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Abstract 

Background:  The determination of HER2 expression status contributes significantly to HER2-targeted therapy in 
breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to 
develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, includ-
ing ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status.

Methods:  We retrospectively collected 214 patients with pathologically confirmed invasive ductal carcinoma 
between January 2018 to March 2021 from Fudan University Shanghai Cancer Center, and randomly divided this 
cohort into training set (n = 128, 42 HER2-positive and 86 HER2-negative cases) and validation set (n = 86, 28 HER2-
positive and 58 HER2-negative cases) at a ratio of 6:4. The original and transformed pretherapy mpMRI images were 
treated by semi-automated segmentation and manual modification on the DeepWise scientific research platform v1.6 
(http://​keyan.​deepw​ise.​com/), then radiomics feature extraction was implemented with PyRadiomics library. Recur-
sive feature elimination (RFE) based on logistic regression (LR) and LASSO regression were adpoted to identify optimal 
features before modeling. LR, Linear Discriminant Analysis (LDA), support vector machine (SVM), random forest (RF), 
naive Bayesian (NB) and XGBoost (XGB) algorithms were used to construct the radiomics signatures. Independent 
clinical predictors were identified through univariate logistic analysis (age, tumor location, ki-67 index, histological 
grade, and lymph node metastasis). Then, the radiomics signature with the best diagnostic performance (Rad score) 
was further combined with significant clinical risk factors to develop a clinicoradiomic model (nomogram) using mul-
tivariate logistic regression. The discriminative power of the constructed models were evaluated by AUC, DeLong test, 
calibration curve, and decision curve analysis (DCA).

Results:  70 (32.71%) of the enrolled 214 cases were HER2-positive, while 144 (67.29%) were HER2-negative. Eleven 
best radiomics features were retained to develop 6 radiomcis classifiers in which RF classifier showed the highest AUC 
of 0.887 (95%CI: 0.827–0.947) in the training set and acheived the AUC of 0.840 (95%CI: 0.758–0.922) in the valida-
tion set. A nomogram that incorporated the Rad score with two selected clinical factors (Ki-67 index and histological 
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Introduction
Breast carcinoma is the most widespread and lethal 
tumor among women [1]. The most common histo-
logical type is invasive ductal carcinoma (IDC), which 
accounts for roughly 80% of all breast carcinomas, with 
20% – 30% expressing human epidermal growth factor 
receptor 2 (HER2) positivity [2]. Numerous studies sub-
stantiated the association of HER2 gene overexpression 
with the division, proliferation, and nourishment of new 
vasculature of breast carcinoma cells. Overexpression 
of HER2 is significantly correlated with high aggressive-
ness and poor prognosis in breast carcinoma patients 
[3–6]. Consequently, advancement in HER2-targeted 
therapy  was considered a prominent breakthrough in 
breast carcinoma treatment [7, 8]. Therefore, determin-
ing the HER2 expression status in  breast carcinoma 
patients is an essential precondition to identifying poten-
tial candidates for treatment decisions. The immunohis-
tochemistry (IHC) method for testing HER-2 expression 
is a standard procedure in our laboratory and a part of 
our pathology reports in invasive breast carcinomas, and 
FISH is the subsequent and gold method in equivocal 
(2 +) IHC cases [9]. These two methods are more time-
consuming, and takes 5–12  days after specimens are 
provided. FISH is difficult to apply, and requires trained 
technicians.  It is more expensive since it requires test 
kits and a special microscope, and stained preparations 
cannot be archived [10].  Radiomics allows inference of 
tumoral molecular status from medical image-derived 
features, and it allows the study of the tumoral hetero-
geneity both spatially and over time; radiomics have the 
potential to enable spatio-longitudinal monitoring of 
tumor biology before and during treatment.

