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Abstract 

Background:  Owing to the low ratio of patients benefitting from immunotherapy, patient stratification becomes 
necessary. An accurate patient stratification contributes to therapy for different tumor types. Therefore, this study 
aimed to subdivide colon cancer patients for improved combination immunotherapy.

Methods:  We characterized the patients based on urea cycle metabolism, performed a consensus clustering analysis 
and constructed a risk model in the cancer genome atlas cohort. Colon cancer patients were further categorized 
into two tags: clusters, and risk groups, for the exploration of combination immunotherapy. In addition to external 
validation in the Gene Expression Omnibus datasets, several images of immunohistochemistry were used for further 
validation.

Results:  Patient characterization based on urea cycle metabolism was related to immune infiltration. An analysis of 
consensus clustering and immune infiltration generated a cluster distribution and identified patients in cluster 1 with 
high immune infiltration levels as hot tumors for immunotherapy. A risk model of seven genes was constructed to 
subdivide the patients into low- and high-risk groups. Validation was performed using a cohort of 731 colon cancer 
patients. Patients in cluster 1 had a higher immunophenoscore (IPS) in immune checkpoint inhibitor therapy, and 
those other risk groups displayed varying sensitivities to potential combination immunotherapeutic agents. Finally, 
we subdivided the colon cancer patients into four groups to explore combination immunotherapy. Immunohisto-
chemistry analysis showed that protein expression of two genes were upregulated while that of other two genes 
were downregulated or undetected in cancerous colon tissues.

Conclusion:  Using subdivision to combine chemotherapy with immunotherapy would not only change the 
dilemma of immunotherapy in not hot tumors, but also promote the proposition of more rational personalized 
therapy strategies in future.
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Introduction
Obesity and unbalanced diets have significantly increased 
the incidence of colon cancer a lot [1, 2]. Colon cancer 
is the fourth most common cause of new cancer cases 
and cancer deaths globally (6.1% of 18.10 million new 
cancer cases and 5.8% of 9.6 million cancer deaths in 
2018 worldwide) [3]. Approximately 25-50% of patients 
are diagnosed at an early stage of the disease but later 
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develop metastasis [4]. Despite advances in colon cancer 
therapy, the survival rate is not high [5]. A new therapy 
strategy might change this situation. Immunotherapy, 
such as immune checkpoint inhibitor (ICI) therapy, has 
transformed the treatment landscape and offers signifi-
cant clinical benefits for patients with multiple cancers. 
However, exploring a new method to stratify patients is 
essential because many biomarkers, such as tumor muta-
tional burden (TMB), are less than satisfactory, and only 
one-third of patients benefit from ICI in most cancers 
[6–8].

Cancer-associated metabolic reprogramming has pro-
found effects on gene expression and immune infiltra-
tion, leading to tumorigenesis [9]. With dysregulation 
of urea cycle (UC) metabolism, cancer cells maximize 
the use of nitrogen and carbon for tumor proliferation 
and growth. CAD is a protein composed of carbamoyl-
phosphate synthetase 2 (CPS2), aspartate transcarba-
mylase, and dihydroorotase and can initiate pyrimidine 
synthesis. CAD utilizes an increasing number of UC 
substrates to increase the abundance of pyrimidines that 
regulate DNA expression and promote a specific iden-
tifiable mutagenic signature. This change contributes to 
the synthesis of hydrophobic neopeptides and improves 
anti-programmed cell death 1 immunotherapy, a type of 
ICI. In addition, dysregulation in the expression of UC 
genes can alter arginine levels and change immune cell 
activation, leading to different immunotherapy responses 
[6, 10, 11]. For example, small extracellular vesicles con-
taining arginine can decrease T-cell activation in ovarian 
cancers; targeting arginine can enhance immunotherapy 
efficacy for leukemia [12, 13]. Furthermore, research-
ers are trying to combine ICI with pegylated arginine 
deiminase, an enzyme that can degrade arginine, to 
improve immunotherapy efficacy. Thus, in this study we 
attempted to stratify patients based on UC metabolism to 
improve combination immunotherapy for colon cancer.

