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improves prediction of progression‑free survival 
to induction chemotherapy plus concurrent 
Chemoradiotherapy in Locoregionally 
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Abstract 

Background:  The present study aimed to explore the application value of random survival forest (RSF) model and 
Cox model in predicting the progression-free survival (PFS) among patients with locoregionally advanced naso-
pharyngeal carcinoma (LANPC) after induction chemotherapy plus concurrent chemoradiotherapy (IC + CCRT).

Methods:  Eligible LANPC patients underwent magnetic resonance imaging (MRI) scan before treatment were 
subjected to radiomics feature extraction. Radiomics and clinical features of patients in the training cohort were 
subjected to RSF analysis to predict PFS and were tested in the testing cohort. The performance of an RSF model with 
clinical and radiologic predictors was assessed with the area under the receiver operating characteristic (ROC) curve 
(AUC) and Delong test and compared with Cox models based on clinical and radiologic parameters. Further, the 
Kaplan-Meier method was used for risk stratification of patients.

Results:  A total of 294 LANPC patients (206 in the training cohort; 88 in the testing cohort) were enrolled and under-
went magnetic resonance imaging (MRI) scans before treatment. The AUC value of the clinical Cox model, radiomics 
Cox model, clinical + radiomics Cox model, and clinical + radiomics RSF model in predicting 3- and 5-year PFS for 
LANPC patients was [0.545 vs 0.648 vs 0.648 vs 0.899 (training cohort), and 0.566 vs 0.736 vs 0.730 vs 0.861 (testing 
cohort); 0.556 vs 0.604 vs 0.611 vs 0.897 (training cohort), and 0.591 vs 0.661 vs 0.676 vs 0.847 (testing cohort), respec-
tively]. Delong test showed that the RSF model and the other three Cox models were statistically significant, and the 
RSF model markedly improved prediction performance (P < 0.001). Additionally, the PFS of the high-risk group was 
lower than that of the low-risk group in the RSF model (P < 0.001), while comparable in the Cox model (P > 0.05).

Conclusion:  The RSF model may be a potential tool for prognostic prediction and risk stratification of LANPC 
patients.
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Background
Nasopharyngeal carcinoma (NPC) is an epithelial 
malignant tumor that originates from the nasopharyn-
geal mucosa, characterized by distinct geographical 
distribution and is particularly prevalent in the south of 
China [1, 2]. More than 70% of NPC patients have been 
in locoregionally advanced stage (stage III-IVa) at diag-
nosis [3]. Big-data and multi-center studies have shown 
that compared with CCRT alone, IC + CCRT signifi-
cantly improves the survival rate in LANPC patients 
[4, 5]. Moreover, IC + CCRT was proposed as level 2A 
evidence for these patients by the National Compre-
hensive Cancer Network (NCCN) guidelines, and it has 
become the first-line therapy for LANPC [6]. Never-
theless, approximately 20-30% of NPC patients report 
unsatisfactory efficacy after IC + CCRT [7, 8], and local 
recurrence and distant metastasis are still the main rea-
sons for treatment failure in LANPC patients [9]. The 
application of IC + CCRT for ineffective NPC patients 
will significantly increase the toxicity and treatment 
cost [10]. Therefore, it is essential to accurately pre-
dict the treatment response, prognosis and survival of 
LANPC patients undergoing IC + CCRT before treat-
ment, and to guide clinicians to develop individualized 
treatment regimens for patients. Further, identifying an 
effective prognostic prediction method is warranted for 
LANPC patients before IC + CCRT.

Presently, TNM staging system and MRI are routine 
approaches for therapeutic decision-making and prog-
nostic prediction of LANPC [11, 12]. However, TNM 
staging system and traditional MRI techniques such as 
T1-weighted imaging (T1WI) and T2-weighted imaging 
(T2WI) are mainly based on the anatomical structure of 
tumor invasion, without considering the microscopic 
conditions in the tumor, which cannot accurately pre-
dict the prognosis of patients. Inflammatory biomark-
ers have been shown to be prognostic predictors for 
NPC patients. However, different study sample sizes 
and therapeutic approaches can lead to different cut-off 
values ​​of inflammatory biomarkers, limiting their pre-
dictive value for prognosis of LANPC patients [13, 14]. 
Radiomics is a rapidly emerging analytical approach. 
Radiomics analysis based on imaging data can reflect 
the heterogeneity within the tumor through numer-
ous automatically extracted data characterization 
algorithms [15]. Tumor heterogeneity may be closely 
associated with cancer staging, prognostic predic-
tion, and treatment response [16]. Recently, radiomics 