Existing literature has recently documented a cor-
relation between MRI image expression and breast car-
cinoma HER2 expression level [11–15]. Song et  al. [11] 
reported that texture features derived from kinetic 
parameter maps, calculated based on breast DCE-T1W1, 
can be used as imaging biomarkers to distinguish HER2-
positive and HER2-negative breast cancer. The best 
model with features extracted from the slope of signal 
intensity (SIslope) map yielded an AUC of 0.79 in the test 
set. Another radiomic study by Li et al. [12] selected ER 

status and radiomics features in DWI images to establish 
the nomogram, which yielded good discrimination (AUC: 
0.883/0.848) and calibration. The radiomics nomogram 
showed favorable performance for evaluating HER2 sta-
tus in breast cancer. To the best of our knowledge, the 
HER2 express status in breast carcinoma could be bet-
ter predicted by radiomics signature established from 
the mpMRI compared with single-parametric signature. 
Zhou et al. found the prediction ability of the developed 
SVM model in HER2 status of breast carcinoma patients 
based on T2WI, DCE-T1W1, and a combination of the 
two sequences. The multiparameter-related model mani-
fested the best efficiency in forecasting the HER2 status 
with an AUC of 0.86 and 0.81 in the learning and test 
cohorts, respectively [16]. However, no published study 
has discussed the MRI combining with clinical pathologi-
cal risk factors, such as Ki-67 index, histological grade, 
and lymph node metastasis, in predicting HER2 expres-
sion, and no published study has applied clinicoradiomic 
models (nomogram) using multiple machine learning 
algorithms in predicting HER2 expression in invasive 
ductal carcinoma.

This paper aims to investigate and compare the perfor-
mance of radiomics features from different types of MR 
images (fat-suppressed T2-weighted images (T2WI), dif-
fusion coefficient map (ADC-map), and dynamic con-
trast-enhanced T1-weighted images (DCE-T1WI)) and 
the performance of their fusions using different machine 
learning algorithms. In addition, a nomogram incorpo-
rating the mpMRI-based radiomics signature and clinical 
predictors was developed to improve the discriminative 
and interpretable ability of the classifier for HER2 status 
prediction.

Materials and methods
Study population
The Fudan University Shanghai Cancer Center and 
Shaoxing Central Hospital Ethical Committee approved 
this study protocol, and the requirement for written 
informed consent was waived. Between January 2018 
and March 2021, we retrospectively collected breast 
tumor cases confirmed by clinical examination and diag-
nosed by ultrasound examination in our center. Inclusion 

grade) was constructed and yielded better discrimination compared with Rad score (p = 0.374, Delong test), with 
an AUC of 0.945 (95%CI: 0.904–0.987) in the training set and 0.868 (95%CI: 0.789–0.948; p = 0.123) in the validation 
set. Moreover, calibration with the p-value of 0.732 using Hosmer–Lemeshow test demonstrated good agreement, 
and the DCA verified the benefits of the nomogram.

Conclusion:  Post largescale validation, the clinicoradiomic nomogram may have the potential to be used as a non-
invasive tool for determination of HER2 expression status in clinical HER2-targeted therapy prediction.

Keywords:  Breast carcinoma, Multiparametric magnetic resonance imaging, Nomograms, HER2, Radiomics
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criteria: (I) the patient had proven invasive breast ductal 
carcinoma of no special type (IDC-NST), as determined 
by histology; (II) complete breast mpMRI data and path-
ological data, HER2 2 + status verified by FISH; Exclusion 
criteria: (I) pregnant or lactating females, or a plan to get 
pregnant within six months; (II) prosthesis implantation; 
(III) history of breast surgery that might affect imaging 
diagnosis. A total of 302 consecutive patients from Fudan 
University Shanghai Cancer Center were eligible. How-
ever, poor image quality or incomplete lesion presenta-
tion in 25 cases, neoadjuvant therapy in 46 cases, and a 
history of breast carcinoma or bilateral breast carcinoma 
in 17 cases were excluded. In the case of multicentric 
lesions, the largest major lesion of them was selected to 
enter the group. Patient demographic data, including age, 
tumor location, menopause status, and a family history of 
breast carcinoma in first-degree relatives, were retrieved 
from the Electronic Medical Record System. Pathologi-
cal data were tumor pathological type and histological 
grade, the expression status of HER2, Ki-67 index, and 
lymph node metastasis. The final cohort comprised of 
214 patients and was randomly split with a ratio of 6:4 
[17, 18], to create the training set (n = 128, 42 HER2-
positive and 86 HER2-negative cases) and validation set 
(n = 86, 28 HER2-positive and 58 HER2-negative cases), 
respectively for subsequent analyses. Figure 1 illustrates 
the flowchart of this study.