Compared with the classical Tumor-Node-Metastasis 
(TNM) system, the observation that the type, density, 
and location of immune cells can predict survival more 
accurately in colon cancer, indicates that these parame-
ters might serve as a better stratification index. Based on 
immune infiltration, we classified tumors into two types: 
hot tumors and not hot tumors. Hot tumors exhibit 
CD8+ T cell-infiltration (high immunoscore) and check-
point activation. Owing to pre-existing immunity, hot 
tumors can induce immune responses to improve immu-
notherapy. On the other hand, ICI fails to work in not 
hot tumors due to the lack or even absence of pre-exist-
ing immunity [8]. Separating not hot tumors from hot 
tumors would benefit patient prognosis and may be help-
ful for clarifying immunotherapy-resistance mechanisms. 
Considering gene expression as a good indicator in 

immunotherapy prediction, we used UC gene expression 
to divide patients into two groups by the immune-based 
notion of hot tumors for immunotherapy [6, 8]. Subse-
quently, patients were subdivided according to the risk 
scores for exploration of combination immunotherapy.

In our study, we utilized UC metabolism characteriza-
tion to perform a consensus clustering analysis and build 
a risk model. Through subdivision, each patient was cat-
egorized into two tags, clusters, and risk groups for indi-
vidualized therapy and precision medicine. This study 
may not only spark new ideas in immunotherapy but also 
bridge the gap between bioinformatics analyses and clini-
cal practice.

Materials and Methods
The study design and procedure were visually repre-
sented as a flowchart (Fig. 1).

Data preparation
The RNA-seq profiles of 471 colon cancer (COAD) and 
41 non-tumor samples from The Cancer Genome Atlas 
(TCGA) as well as 307 non-tumor colon samples from 
the Genotype-Tissue Expression Project (GTEx) were 
downloaded from the University of California Santa Cruz 
(UCSC) webpage and the GTEx, respectively [14]. Their 
counts format profiles were used to identify differentially 
expressed genes (DEGs) [15]. Moreover, RNA-seq pro-
files of another 32 cancer types were obtained from the 
UCSC. Subsequently, we used public R packages to per-
form bioinformatic analyses. All public R packages were 
downloaded from the comprehensive R archive Network 
(CRAN) (https://​cran.r-​proje​ct.​org/) and Bioconductor 
(http://​www.​bioco​nduct​or.​org/). Fragments per kilobase 
million (FPKM) format RNA-seq profiles of 33 cancer 
types were converted into TPM (transcripts per million) 
for further analyses using the limma R package. We also 
obtained their clinical data on overall survival (OS), copy 
number segments and TMB from the UCSC and TCGA 
(v30.0 September 23, 2021). Similar information was 
downloaded from the GSE17536 and GSE39582 datasets 
for external validation from Gene Expression Omnibus 
(GEO) [16, 17]. To reduce statistical bias, samples with 
missing OS or short OS values (<30days) were excluded 
from all cohorts. Moreover, samples which had received 
immunotherapy should be excluded. According to clini-
cal information, no patients had received immunother-
apy. As a result, we obtained 424 colon cancer patients 
from the TCGA cohort and 731 patients from the exter-
nal validation cohort.

Identification and analyses of UC metabolism‑related DEGs
UC metabolism-related genes with a relevance score 
of >9 were extracted from the GeneCards database 

https://cran.r-project.org/
http://www.bioconductor.org/
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[18–20]. We identified their intersection genes in the 
TCGA, GTEx, GSE17536, and GSE39582 cohorts using 
the VennDiagram R package. We used the counts for-
mat RNA-seq profiles to screen DEGs using the limma 
R package [15]. Intersection genes with an absolute 
value of log2 fold change >0.5 and a false discovery rate 
(FDR) adjusted p-value < 0.05, were identified as UC 
metabolism-related DEGs, followed by visualization of 
the volcano plot using the ggplot2 R package. A univari-
ate Cox proportional hazard regression was performed 
to identify genes with a prognostic value (p < 0. 05) from 

the DEGs in the TCGA cohort [21]. A survival analysis 
of prognostic genes was performed for validation using 
the Human Protein Atlas (HPA). The HPA information 
was available from v103.38.proteinatlas.org and their 
URL was listed in the supplementary materials for intel-
lectual property rights protection. Genes that had potent 
prognostic value not only in our study but also on HPA 
were called intersection prognostic genes. Genes that 
had potent prognostic value, not only in our study but 
also in the HPA, were called intersection prognostic 
genes. We analyzed the correlation of the expression of 

