proved to be of larger importance than the former ones. 
Indeed, RET mutations were found to be most associ-
ated with the prevalence of different tissues in the tumor 
microenvironment, with bronchi and vessels identified as 
the most impactful tissues, followed by mixed, stroma, 
lung, immune and necrosis. This observation might 
be explained by the fact that, in LUAD, RET mutations 

mainly consist of rearrangements between RET gene 
and its common fusion partners such as KIF5B, CCDC6, 
CUX1, TRIM33, NCOA4, KIAA1468 and KIAA1217 
genes.

In addition to feature importance, we also inspected 
the distributions of the values of the TIP and TMEC 
spatial composition features for patients with and with-
out mutations of the PDGFRB and RET genes. For both 
of them, we selected the four most important TIP or 
TMEC features and assessed their value distributions 
separately for mutated and non-mutated cases. For PDG-
FRB, these features were: mMIXED and mBRONCHI (TMEC 
features), as well as tVESSEL and tIMMUNE (TIP features) 
(Fig. 4c). We detected a statistically significant difference 
between the value distributions (two-sided Wilcoxon test 
p-value < 0.05) for tVESSEL. For RET, the four most impor-
tant features were TMEC features mBRONCHI, mMIXED, 
mVESSEL and mSTROMA with mMIXED and mBRONCHI fea-
tures having a statistically significant difference in value 
distributions between mutated and non-mutated tumors 
(Fig.  4d). These results indicate that the spatial compo-
sition features TIP and TMEC are different between 
tumors with and without PDGFRB and RET mutations, 
and their importance for the classification of mutations 
of these genes is not incidental.

Table 1 Mutation/rearrangement classification AUC scores (given as % of area under the precision-recall curve) for TCGA LUAD 
patients. The best result for each gene is marked in bold. In cases where the random forest classifier gave the best result, the cells are 
colored in yellow. Otherwise, if logistic regression gave the best result, the cells are colored in light blue

(See figure on next page.)
Fig. 4 Feature importance for the two best performing mutation classification models that utilized TIP and TMEC features. a Feature importance 
for the PDGFRB gene mutation classifier (logistic regression). Here, feature importance is measured by the value of its regression coefficient. 
b Feature importance for the RET gene mutation classifier (random forest). Here, the importance is measured by the reduction of the Gini index 
obtained when the feature is added to the tree, averaged across the trees in the random forest model. c Distribution of feature values for four 
of the most important TIP or TMEC features, as presented in (a), divided between patients with the mutated and non-mutated PDGFRB gene. 
d Distribution of feature values for four of the most important TMEC features, as presented in (b), divided between patients with the mutated 
and non-mutated RET gene
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Fig. 4 (See legend on previous page.)



Page 14 of 18Rączkowska et al. BMC Cancer         (2022) 22:1001 

Discussion
We have developed a novel H&E image classification 
model, ARA-CNN, and a training dataset of annotated 
tissue patches from LUAD and LUSC H&E images, 
LubLung. Both considerably expand the current ability to 
analyze the TME automatically and quantitatively in lung 
cancer samples, which in turn has important implications 
for patient stratification and precision treatment. TIP and 
TMEC features, which we have introduced in this work, 
provide a novel way of capturing the composition and 
spatial structure of the TME, and are predictive of both 
overall survival and clinically relevant mutations. Spa-
tial statistics of H&E images in the form of metrics that 
quantify colocalization of cell or tissue types, have been 
previously shown to be predictive of patient survival [21]. 
However, these metrics are computed based on a limited 
number of features, such as counts of tumor and immune 
cells. Other approaches that try to link the structure of 
tumor tissue and TME with either gene mutations or 
patient survival are end-to-end deep learning models 
and work as ‘black boxes’ [29, 30, 34, 61–63]. Instead, our 
approach allows explicit interpretability, as it decouples 
H&E slide inference from downstream tasks (e.g., muta-
tion classification and survival analysis). The TIP and 
TMEC features are per se human interpretable, so it is 
possible to precisely pinpoint which tissue types are the 
most important. Our approach requires the initial tissue 
classification to be as accurate as possible. We ensured 
this to be the case by using ARA-CNN, which performs 
excellently in classifying nine tissue classes present in 
lung cancer H&E images. To foster further research in 
predictive spatial statistics based on a rich repertoire of 
segmented lung cancer tissues, in addition to LubLung 
we also share the segmented TCGA images as a separate 
dataset, named SegLungTCGA .

Our analysis revealed that patient stratification based 
on TIP and TMEC features yields significant differences 
in patient survival between the strata. Moreover, the 
most predictive survival models included TIP and TMEC 
features. These findings are supported by previous clini-
cal studies. It has been shown that blood vessel invasion 
is a major prognostic factor in lung cancer survival [14, 
64]. Similarly, there have been studies which proved that 
tumor necrosis is a significant risk factor for survival in 
lung cancer [65]. However, the complexity of the entire 
lung microenvironment plays a key role in the develop-
ment of primary lung carcinomas and offers a resource 
of targets for personalized therapy development. Target-
ing the angiogenesis and immune cells has elucidated 
the prognostic and pathophysiological roles of other 
components of the TME in lung cancer [13, 66]. In the 
end, the combination of the clinical and genetic informa-
tion with the TME landscape may play a pivotal role in 

predicting the type and duration of response to personal-
ized therapies.