Imaging examination
For all patients the breast MRI examination was per-
formed on the Aurora Dedicated Breast MRI System and 
a dedicated phased-array coil. The patients were scanned 
in the prone position to allow both mammary glands in 
the concave hole of the phased-array coil with a natural 
overhanging effect. All these sequences were obtained 
back-to-back in one imaging session. Imaging protocols 
were as follows: (1) transverse T2WI with fat-suppres-
sion (FS-T2WI, TR 6680  ms, TE 68  ms), with the layer 
thickness and spacing of 3 mm and 1 mm, respectively; 
(2) transverse DWI (TR8 400  ms, TE 84  ms), DWI sig-
nal intensity at b = 0  s/mm

2 , b = 1,000  s/mm
2 , with the 

layer thickness and spacing of 4 mm, and 6 mm, respec-
tively, and a DWI-derived ADC map; (3) 3D-DCE, trans-
verse T1WI with fat and water suppression (TR 5  ms, 
TE 29 ms) was selected, with a layer thickness of 1.1 mm 
and a layer spacing of 0, FOV 360 mm × 360 mm, matrix 
360 × 360 × 128. The number of scanned layers in a sin-
gle phase was 160. Phase I mask scan was done prior to 
the contrast enhancement scan. In the contrast scan, 
Gd-DTPA (Bayer Medical Care Ltd) was administered 
intravenously at a dose of 0.2 mmol/kg and a flow rate of 
2.0 mL/s. After injection, contrast images were obtained 
in 5 phases in a row, with a scan time of 120 s per phase.

Image analysis
The breast MRI data of all sequences were imported as 
a DICOM file into the DeepWise scientific research 
platform v1.6 (http://​keyan.​deepw​ise.​com/). Two radi-
ologists with more than 10-year experience in breast 
imaging diagnosis semi-automatically segmented lesions 
layer-by-layer and analyzed after merging them into the 
three-dimensional region of interests (3D ROIs, VOIs). 
After carefully scrutinizing the tumor region, disagree-
ments were resolved by consensus-based discussion or 
decided by superior physicians. The 3rd sequence dur-
ing the dynamic enhancement course was selected after 
about 240 s of injecting contrast medium. At this point, 
malignant lesions generally show a peak enhancement 
to present a clear contrast with the surrounding normal 
breast parenchyma, which is conducive to more accu-
rate VOI delineation and feature extraction. The selected 
VOI should conform to the following criteria: (1) Include 
cystic lesion, necrosis, and halo-sign; (2) Invasion of sur-
rounding structures: areas connected to VOI and have 
the same enhancement pattern with the VOI; (3) The 
lesion VOI < 5 mm

3 is waived. The VOIs of T1-DCE 
were registered and applied to the other two sequences, 
and the image slicers and orientation were precisely 
matched between T2WI and ADC-map. Supplemen-
tal Figure S1 provided the process of segmentation and 
VOI selection of two typical HER2-positive and HER2-
negative cases. Then, B-spline interpolation was carried 
out to standard the image into the same spatial resolu-
tion (1  mm × 1  mm × 1  mm)[19–21] and followed by 
the absolute gray-level discretization with fixed bin size 
(FBS) set to 5 as previous studies suggested [20–23]. In 
particular, the processes of image interpolation and gray-
level discretization were both aligned to IBSI [21].