Fig. 1  Flowchart of the study
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the genes with immune infiltration level using the Tumor 
IMmune Estimation Resource (TIMER) database [22]. 
The protein-protein interactions (PPI) and copy num-
ber variation (CNV) frequencies were also displayed 
using the STRING and TIMER databases. All data and 
download files in STRING are freely available under a 
’Creative Commons BY 4.0’ license. We located them in 
human chromosomes using the RCircos R package and 
compared infiltration levels among tumors with different 
somatic copy number for these intersecting prognostic 
genes [23].

Consensus clustering analysis
To identify intrinsic groups sharing biological charac-
teristics, intersecting prognostic genes were used to 
find the ‘cleanest’ cluster partition, where items nearly 
always cluster together, indicating a high consensus in 
colon cancer using the ConsensusClusterPlus R pack-
age [24]. Using the intersection prognostic genes, we 
performed a survival analysis, T-distributed stochastic 
neighbor embedding (t-SNE), and principal component 
analysis (PCA) of the clusters using the survminer, Rtsne 
and scatterplot3d R packages. Similar analyses were per-
formed for the intersection prognostic genes in the exter-
nal validation cohort.

Immune characteristics and ICI
To explore the potential functions and pathways of the 
specific cluster, we used gene set enrichment analyses 
(GSEA) software and curated gene sets (kegg. v7. 4. sym-
bols. gmt). The results are displayed in multi-GSEA dia-
grams using the ggplot2 and gridExtra R packages. We 
then calculated the immune infiltration of each colon 
cancer sample using CIBERSORT (R scrip v 1.03), esti-
mated immune-based scores, GSVA and GSEABase R 
packages, and checkpoint expression using reshape2 and 
ggpubr R packages [25]. Subsequently, they were illus-
trated in a heatmap, violin plots, bubble chart and box-
plots. To predict patient response to immunotherapy, 
we decided to use an IPS as the predictor. The IPS is an 
aggregated score based on the expression of representa-
tive genes or gene sets comprising four categories: MHC 
molecules, immunomodulators, effector cells (such as 
CD8+ T cells), and suppressor cells (Tregs and MDSCs). 
From The Cancer Immunome Atlas (TCIA), We obtained 
the aggregated score in the TCGA cohort from TCIA, 
and then visualized them using violin plots [26]. The data 
are published under a Creative Commons BY 4.0’ license, 
attributed to the TCIA.

TMB and microsatellite instability (MSI)
TMB data of 33 cancer types in the “Masked Somatic 
Mutation” type processed by VarScan2, were extracted 

from the TCGA [27]. We analyzed the correlation of 
intersection prognostic genes expression with TMB levels 
in multiple cancers and visualized them as radar charts 
using the fmsb R package. Waterfall plots and boxplots of 
TMB in clusters were also illustrated using maftools and 
ggplot2 R packages. In addition, in our study we visual-
ized the MSI status of clusters in the TCGA cohort for 
further validation [28].

Risk model and nomogram
We randomly divided half of the colon cancer cases in 
the TCGA cohort into training and testing sets. Next, we 
performed a LASSO regression analysis and generated a 
risk model by controlling the first-rank value of Log(λ) at 
the minimum likelihood of deviance using caret and glm-
net R packages [21, 25]. The risk score for each colon can-
cer patient was calculated using the following formula:

In the training, testing, and complete sets, we visual-
ized risk scores, status, survival analyses, and receiver 
operating characteristic (ROC) curves of colon cancer 
patients using the survival, survminer, and timeROC R 
packages. Risk scores for the samples in the external val-
idation cohort were also calculated using the same for-
mula and survival analysis [21].