has been applied to predict the efficacy and prognosis 
of NPC, and it has shown that radiomics features are 
associated with PFS, recurrence, metastasis, and other 
clinical outcomes [17–20]. Although there are many 
different algorithms available for the development 
of radiomics risk models for NPC, it is unclear which 
algorithm is optimal in efficiency. The traditional Cox 
risk regression model is the most commonly used one 
for predicting the efficacy and prognosis of NPC, but it 
is unstable in diagnostic efficiency, and no standardized 
guideline is available. Thus, it remains controversial in 
the prognostic prediction of NPC [21–23].

The RSF model is an integrated machine learning 
model based on survival trees, which is suitable for 
the construction of prognostic models of survival data. 
Unlike the Cox risk regression model, this model does 
not need to hypothesize the distribution of parame-
ters in advance, and the effect of variables on the risk 
function is linear. Hence, it is suitable for modeling 
high-dimensional complex data and can explore the 
nonlinear effects of variables on prognosis [24, 25]. In 
addition, the RSF model can also rank the importance 
of variables to screen variables with greater importance 
and reduce the dimensions of variables, which is con-
ducive to the application of the model in clinical prac-
tice. Lin et al. [26] constructed an RSF model to predict 
the survival outcome of hepatocellular carcinoma 
(HCC) patients with Barcelona Clinic Liver Cancer 
(BCLC)-B after transcatheter arterial chemoemboli-
zation (TACE). There are also studies comparing RSF 
with other methods including Cox regression model, 
and the findings demonstrate that the performance of 
RSF is superior or comparable to other models [27]. In 
addition, the RSF model has also shown good predic-
tion performance in the prognostic studies of tumors 
such as glioma and lung cancer [28, 29]. Nevertheless, 
few data are available regarding the accuracy of the 
RSF model vs the traditional Cox risk regression model 
in predicting the prognosis of LANPC patients after 
IC + CCRT.

The present study aimed to construct prediction 
models by RSF method and Cox regression based on 
clinical and radiomics parameters of LANPC patients 
after IC + CCRT, respectively, and compare the predic-
tion performance of these models. It was hypothesized 
that the RSF model had higher performance, which 
would help improve the precise individualized treat-
ment and clinical decision-making of LANPC patients.

Keywords:  Nasopharyngeal carcinoma, Magnetic resonance imaging, Radiomics, Machine learning, Radom survival 
forest
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Materials and methods
Study design and participants
The present study used a dataset from the medical record 
at our hospital from January 2015 to June 2018. Patients 
were eligible for inclusion if they had a histological diag-
nosis of LANPC, had not received any anti-tumor ther-
apy, underwent MRI scan (including axial T2WI and 
CET1WI images) and IC + CCRT before treatment. The 
exclusion criteria were: 1) distant metastasis before the 
initial treatment; 2) pre-existing or concurrent malignant 
tumors; 3) insufficient quality of MRI due to motion arti-
facts or poor contrast material injection.

Eligible patients were randomly assigned to the train-
ing cohort(n = 206) and testing cohort(n = 88) at a ratio 
of 7:3. Tumor staging was classified according to the 8th 
edition of the American Joint Committee on Cancer 
(AJCC) TNM Staging System Manual. According to the 
World Health Organization (WHO) criteria, the histo-
logical tumor subtypes were classified as type I (differ-
entiated keratinizing carcinoma), type II (differentiated 
non-keratinizing carcinoma), and type III (undifferen-
tiated non-keratinizing carcinoma). The present study 
was approved by the Institutional Review Board, and the 
written informed consent was waived.

Treatment and data collection
Details about the treatments of the patients is shown 
in Supplementary Materials. Patients were followed up 
every 1-3 months in the first 2 years, once every 6 months 

in the 3-5 years, and once a year thereafter. All partici-
pants were followed up for at least 2 years. The study 
endpoint was the PFS, which was calculated from the 
starting of treatment to the disease progression (or cen-
sored at the last follow-up).