Radiomics feature extraction and screening
To emphasize the imaging characteristics, image fil-
ters such as log (Laplacian of Gaussian), gradient, 
lbp-2d/3d, and four common point-level transforms 
were applied prior to feature extraction. In addition, 
wavelet decomposition was applied at each channel 
for images to obtain all possible combinations in high-
pass or low-pass filters (LLH, LHL, LHH, HLL, HLH, 
HHL, HHH, LLL). For original and other-transformed 
images, first-order, shape, and texture features were 
extracted, respectively, and implemented with the 
open-source PyRadiomics library (https://​github.​com/​
Radio​mics/​pyrad​iomics). Subsequently, Z-score trans-
formation was used to normalize the feature distribu-
tion in the training set, and the data in the validation 
set were then standardized by the same calculated 
parameters to avoid data leakage. The implementation 
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Fig. 1  The flowchart of this study
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of feature extraction and standardization was compli-
ant with Imaging Biomarker Standardization Initiative 
(IBSI) [21]. For each sequence, we initially extracted 
1906 radiomics features from VOIs, including 396 
first-order features, 14 shape features (including three 
2D features), and 1496 texture features. A suffix was 
added for the different series (i.e., ‘1’ represents ADC-
map, ‘2’ represents T2WI, ‘3’ represents DCE-T1WI). 
Intra-class correlation coefficient (ICC) was calculated 
to evaluate the intra- and inter-observer reproducibil-
ity of radiomics features. Initially, reader 1 and reader 
2 completed the VOI segmentation and radiomics 
feature extraction on 30 randomly selected patients’ 
mpMRI data. Then, Reader 1 repeated the same proce-
dure 1 month later. Intra- and inter-observer ICC vari-
abilities were studied using the one-way random single 
measures ICC (ICC(1,1)) and two-way random single 
measures ICC (ICC(2,1)), respectively. And features 
with intra- or inter-observer ICC values lower than 
0.75 were discarded before subsequent feature selec-
tion. Moreover, we applied Pearson’s correlation with a 
threshold of 0.9 in training set to minimize the poten-
tial collinearity of variables.

Model establishment and evaluation
Given the extracted high-throughput radiomics features, 
dimension reduction of the retained features was fur-
ther performed with the algorithms of recursive feature 
elimination (RFE) and LASSO. These feature selection 
algorithms were used in this study because of efficiency 
and popularity. To achieve high and robust performance 
of the developed classifiers, six machine learning algo-
rithms, Logistic Regression (LR), Linear Discriminant 
Analysis (LDA), Support Vector Machine (SVM), Ran-
dom Forest (RF), Naive Bayesian (NB), XGBoost (XGB), 
were used to classifier construction. The reason for 
selecting and comparing these methods in this study was 
that they were common classifiers in the related study 
for breast in previous studies, such as undergoing mas-
tectomy prediction [24], breast cancer prediction [25], 
axillary lymph node metastasis [26]. To avoid over-fitting 
in the modeling process, the hyper-parameter search-
ing for optimal classifiers were completed by grid-search 
method using the tenfold cross-validation repeatedly. 
After the completion of radiomics classifiers, multivari-
ate logistic regression analysis and backward stepwise 
regression analysis based on Akaike Information Crite-
rion (AIC) were devised to establish a clinicoradiomic 
model (nomogram) incorporating significant clinical pre-
dictors and radiomics classifiers. Thus, we developed the 
visual nomogram of the clinicoradiomic model to calcu-
late the probability of HER2-positive breast cancer.

Pathological analysis
Two pathologists with more than 15  years of expertise 
identified the histological type, histological grading, and 
immunohistochemical analysis. The histological type of 
breast carcinoma was defined according to the World 
Health Organization classification. The Elston–Ellis 
System was followed to estimate the tumor histological 
grade (Elston and Ellis 1991). IHC or FISH determined 
the HER2 status based on the clinical use instructions 
for HER2 experiment in breast carcinoma presented by 
the American Society of Clinical Oncology (ASCO)/Col-
lege of American Pathologists (CAP) [27], IHC scores 
of 3 + and 0 or 1 + were considered positive, and nega-
tive, respectively, while an IHC score of 2 + of HER2 was 
regarded as indeterminate. To determine gene amplifica-
tion, researchers used fluorescence in  situ hybridization 
(FISH), and the ratio ≥ 2.0 was judged positive for HER2 
[27, 28].

Statistical methods
Statistical analysis was conducted on R statistical soft-
ware v3.6.1 (http://​www.​Rproj​ect.​org). Student’s t-test 
and Chi-square test were, respectively, used for con-
tinuous and categorical data with normal distribution, 
and the Mann–Whitney U test was applied for data 
with non-normal distribution. All tests were two-tailed, 
and p < 0.05 was considered statistically significant. 
The  receiver operating characteristic (ROC) curve  is 
defined for evaluating the performance of binary clas-
sifiers and is produced by calculating the  true positive 
rate against the  false positive rate  for a binary classifier 
at a set of different  thresholds. And we used Youden’s 
index (YI) to calculate the optimal threshold, which gives 
equal weight to specificity and sensitivity. The R package 
“glmnet” statistical software (R Foundation) was used to 
perform the modeling process of classifiers. “PROC” R 
package was mainly used in the ROC curve analysis. In 
addition, DeLong test was used to compare the perfor-
mance of two different models. Calibration curves of the 
nomogram and Hosmer–Lemeshow test were used to 
validate the agreement between prediction and observa-
tion in validation set. Furthermore, we performed deci-
sion curve analysis (DCA) to visualize the net benefit for 
clinical decisions.