Based on the clinical data of colon cancer patients, we 
performed univariate Cox and multivariate Cox regres-
sion analyses to identify independent prognostic factors 
and established a nomogram using the survival, rms, and 
regplot R packages. The ROC curves and calibration plots 
of the nomogram were displayed for evaluation using the 
timeROC and nomogramEx R packages.

Exploration in subdividing
We analyzed the correlation of clusters and MSI status 
with risk scores and visualized them as bar plots and box 
plots using plyr and ggplot2 R packages. A survival analy-
sis was performed after subdividing colon cancer patients 
into the TCGA cohort. Subsequently, we illustrated a 
Sankey diagram of clusters, risk groups, and MSI status 
of patients with colon cancer using the ggalluvial R pack-
age. The half-maximal inhibitory concentration (IC50) 
of potential combination immunotherapeutic agents in 
colon cancer samples in the TCGA cohort was predicted 
using the pRRophetic R package [25].

Intersection prognostic genes on HPA
For further validation, several intersection prognostic 
genes immunohistochemistry images were displayed 
from the HPA. These HPA images were available at 

Risk score =

n

k=1

coefficient (genek) ∗ expression (genek)
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v103.38.proteinatlas.org and their URL had been men-
tioned in the figure legend to protect the developers’ 
intellectual property rights.

Results
Identification and analyses of UC metabolism‑related 
genes for clusters
We extracted 565 UC-related genes in colon cancer from 
GeneCards (Additional file  5: Appendix T1). Of these, 
530 were considered to be intersecting genes in colon 
cancer (Fig.  2A). There were 77 downregulated DEGs 
and 55 upregulated DEGs (Fig.  2B). Of these, 17 DEGs 
may have prognostic values (Fig. 2C). For validation, we 
listed the results of their survival analyses (Additional 
file 6: Appendix T2). We identified 14 DEGs with potent 
prognostic values and displayed Kaplan-Meier survival 
curves of OS (Fig.  2D). The results found that CD36, 
CDKN2A, CLCNKB, CYP11A1, FABP4, HAMP, LEP and 
TH were upregulated in colon cancer while the others 
were downregulated. Almost all 14 intersection prognos-
tic genes were associated with immune infiltration levels 
in colon cancer, including CCNB1 and CD36 (p < 0. 05) 
(Additional file 1: Appendix D1, Additional file 4: Figure 
S1A). In addition, we found that some of genes (such as 
CCNB1, NOS2 and LEP) might be associated with TP53 
(Fig.  2E). Of these, seven intersection prognostic gene 
frequencies of gain CNV were higher than that of the 
loss and was marked in red on the 2D track plot, while 
the others of gain CNV were lower than the loss and was 
marked in blue (Fig. 2F-G). Furthermore, we found that 
almost all intersection prognostic genes’ alterations in the 
copy number were correlated with the infiltration level of 
CD8+ T cells (p<0.05, Additional file 4: Figure S1B).

Clusters and external validation in colon cancer
According to the consensus clustering analysis with 14 
intersection prognostic genes, the ‘cleanest’ cluster parti-
tion was k=2 and is based on the cumulative distribution 
function (CDF) plots and the item tracking plot (Fig. 3A-
B). The consensus matrix legend and other consensus 
matrices are also displayed (Additional file 4: Figure S2A). 
Samples in cluster 1 had a better OS than those in clus-
ter 2 (Fig.  3C). The t-SNE and 3D PCA analyses clearly 
separated the cases in cluster 1 from the cluster, which 
further verified our cluster distribution (Fig. 3D-E). The 
‘cleanest’ cluster partition was also k=2 in the external 
validation cohort based on consensus clustering analy-
sis (Fig. 3F, Additional file 4: Figure S2B). Similarly, colon 
cancer patients in cluster A had a better OS than those in 
cluster B and were clearly separated from cluster B in the 
t-SNE and 3D PCA analyses (Fig. 3G).