Image acquisition and segmentation
The details regarding the acquisition parameters and 
image segmentation are presented in Supplementary 
Materials. The workflow chart of radiomics was shown 
in Fig.  1. All tumor segmentations were conducted 
blindly by two radiologists (observers 1 and 2 with 10 and 
15 years of clinical experience in interpretation of head 
and neck MRI images) (Fig. 1A).

A total of 2074 radiomics features were extracted from 
the T2WI and CET1WI images of each patient, including 
histogram features, shape features, and texture features 
(Fig.  1B). All feature parameters were standardized by 
Z-score based on training cohort data, and the univari-
ate/multivariate Cox regression method and RSF method 
were used to reduce the dimensionality of high-dimen-
sional data (Fig.1C) to extract the optimal features.

Construction of the Cox prediction model: Based on 
the multivariate stepwise Cox analysis results of clinical 
and radiomics features in the training cohort, the Cox 
prediction model of the training cohort was constructed 
(Fig. 1D). The model was as follows: (1) Cox model based 
on clinical features (clinical Cox model); (2) Cox model 
based on radiomics features (radiomics Cox model); and 

Fig. 1  The study workflow chart. Note: The workflow for constructing radiomic features: (A) tumor segmentation: segmentation is made on T2WI 
and CET1WI images, and the experienced radiologist outlines the tumor area on each axial MRI slice; (B) feature extraction: the corresponding tumor 
features are extracted from the outlined ROI, such as histogram features, shape features, texture features, etc.; (C) feature selection: univariate/
multivariate Cox regression method and random forest method are used to select features; (D) model construction: the Cox and RSF prediction 
models are constructed; (E) clinical application: The risk stratification analysis and ROC curve of the model are further applied to the clinic
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(3) Cox model based on clinical and radiomics features 
(clinical + radiomics Cox model); (4) RSF model based 
on clinical and radiomics features (clinical + radiomics 
RSF model). The above models were verified in the test 
cohort.

Construction of the RSF model: RSF was calculated by 
a group of binary decision trees; bootstrap and random 
node splitting were used to grow independent decision 
trees, and then all trees were set to form RSF. Details 
about the training steps of the RSF model is shown in 
Supplementary Materials. The output risk scores of the 
Cox and RSF models stratified patients into high- and 
low-risk groups based on clinical and radiomics features 
in the training cohort and testing cohort; and the survival 
outcome between the high-risk group and the low-risk 
group was compared.

Statistical analysis
Statistical analyses were performed with the use of R 
software (4.1.1). Normally distributed measurement data 
were presented as mean ± standard deviation (SD) and 
compared by the t test; measurement data of skewed dis-
tribution were presented as M (range) and compared by 
the Mann-Whitney U test. Count data were presented 
as absolute number or percentage and compared using 
the χ2 test. Univariable and multivariable survival analy-
ses were conducted using the Cox proportional hazards 
model. The Kaplan-Meier method was used to plot the 
survival curve and the survival rate was calculated; the 
X-tile software was used to select the optimal cut-off 
value for continuous variables, and the log-rank test was 
conducted to compare whether the difference in sur-
vival time between the two groups was statistically sig-
nificant. All tests were two-tailed with significance tests, 
and P <  0.05 was considered statistically significant. A 
time-dependent ROC curve was plotted, and the AUC 
was calculated to evaluate the prediction performance of 
different models. The Delong test was used to compare 
the performance among models. To ensure the stability 
of the testing effect, the prediction model of the training 
cohort was confirmed in the testing cohort.

Results
Clinical characteristics of the patients
A total of 294 patients (213 males and 81 females; 
the mean age was 43.6 years (SD: 10.9 years, range: 
19-71 years) were enrolled in the present study. The last 
follow-up ended on May 21, 2021, and the median fol-
low-up time was 43.9 months (range:8.0-75.0 months). 
The clinical characteristics of all LANPC patients in the 
training cohort and testing cohort were summarized in 
Table 1. Univariate and multivariate Cox regression anal-
yses were used to explore the clinical characteristics, and 

the results showed that Epstein-Barr virus (EBV) DNA, 
Overall Stage, and T stage were independent risk factors 
that affected the survival and prognosis of NPC patients 
(all P < 0.05) (Table 2).