We found eight genes relevant to lung cancer (PDG-
FRB, RET, KRAS, KEAP1, ROS1, STK11, MET and ALK), 
for which integrating clinical data with our TME features 
clearly improves the ability to predict mutations in these 
genes. We speculate that mutations of these genes may 
alter cellular interactions, and hence the spatial arrange-
ment of the TME visible in H&E images. For RET, ROS1 
and ALK genes, mutations mainly consist of chromo-
somal rearrangements which produce chimeric proteins 
that might affect the cellular organization within the 
TME [67–69]. Likewise, loss of STK11/LKB1 overlap-
ping with oncogenic KRAS mutations is associated with 
increased neutrophil recruitment, and decreased T-cells 
infiltration in lung cancer tumors [70]. Moreover, STK11 
mutations often coexist with KEAP1 mutations that 
relate to cellular resistance to oxidative stress [71], and 
co-occurrence of KEAP1 mutations and PTEN inactiva-
tion is an indicator of an immunologically “cold” tumor 
[72]. We speculate that each of these mutations might 
slightly affect the cellular morphology in H&E images in 
a way that is not apparent to the human eye, but can be 
captured by deep-learning algorithms.

Our findings concern mutations of clinically relevant 
genes, and as such may have clinical implications. For 
example, both RET and PDGFRB are clinically relevant 
LUAD cancer genes. RET has proto-oncogene properties 
and its fusions, which occur in 1–2% of LUAD [73], are 
associated with a high risk of brain metastasis [74]. How-
ever, last clinical trials indicated that they may be effec-
tively targeted by RET tyrosine kinase inhibitors such as 
pralsetinib, selpercatinib [73]. PDGFRB is a member of 
the PDGF/PDGFR axis that is recognized as a key regula-
tor of mesenchymal cell activity in TME [75], and several 
new agents (linifanib, motesanib, olaratumab) that block 
the PDGFR signaling are being tested in LUAD [76]. In 
breast, colon, pancreas and prostate cancers, the high 
stromal expression of the PDGFRβ protein has been asso-
ciated with poor prognosis [76], however its prognostic 
relevance in tumors of epithelial origin is inconclusive 
[75]. It was only confirmed that a relative expression of 
PDGFRs is a strong and independent predictor of longer 
survival for surgical stages of lung cancer (I-IIIA) [76].

There is a difference in genetic landscape between cen-
trally and peripherally located NSCLC that is affected 
by exposure to various environmental carcinogens [77]. 
For instance, exposure to tobacco carcinogens leads to 
centrally located NSCLC tumors with higher accumula-
tion of alterations in suppressor genes [78]. On the other 
hand, oncogenic alterations such as EGFR-activating 
mutations are prone to occur in the peripheral location 
that is more common to LUAD [79, 80]. Our results 
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indicate that central locations of NSCLC (high neighbor-
hood of bronchi) decrease the probability to detect RET 
alterations (Fig. 4b,d). This may suggest that RET altera-
tions preferably occur in peripherally located LUADs, 
however it needs to be confirmed experimentally.

The analysis presented here shows that there is a corre-
spondence between the spatial structure in H&E images 
for LUAD and both gene mutations and patient survival. 
Not every mutation is expected to have an effect on tis-
sue prevalence or tumor neighborhood structure, so it 
is not surprising that for some of the analyzed genes the 
mutation classification performance did not exceed an 
AUC of 0.6. In contrast, it is striking that there are genes 
for which adding tissue composition data to the clini-
cal information improves classification results. Finally, 
it is also surprising that our TIP and TMEC features, as 
well as other metrics of TME spatial organization, such 
as ITLR, can give good results in terms of both mutation 
classification and survival analysis. In summary, despite 
having several limitations, discussed in Additional File 1, 
our approach successfully identifies novel image features 
that are important for patient survival and mutations.

Conclusions
In this paper, we presented a framework that accu-
rately predicted survival and gene mutations in LUAD 
patients based on human-interpretable features extracted 
from H&E slides. Our approach can provide important 
insights for designing novel cancer treatments, by linking 
the spatial structure of the tumor microenvironment in 
LUAD to gene mutations and patient survival. It can also 
expand our understanding of the effects that the tumor 
microenvironment has on tumor evolutionary processes. 
The presented framework is generalisable, so it can be 
extended to other tumor types. We therefore envision 
that, in the future, our quantitative approach will become 
incorporated in routine diagnostics for LUAD and other 
cancer types.
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