Results
Clinical data and pathological diagnosis results
The detailed clinical and histopathologic characteristics 
of patients with IDC were summarized in Table 1. Of the 
214 eligible cases, the age ranged from 16 to 86  years, 
with an average age of 50.77 ± 10.29  years. This cohort 
encompassed HER2-positive in 70 (32.71%, 70/214) cases 

http://www.Rproject.org
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and HER2-negative in 144 (67.29%,144/214) cases. There 
was no significant difference between the two groups in 
all clinical features (p > 0.05).

Predictive efficiency of the radiomics signatures
In total, 455 radiomics features were excluded through 
stability analysis (ICC ≤ 0.75). 345, 356, 449, and 1150 
radiomic features selected from T2WI, ADC-map, 
DCE-T1WI, and mpMRI (including T2WI, ADC-
map, DCE-T1WI) images with the |correlation coef-
ficient|≤ 0.9 were used for next dimension reduction. 
The top 100 ranking of RFE remained features were 
further selected based on LR. Finally, 11 radiomics fea-
tures were retained from the mpMRI images, T2WI 
(n = 2), ADC-map (n = 3), DCE-T1WI (n = 6), to con-
struct the radiomics signature using the LASSO regres-
sion (Fig. 2). The relative importance of the 11 selected 
radiomics features for predicting HER2 expression 

status was shown in Fig.  2C. Figure  3 provided the 
qualitative visualizations of some of the top Radiom-
ics features on the MRI sequences for a HER2-negative 
case and a HER2-positive case. We further verified that 
there was no statistically significant difference between 
the final selected radiomics features in the training 
and validation sets (Supplemental Table S1). For three 
sequences, the optimal performance was reported by 
the RF classifier (Rad score, Fig.  4) with the AUCs of 
0.927 (95%CI: 0.876–0.978) (accuracy 0.851; sensitiv-
ity 0.881; specificity 0.837) in the training set and 0.826 
(95%CI: 0.738–0.914) (accuracy 0.744; sensitivity 0.857; 
specificity 0.689) in the validation set (Table  2). The 
Rad score based on mpMRI images achieved higher 
AUC values than other single-parametric models (i.e., 
ADC-map, T2W1, and DCE-T1W1) in training (AUC: 
0.816, 0.743 and 0.810) and validation sets (AUC: 0.719, 
0.694 and 0.756) (Supplemental Figure S2).

Table 1  Clinical and histopathologic characteristics of IDC patients

Characteristics Train Cohort P value Validation Cohort

HER2 + (n = 42) HER2-(n = 86) HER2 + (n = 28) HER2-(n = 58)

Ki-67 47.98 ± 20.51 33.35 ± 23.04 0.94 46.25 ± 23.16 34.62 ± 27.30

Patient age 0.166

   < 35 (youth) 1(1.16) 3(10.71) 1(1.72)

  30–50 (middle-aged) 26(61.90) 60(69.77) 17(60.71) 36(62.07)

   > 50 (menopause) 16(38.10) 25(29.07) 8(28.57) 21(36.21)

Location = Central District 0.243

  No 38(90.48) 73(84.88) 24(85.71) 55(94.83)

  Yes 4(9.52) 13(15.12) 4(14.29) 3(5.17)

Position = upper-right quadrant 0.209

  No 32(76.19) 63(73.26) 18(64.29) 39(67.24)

  Yes 10(23.81) 23(26.74) 10(35.71) 19(32.76)

Position = Lower-right quadrant 0.5

  No 34(80.95) 75(87.21) 24(85.71) 52(89.66)

  Yes 8(19.05) 11(12.79) 4(14.29) 6(10.34)

Position = Upper left quadrant 0.463

  No 25(59.52) 52(60.47) 20(71.43) 36(62.07)

  Yes 17(40.48) 34(39.53) 8(28.57) 22(37.93)