Construction of radiomics labelling
The ICC values between the features of the two observ-
ers and the ICC value of the features extracted by the 
ROI plotted by the observer A were calculated for com-
parison. Among them, the repeatability between the 
two features based on the observer A was excellent 
(ICC = 0.782-0.957), and the consistency of the features 
between the two observers was good (ICC = 0.732-0.948). 
In the 2074 radiomics features extracted from T2WI and 
CET1WI images, radiomics labeling was constructed by 
univariate and multivariate stepwise Cox analysis.

Construction and verification of the cox nomogram model
A nomogram was constructed based on significant vari-
ables in univariate and multivariate Cox analyses (these 
variables are presented in Supplementary Materials). In 
the current nomogram (Fig.  2), a node was assigned to 
each variable based on HR. By adding up the total scores 
of each variable and positioning it on the total score scale, 
the probability of 3- and 5-year PFS were obtained. In the 
training cohort, the AUC of the clinical Cox model, the 
radiomics Cox model, and the clinical + radiomics Cox 
model in predicting the 3-year PFS after NPC treatment 
was 0.545, 0.648, and 0.648, respectively; the AUC of 
5-year PFS was 0.556, 0.604, and 0.611, respectively. In 
the testing cohort, the AUC of the three models in pre-
dicting the 3-year PFS after NPC treatment was 0.566, 
0.736, and 0.730, respectively; the AUC of 5-year PFS was 
0.591, 0.661, and 0.676, respectively. The ROC curve was 
shown in Figs. 3 and 4. Overall, in the comparison among 
the three Cox models, the prediction performance was 
comparable (Table 3).

Construction and verification of the RSF model
The error rate corresponding to the number of sur-
vival trees within 100 was obtained, as shown in Fig.  5. 
The results showed that when constructing 100 survival 
trees, the error rate was low and maintained a relatively 
stable level. The RSF model was constructed according 
to the optimal parameter ntree = 100, and as it shows in 
Fig. 5 and in Supplementary Materials, 7 features associ-
ated with the PFS were selected according to the impor-
tance score of each radiomics feature. The survival rate 
and cumulative hazard curves plotted over time were 
shown in Fig. 6. The results showed that as the survival 
time increased, the prediction performance of the RSF 
model in the survival rate gradually decreased, and the 
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cumulative hazard increased. The decision rule diagram 
based on the RSF model was shown in Fig. 7.

In the training cohort, the AUC of the RSF model 
in predicting the 3- and 5-year PFS after NPC treat-
ment was 0.899 and 0.897, respectively; in the testing 
cohort, it was 0.861 and 0.847, respectively. Compared 

with the three Cox models, the RSF model showed 
the highest prediction performance, and the differ-
ences among the models were statistically significant 
(all P  < 0.001,Table  4). Patients in the low-risk group 
achieved better PFS (all P < 0.001,Fig. 8), demonstrating 
the good clinical application value of this model.

Table 1  Clinical characteristics of the patients

Note: Normally distributed measurement data are presented as mean ± SD and compared by the t test; measurement data of skewed distribution are presented as M 
(range) and compared by the Mann-Whitney U test. Count data are presented as absolute number or percentage and compared using the χ2 test. If the chi-square test 
conditions are not met, the exact probability test should be used

Abbreviations and definitions: Label (0, No disease progression or death from any cause; 1, First occurrence of disease progression or death from any cause); BMI 
Body mass index, EBV-DNA Epstein-Barr virus DNA (0, < 1000 copies/ml; 1, ≥1000 copies/ml), T Tumor, N Lymph node, WHO Grade WHO pathological subtypes of 
nasopharyngeal carcinoma [type I (differentiated keratinizing carcinoma), type II (differentiated non-keratinizing carcinoma), and type III (undifferentiated non-
keratinizing carcinoma)], WBC White blood cell, Hb Hemoglobin, PLT Platelet, NEUT Neutrophil count, LYMP Lymphocyte count, ALB Albumin

Variable Training cohort Testing cohort

Label = 0 Label = 1 P value Label = 0 Label = 1 P value

N = 153 N = 53 N = 65 N = 23

Age, years 45.00 [34.00, 51.00] 48.00 [35.00, 52.00] 0.412 43.00 [37.00, 50.00] 45.00 [39.00, 52.50] 0.283

Height 1.65 [1.60, 1.70] 1.65 [1.60, 1.70] 0.674 1.65 [1.60, 1.70] 1.62 [1.54, 1.65] 0.023