Immune landscapes and ICI of clusters
The GSEA indicated that the biological functions of 
cluster 1 were associated with immunity, as most of the 
top 10 enriched pathways were correlated with immune 
functions, such as chemokine signaling (all p < 0. 01, 
FDR <0. 01, the absolute value normalized enrichment 
score >2.1; Fig. 4A, Additional file 4: Figure S2C) [29]. 
Colon cancer patients in the cluster 1 had immune cell 
infiltrates, lower tumor purity, and higher immune-
related scores (Fig.  4B-F, Additional file  2: Appendix 
D2). In addition, cases in the cluster 1 had higher 33 
checkpoints’ expression than the cluster 2 in the TCGA 
cohort such as CTLA4, HAVCR2, LAG3 and PDCD1(all 
p<0.05, Fig.  4G). We found that patients in cluster 1 
showed significantly higher IPS for PD-1 ICI as well 
as PD-1 and CTLA4 ICI (all p < 0.05). However, there 
were no significant differences in other ICI between 
clusters 1 and 2 (Fig. 4H).

Analyses of TMB and MSI of clusters
Nine intersection prognostic genes were related to TMB 
in colon cancer and were visualized as radar charts. The 
number represents the correlation coefficient of TMB in 
diverse cancer types (Fig. 5A, Additional file 3: Appendix 
D3). The waterfall plots showed the TMB of individual 
patients in clusters 1 and 2 (Fig. 5B). The TMB in clus-
ter 1 was higher than that in cluster 2, indicating better 
immunotherapy (p<0.05, Fig.  5C). Patients in cluster 1 
had a higher percentage weight of MSI-H, whereas clus-
ter 2 had a higher ratio of MSI-L and microsatellite-stable 
(MSS) (Fig. 5D).

Risk model and external verification
We built a risk model of seven genes when the first-
rank value of Log(λ) was at the minimum likelihood 
(Fig. 6A-B). The risk score formula was CD36 × 0.0103 
+ CDKN2A × 0.0064 + CLCNKB × 0.0019 + MMP1 × 
(-0.0041) + NAT2 × (-0.0084) + NOS2 × (-0.0032) + TH 
× 0.0116. The cut-off risk score was 0.5, and patients were 
subdivided into low- and high-risk groups in the training, 
testing, and complete sets of cases (Fig. 6C-E). Their sur-
vival status and survival time were showed (Fig.  6F-H). 
According to the Kaplan-Meier survival curves of OS, we 
proved that patients in the high-risk group had a worse 
prognosis (all p<0.01, Fig. 6I-K). The area under the curve 
(AUC) for 1-, 3-, and 5-year OS was all > 0.700 in the 
training, testing, and complete sets of cases (Fig. 6L-N). 
Colon cancer patients in the low-risk group were clearly 
separated from those in the high-risk group in the t-SNE 
and 3D PCA analyses (Additional file  4: Figure S2D-E). 
Meanwhile, patients in the high-risk group exhibited a 
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Fig. 2  Identification and analyses of urea cycle (UC) metabolism-related genes. A The Venn diagram of UC metabolism-related genes, TCGA, GTEx, 
GSE17536, and GSE39582 data sets. B The volcano plot of 132 differentially expressed UC metabolism-related genes. C The forest plot of prognostic 
UC metabolism-related genes in our univariate Cox proportional hazard regression. D 14 UC metabolism-related genes Kaplan–Meier survival 
curves of OS from HPA (All p-value < 0.05 in Kaplan–Meier survival curves). E The PPI of 14 UC metabolism-related genes. F The CNV frequency of 
prognostic 14 UC metabolism-related genes. G The CNV of 14 UC metabolism-related genes on RCircos 2D track plot with human genome
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worse OS in the external validation cohort, indicating 
successful external verification (p<0.001, Fig. 6O).