Position = Lower left quadrant 0.05

  No 37(88.10) 78(90.70) 22(78.57) 47(81.03)

  Yes 5(11.90) 8(9.30) 6(21.43) 11(18.97)

Histologicalgrades 0.256

  Stage I 1(2.38) 5(5.81) 9(15.52)

  Stage II 11(26.19) 56(65.12) 12(42.86) 32(55.17)

  Stage III 30(71.43) 25(29.07) 16(57.14) 17(29.31)

Lymph node metastasis 0.534

  0 24(57.14) 51(59.30) 13(46.43) 29(50.00)

  1 9(21.43) 21(24.42) 7(25.00) 19(32.76)

  2 5(11.90) 9(10.47) 6(21.43) 6(10.34)

  3 4(9.52) 5(5.81) 2(7.14) 4(6.90)
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Nomogram establishment
The Rad score (OR = 58.909, 95%CI: 7.693 to 451.094, 
p < 0.01), histological grade (OR = 4.971, 95%CI: 2.297 
to 10.757, p < 0.01), and ki-67 (OR = 4.435, 95%CI: 
1.991 to 9.883, p < 0.01) were determined as independ-
ent predictors using univariate logistic regression anal-
ysis and were used to develop the nomogram (Fig. 5A, 
B) by multivariate logistic regression analysis (Table 3). 
The nomogram_RF obtained the AUC of 0.945 (95%CI: 
0.904 to 0.987) in the training and 0.868 (95%CI: 0.789 
to 948) in the validation cohorts. As comparison, the 
nomograms based on the other radiomics classifiers 

were constructed in the same approach (Fig.  5A). The 
nomogram_RF still produced the highest AUC though 
there was no significant added value between the radi-
omics classifiers and their corresponding nomograms 
in the training and validation sets (Supplemental Table 
S2). The calibration curves demonstrated that the nom-
ogram_RF could provide an excellent calibration in the 
training cohort (Fig. 5C), in which the Hosmer–Leme-
show test showed a non-significant  p-value of 0.732. 
The DCA curves claimed that the good application of 
the nomogram_RF in the clinical decisions, followed by 
considering the radiomics classifier alone (Fig. 5D). The 

Fig. 2  A Feature coefficients corresponding to the value of parameter λ. Each curve represents the change trajectory of each independent variable. 
B The most valuable features were screened out by tuning λ using LASSO via minimum binomial deviation. The dotted vertical line represents the 
optimal log (λ) value. C The selected 11 radiomics features with the most discriminative value
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Fig. 3  Qualitative visualizations of 4 top Radiomics features on the DCE-T1W1 sequence between HER2-positive (a-d) and HER2-negative cases 
(e–h). a,e Original_gldm_LargeDependenceHighGrayLevel Emphasis (b,f) wavelet-LLH_glcm_Idmn (c,g) wavelet-HLH_glcm_Idn (d,h) lbp-3D-k_
gldm_DependenceEntropy

Fig. 4  ROC curves of the six radiomics classifiers. A Training set. B Validation set

Table 2  Performances of the six machine learning classifiers for predicting HER2 status in the validation cohort

LR Logistic Regression, LDA Linear Discriminant Analysis, SVM Support Vector Machine, RF Random Forest, NB Naive Bayesian, XGB XGBoost

Radiomics classifier Accuracy True positive rate 
(Sensitivity)

True negative rate 
(Specificity)

Threshold AUC(95%CI)

LR 0.750 0.893 0.621 0.514 0.810 (0.709–0.905)

LDA 0.733 0.829 0.718 0.547 0.801 (0.701–0.901)

SVM 0.756 0.821 0.724 0.545 0.840 (0.758–0.922)

RF 0.744 0.857 0.689 0.546 0.826 (0.738–0.914)

NB 0.755 0.786 0.741 0.527 0.788 (0.694–0.882)

XGB 0.710 0.857 0.637 0.494 0.790 (0.688–0.891)
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Fig. 5  Nomogram performances for predicting HER2 status of breast carcinoma in the Training set. A. ROC curves of the six nomograms based on 
different radiomics classifiers. B. Nomogram_RF. C. Calibration curve of the nomogram_RF. D. Decision curves of the nomogram_RF and Rad score

Table 3  Results of univariate and multivariate logistic regression analysis for nomogram_RF

Features Univariate logistic regression multivariate logistic regression

OR(95%CI) p value OR(95%CI) p value

Location = Central 0.591(0.18–1.938) 0.39 NA NA

Position = upper-right 
quadrant

0.856(0.364–2.014) 0.72 NA NA

Position = Lower-right 
quadrant

1.604(0.592–4.347) 0.35 NA NA

Position = Upper -left 
quadrant

1.04(0.49–2.208) 0.92 NA NA

Position = Lower-left 
quadrant

1.318(0.403–4.305) 0.65 NA NA

Histological grade 4.971(2.297–10.757)  < 0.01** 2.666 (1.003–7.085) 0.049*

Lymph node metastasis 1.133(0.768–1.673) 0.53 NA NA

ki-67 4.435(1.991–9.883)  < 0.01** 1.012 (0.989–1.035) 0.305

Rad score 58.909(7.693–451.094)  < 0.01** 75.428(7.64–745.212)  < 0.01**
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performances in the validation set were shown in Sup-
plemental Figure S3.

Discussion
The present study nurtured the quantitative features from 
T2WI, ADC-map, and DCE-T1WI images to standardize 
radiomics models for the noninvasive evaluation of the 
HER2 status in breast carcinoma. The Rad score classi-
fier based on the RF algorithm exhibited good efficiency 
in differentiating HER2-positive from HER2-negative 
disease, in which the AUCs, accuracy, true positive, and 
negative rates were 0.927 (95%CI: 0.876–0.978), 85.1%, 
88.1% and 83.7% respectively, in the training cohort, and 
0.826 (95%CI: 0.738–0.914), 74.4%, 85.7% and 68.9%, 
respectively, in the validation cohort. We then created a 
nomogram by combining the Rad score with the inde-
pendent clinical predictors (histological grade and ki-67) 
with univariate and multivariate logistic regressions. The 
finding demonstrated that the nomogram could provide 
superior classification and recognition in HER2-positive 
patients (the AUCs of 0.945 and 0.868 in the training and 
validation sets). Thus, we concluded that applying radi-
omics features from mpMRI data incorporating machine 
learning algorithm contributed to the good discrimina-
tive performance in the HER2 status.

Recently, there has been a growing interest in applying 
quantitative imaging data to delineate intrinsic biological 
characteristics [29–34]. Diverse research has dissected 
the dependence between radiomic signatures and HER2 
expression status [35–40]. Zhou et  al. [35]. noninva-
sively evaluated the efficacy of mammography radiomics 
signatures in diagnosing the patients’ HER2 status with 
breast carcinoma, including mediolateral oblique (MLO) 
and cranial caudal (CC) views, with an AUC of 0.846 in 
the training set and an AUC of 0.74 in the testing set. 
Another similar study also highlighted the connection 
between radiomics signatures from multidetector com-
puted breast mammography images with HER2 express 
status [36]. Daniele La Forgia et  al. [41]. reported that 
radiomics combining contrast-enhanced spectral mam-
mography performed well in predicting histological 
subtypes of breast cancer, with accuracies of 90.87%and 
84.80% in discriminating HER2 + /HER2 − and Ki67 + /
Ki67 − breast cancer, respectively. Those studies indi-
cated that radiomics analysis was a useful analytical tool 
to predict HER2 status in breast cancer, which is con-
sistent with the findings of this study.Another radiomic 
study by Bitencourt et al. [42].developed machine learn-
ing models (including both clinical and radiomics MRI 
features) to predict HER2 expression levels and patho-
logic response (pCR) after neoadjuvant chemotherapy in 
HER2 over-expressing breast cancer patients. The model 
predicted HER2 heterogeneity and pCR with diagnostic 

accuracy of 97.4% and 83.9% in the test set, respectively. 
More specifically, the HER2 express status in breast car-
cinoma could be better predicted by a radiomics sig-
nature established from the mpMRI compared with a 
single-parametric signature. Huang et  al. [43].showed 
that multi-parametric MRI-based radiomics combined 
with different machine learning approaches could be a 
promising method to predict the molecular subtype and 
AR expression of breast cancer non-invasively. In this 
study, the results verified the conclusion with the supe-
rior performance of prediction, in which the Rad score 
based on mpMRI images achieved higher AUC values of 
0.927 and 0.826 than other single-parametric models (i.e., 
ADC-map, T2W1, and DCE-T1W1) in training (AUC: 
0.816, 0.743 and 0.810) and validation sets (AUC: 0.719, 
0.694 and 0.756), respectively.