Generation and assessment of Nomogram
According to results of the univariate Cox (uni-Cox) 
regression and the multivariate Cox (multi-Cox), we 

considered patients’ age, tumor T stage, and risk score 
as independent risk factors with a prognostic value and 
generated a nomogram with these independent risk 
factors in colon cancer (Fig.  7A-C). The AUC of the 
nomogram for 1-, 3-, and 5-year OS was all > 0.780 in 
the TCGA cohort (Fig.  7D). Similarly, the calibration 

Fig. 3  Consensus clustering analysis. A The consensus matrix k = 2 in the TCGA cohort. B The CDF plots and the item tracking plot of consensus 
clustering matrix in the TCGA cohort. C Kaplan–Meier survival curves of OS in clusters. D, E The t-SNE and 3D PCA separated two clusters of colon 
cancer patients in the TCGA cohort. F The consensus matrix k = 2, k = 3, k = 4, and k = 5 in the external validation cohort. G Kaplan–Meier survival 
curves of OS in clusters, the t-SNE and 3D PCA separated two clusters of colon cancer patients in the external validation cohort
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Fig. 4  Tumor immune characteristics and ICI in clusters of the TCGA cohort. A The multi-GSEA of colon cancer in the cluster 1. B The heatmap of 
immune infiltration between two clusters in colon cancer. C The violin plots of immune-based scores in clusters (* means p < 0.05, **p < 0.01 and 
***p < 0.001). D The correlation coefficient of immune infiltration between two clusters of colon cancer cases. E, F The single sample GSEA immune 
infiltration and immune related functions between two clusters (* means p < 0.05, **p < 0.01 and ***p < 0.001). G 33 checkpoints’ expression level 
between two clusters (* means p < 0.05, **p < 0.01 and ***p < 0.001). (H) The IPS of PD-1 and/or CTLA4 between two clusters of colon cancer cases

(See figure on next page.)
Fig. 5  TMB and MSI of clusters for validation. A Radar chart of nine genes on TMB (* means p < 0.05, **p < 0.01 and ***p < 0.001, ACC: adrenocortical 
cancer, BLCA: bladder cancer, BRCA: breast cancer, CESC: cervical cancer, COAD: colon cancer, CHOL: bile duct cancer, DLBC: large B-cell lymphoma, 
ESCA: esophageal cancer, GBM: glioblastoma, HNSC: head and neck cancer, KICH: kidney chromophobe, KIRC: kidney clear cell carcinoma, KIRP: 
kidney papillary cell carcinoma, LAML: acute myeloid leukemia, LGG: lower grade glioma, LIHC: liver cancer, LUAD: lung adenocarcinoma, LUSC: lung 
squamous cell carcinoma, MESO: mesothelioma, OV: ovarian cancer, PAAD: pancreatic cancer, PCPG: pheochromocytoma & paraganglioma, PRAD: 
prostate cancer, READ: rectal cancer, SARC: sarcoma, SKCM: melanoma, STAD: stomach cancer, TGCT: testicular cancer, THCA: thyroid cancer, THYM: 
thymoma, UCEC: endometrioid cancer, UCS: uterine carcinosarcoma, UVM: andocular melanomas). B Waterfall plot of TMB in clusters. C The TMB 
level between two clusters of colon cancer cases. D The percentage weight of MSI status between two clusters in the TCGA cohort
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Fig. 5  (See legend on previous page.)
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plots of the nomogram for 1-, 3-, and 5-year OS were 
consistent with the predictions (Fig. 7E).

Subdividing for combination immunotherapy
The percentage weight of cluster 1 in the low-risk group 
was higher than that in the high-risk group, and patients 
in cluster 1 had a lower risk score than those in clus-
ter 2, which was consistent with our survival analyses 
(p<0.001, Fig.  8A-B). The percentage weight of MSI-H 
was 22% in the low-risk group and 14% in the high-risk 
group (Fig.  8C). The risk score of patients with MSI-H 
status was lower than that of patients with MSI-L sta-
tus (p=0.029) and MSS status (p=0.0051, Fig.  8D). 
The Sankey diagram showed the connection among 
patients in different clusters, risk groups, and MSI sta-
tus (Fig. 8E). The Sankey diagram also showed the con-
nection among patients in different clusters, risk groups 
and tags (Fig.  8F). Furthermore, we calculated the IC50 
in ten potential combination immunotherapeutic agents 
for individual patients in the TCGA cohort. The IC50 
of seven agents for patients in the high-risk group were 
lower than that in the low-risk group, such as shikonin. 
Meanwhile, patients in the low-risk group might be more 
sensitive to other drugs, such as metformin (Fig. 8G).

Immunohistochemistry
We examined the histological expressions of four inter-
section prognostic genes with significant differences in 
the protein levels between the normal colon and cancer-
ous colon tissues. The protein expression of CDKN2A 
and CLCNKB were upregulated in the cancerous colon 
tissues while that of others were downregulated or even 
undetectable in cancerous colon tissues (Additional file 4: 
Figure S3A-B).

Discussion
As the most rapidly growing drug class, immunothera-
pies may be considered promising anticancer therapeu-
tic interventions [8]. However, it is essential to stratify 
patients because of the limited population benefits of 
immunotherapy [6]. In our study, colon cancer patients 
were effectively and reliably distinguished into clusters 1 
and 2. Next, the patients were subdivided into low- and 
high-risk groups. Each case was categorized into two 
tags, clusters, and risk groups for individual combination 
immunotherapy.

Reprogramming of cellular metabolism is a hallmark of 
cancer cells. Metabolic alterations increase the demand 
for nitrogen and regulated UC metabolism, which had an 
influence on gene expression and immune infiltration [9, 
10]. Tumor immune infiltration is associated with anti-
cancer therapeutic interventions [8]. To guide decisions 
on therapy, we established the notion of hot tumors, 
which refer to T cell-infiltrated and inflamed tumors. 
Owing to the pre-existing immunity in hot tumors, ICI 
can disrupt tolerance to help CD8+ T cells target cancer 
cells by releasing perforin, granulysin, and granzymes 
[8]. Their characteristics include high IPS and active 
checkpoint expression, such as PD-1, CTLA4, TIME3 
and LAG3. Referring to the association of UC metabo-
lism with immune infiltration and immunotherapy, we 
attempted to use 14 UC metabolism-related genes to 
stratify colon cancer patients [6, 10, 11]. All of them had a 
potent prognostic value and their expression was consid-
erably related to CD8+ T cell infiltration. Based on these 
unique genes, we stratified the patients into two clusters 
to identify hot tumors. Immune infiltration analyses 
revealed that colon cancer in cluster 1 was characterized 
by higher immune scores, higher immune infiltration lev-
els (e.g., CD8+ T cells), increased active immune function 
(e.g., inflammatory promotion and cytolytic activity), and 
overexpression of immune checkpoints such as CTLA4, 
TIME3 (HAVCR2), LAG3, and PD-1 (PDCD1) than in 
cluster 2 [8]. The IPS is a scoring scheme for the quantifi-
cation and is super as a predictor of ICI. Its AUC is higher 
than 0.99 [26]. The TMB and MSI status of the two clus-
ters were also displayed for validation. Colon cancer in 
cluster 1 displayed significantly higher PD-1 and CTLA4 
IPS, and showed significantly higher levels of TMB and 
ratio of MSI-H [6, 30]. Above all, we can effectively iden-
tify hot tumors for colon cancer immunotherapy.

In addition, changing not hot tumors into hot tumors 
before immunotherapy would significantly help immu-
notherapy. Some agents can act as adjuvants or even 
induce tumor infiltration by immune cells to improve 
immunotherapy, such as metformin [8, 31]. According to 
the results of the KEYNOTE-189 clinical trial, patients 
derive benefits after the addition of ICI to the standard 
chemotherapy [7]. Consequently, we built a risk model 
to calculate the risk score of each sample and subdivided 
it to explore combination immunotherapy. Colon cancer 
patients in the high-risk group were more sensitive to 
seven potential combination immunotherapeutic agents 

Fig. 6  Risk model and external validation. A, B Constructing a risk model of seven genes model by LASSO regression. C, D, E Risk scores of colon 
cancer patients in the training, testing, and complete sets, respectively. F, G, H Survival time and survival status of colon cancer cases between 
low- and high-risk groups in the train, testing, and complete sets in the TCGA cohort. I, J, K Kaplan–Meier analysis of OS between low- and high-risk 
groups in the training, testing and complete sets in the TCGA cohort. L, M, N The ROC curves for 1-, 3- and 5-year OS of colon cancer samples in the 
training, testing and complete sets in the TCGA cohort. O Kaplan–Meier analysis of OS in the external validation cohort