Many studies have reported the association between 
histological grade, Ki-67 index, and HER2 status; 
HER2-positive expression has a relationship with high 
nuclear grade and ki-67 index [44–46]. In contrast, our 
study showed that only the ki-67 index and histologi-
cal grade could be used as an independent predictor of 
HER2 expression. The ki-67as proliferation marker has 
been successfully used as a tool for clinical decision-
making, specifically how it can be used to select the 
optimal treatment for each individual patient [47]. 
Tumor histological grade has previously been linked 
to HER2 status. HER2 expression has previously been 
found to correlate with a higher nuclear grade but not 
with tumor stage [45]. However, none of these studies 
developed a predictive model that included these pre-
dictors. Our study is the first to develop a nomogram 
to perform this prediction. Recently, the added value 
of the nomogram model based on radiomics signature 
and clinical factors for pathological outcome predic-
tion [48–50] has been investigated by some studies. 
Our results showed the highest performance compared 
with existing work, which is another clinical contri-
bution of this work. In this study, 11 optimal features 
were finally retained for modeling, including morpho-
logical, first-order, GLCM, GLDM, and GLSZM char-
acteristics, which are predominantly involved in tumor 
heterogeneity. Based on tumor size and morphology, a 
significant correlation existed between the characteris-
tics of shape_Maximum 2D Diameter, shape_Maximum 
3D Diameter, shape_Sphericity, and the HER2 expres-
sion of breast carcinoma. Consistent with the previous 
report [51], the morphology and size of lesions vary 
with the different expressions of hormone receptors 
(HR). Much irregular and larger lesions were reported 
in the cases of HR-negative plus HER2-positive com-
pared with the hormone HR-positive plus HER2-neg-
ative. In the present study, high kurtosis was found in 
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most HER2-positive cases, which is consistent with 
the existing work. Fan et al. [52] constructed a predic-
tive model for four molecular subtypes classification 
of breast carcinoma based on the DCE-T1W1 images 
and two clinical risk factors, revealing the potential of 
kurtosis as an independent predictor for classifying 
molecular subtypes of breast carcinoma. Previous stud-
ies have shown that texture analysis can provide infor-
mation on tumor cellular and histological components 
[53, 54]. The SizeZoneNonUniformityNormalized tex-
ture feature measures the variability of zone volumes 
throughout the image. A higher value indicates more 
inhomogeneity among zone volumes in the image; 
thus, we concluded the irregular volume distribution of 
the HER2-positive group, which may be caused by the 
unequal growth rate of tumors in various directions. 
The texture features of glcm_Idmn, glcm_Dmn, and 
gldm_Dependence from wavelet-transformed images 
can reflect the homogeneity and consistency of tumor 
texture characteristics, conducive to the better explora-
tion of intra-tumor heterogeneity and subtle differences 
in grey and texture level feature [55]. The Dependen-
ceEntropy texture feature measures the intensity differ-
ences in the neighborhood; the higher value represents 
a more disordered internal density of the tumor; hence, 
we found the complex heterogeneity existed in the 
HER2-positive texture patterns.

The mpMRI facilitates a comprehensive analysis of 
radiomics features; the established nomogram can fully 
combine the characteristics of different sequences. 
Nonetheless, there are several limitations to this study. 
Firstly, the limited sample size and all the cases were 
from one center. Therefore, additional validation of the 
constructed models on multicentric studies with a large 
study population is required. Second, to avoid con-
founding influences associated with the pathological 
type, the study only enrolled patients with IDC-NST, 
the most common form of breast carcinoma. Thirdly, 
we only used the traditional machine learning classifi-
cation algorithms to explore the predefined radiomics 
features instead of the more informative and abstract 
features extracted by deep learning algorithms from 
MR images.

Conclusions
This study showed that radiomics signature based on 
mpMRI could improve the discriminative performance 
of HER2 status prediction in patients with breast carci-
noma. The nomogram with the radiomics signature and 
independent clinical risk factors is a key tool for noninva-
sive diagnosis.
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