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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such as shikonin and dasatinib [32, 33]. Furthermore, 
the low-risk group displayed lower IC50 of metformin, 
paclitaxel and rapamycin [31, 34, 35]. Eventually, we were 
able to subdivide them into four groups with two tags, 
the cluster 1 + low-risk group, the cluster 1 + high-risk 
group, the cluster 2 + low-risk group and the cluster 2 
+ high-risk group, and assist in the rational combina-
tion immunotherapy. Combination immunotherapy may 
improve clinical treatment and reduce adverse effects in 
hot tumors. For not hot tumors, we could also improve 
immunotherapeutic efficacy or even develop new thera-
peutic strategies to change them into hot tumors, chang-
ing the dilemma of immunotherapy because it is feasible 

that chemical agents could promote immune cell infiltra-
tion into the tumor environment [31–36].

In our study, improved stratification was achieved 
by using 14 UC metabolism-related genes. This will 
contribute to elucidating immunotherapy resistance 
mechanisms and improving precision medicine. To 
further validate our stratification, external validation 
was performed on the consensus clustering analy-
sis and risk model of the GSE39582 and GSE17536 
cohorts. Patients with colon cancer may benefit from 
our stratification. An immunohistochemistry analysis 
of four genes was displayed. Of these, the frequency 
of CDKN2A methylation in MSI-L colon tumors is 

Fig. 7  Generation and assessment of Nomogram. A, B Identifying independent risk factors of clinical characteristics for worse OS by univariate and 
multivariate Cox regression. C Nomogram based on age, tumor T stage, and risk scores. D The ROC curves for 1-, 3- and 5-year OS of colon cancer 
patients in the nomogram. E The calibration curves for 1-, 3- and 5-year OS



Page 13 of 15Zhao et al. BMC Cancer          (2022) 22:883 	

Fig. 8  Subdividing colon cancer cases for combination immunotherapy. A The percentage weight of clusters between low- and high-risk groups in 
the TCGA cohort. B The levels of risk score in two clusters of colon cancer. C The percentage weight of MSI status between low- and high-risk groups 
in the TCGA cohort. D The levels of risk score in different MSI status. E The Sankey diagram of clusters, risk groups and MSI status of colon cancer 
cases. F The Sankey diagram of clusters, risk groups and tags of colon cancer cases. G The prediction of potential combination immunotherapeutic 
agents
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less than that in MSI-H or MSS tumors and might be 
associated with poor prognoses [37]. The infiltration of 
NOS2-positive macrophages cells correlates to a com-
parable beneficial prognostic effect in stage I-II colon 
cancers [38]. However, the functions of other genes 
require exploration.

There were several limitations in our study. There was 
a lack of in  vivo or in  vitro experiments to explore the 
molecular function of urea cycle metabolism-related 
genes. A rigorous experimental design and extensive 
experiments would be helpful in clarifying the mecha-
nisms of these genes and their association with immu-
notherapy. As this was a retrospective study, potential 
bias could not be ruled out. In addition, although sev-
eral independent datasets were used for external valida-
tion, we did not validate our results in clinical practice. 
Therefore, prospective and large-scale studies should be 
designed to validate our study further. Our study will be 
helpful in bridging the gap between bioinformatics and 
clinical research. In the future, it may be likely that spe-
cific bioinformation of patients may be analyzed using 
different methods; further, patients may be categorized 
into more distinct rational clinical tags (e.g., clusters 
and risk groups) for personalized cancer treatment. This 
study is worth exploring as a starting point of this prom-
ising field.

Conclusions
Our study showed that UC metabolism characteriza-
tion could contribute to subdividing patients with colon 
cancer for combination immunotherapy. In addition, it 
demonstrated that bioinformation can be used to pro-
vide additional clinical information of patients through 
improved stratification. By subdividing patients, more 
rational information on clinical clusters and risk groups 
can be established to improve the precision of medica-
tion. However, there is still a long way to go to improve 
combination immunotherapy.
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