Weight, kg 60.00 [53.00, 66.50] 59.00 [52.50, 65.00] 0.523 65.00 [57.00, 69.00] 54.00 [49.25, 61.75] 0.006

BMI 22.46 [20.08, 24.22] 21.97 [19.33, 24.22] 0.329 23.44 [20.90, 25.39] 21.09 [19.83, 23.66] 0.052

Follow-up Time, month 49.00 [37.00, 59.00] 20.00 [11.00, 33.00] < 0.001 46.00 [37.00, 58.00] 19.00 [13.00, 24.50] < 0.001

Sex (%) Female 44 (28.8) 11 (20.8) 0.256 20 (30.8) 6 (26.1) 0.672

Male 109 (71.2) 42 (79.2) 45 (69.2) 17 (73.9)

Family (%) No 123 (80.4) 44 (83.0) 0.674 52 (80.0) 16 (69.6) 0.305

Yes 30 (19.6) 9 (17.0) 13 (20.0) 7 (30.4)

Smoke (%) No 90 (58.8) 32 (60.4) 0.843 40 (61.5) 11 (47.8) 0.252

Yes 63 (41.2) 21 (39.6) 25 (38.5) 12 (52.2)

EBV-DNA (%) 0 88 (57.5) 26 (49.1) 0.286 33 (50.8) 11 (47.8) 0.808

1 65 (42.5) 27 (50.9) 32 (49.2) 12 (52.2)

T stage (%) T1 8 (5.2) 3 (5.7) 0.355 1 (1.5) 0 (0.0) 0.473

T2 38 (24.8) 8 (15.1) 18 (27.7) 5 (21.7)

T3 40 (26.1) 12 (22.6) 22 (33.8) 5 (21.7)

T4 67 (43.8) 30 (56.6) 24 (36.9) 13 (56.5)

N stage (%) N0 3 (2.0) 0 (0.0) 0.363 1 (1.5) 0 (0.0) 0.307

N1 36 (23.5) 18 (34.0) 14 (21.5) 7 (30.4)

N2 67 (43.8) 23 (43.4) 23 (35.4) 11 (47.8)

N3 47 (30.7) 12 (22.6) 27 (41.5) 5 (21.7)

Overall stage (%) 3 51 (33.3) 16 (30.2) 0.674 21 (32.3) 6 (26.1) 0.578

4 102 (66.7) 37 (69.8) 44 (67.7) 17 (73.9)

WHO Grade (%) I 2 (1.4) 1 (1.9) 0.422 2 (3.0) 0 (0.0) 0.558

II 19 (12.4) 10 (18.9) 6 (9.2) 0 (0.0)

III 132 (86.3) 42 (79.2) 57 (87.7) 23 (100.0)

WBC 7.22 [6.21, 8.76] 6.88 [5.53, 7.99] 0.079 7.17 [6.21, 8.49] 6.91 [5.70, 8.18] 0.35

Hb 137.00 [126.00, 150.00] 138.00 [125.00, 148.00] 0.646 140.00 [129.00, 149.00] 132.00 [119.50, 143.00] 0.072

PLT 272.00 [242.00, 332.00] 289.00 [231.00, 337.00] 0.934 286.00 [234.00, 335.00] 296.00 [238.00, 325.00] 0.966

NEUT 4.51 [3.55, 5.70] 4.39 [3.53, 5.70] 0.621 4.45 [3.60, 5.55] 3.91 [3.20, 4.94] 0.086

LYMP 1.87 [1.62, 2.24] 1.76 [1.42, 2.10] 0.076 1.88 [1.53, 2.32] 2.00 [1.63, 2.53] 0.403

ALB 0.06 (1.16) −0.10 (0.90) 0.377 −0.11 [−0.48, 0.43] −0.18 [−0.46, 0.29] 0.966
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Stratification analysis of the clinic + radiomics cox 
nomogram model and RSF model
According to the ROC curves of the Cox and RSF mod-
els in the training set, the prognostic risk score maxi-
mizing the Youden index was used as the threshold 
(cutoff value), which was used to assign patients to the 
non-high-risk group (the prognostic risk score was less 
than the threshold) and high-risk group (the prognos-
tic risk score was greater than or equal to the thresh-
old). Figure  8 showed the Kaplan-Meier survival curves 
of the two models, which were used to stratify patients 
into high- and low-risk groups based on risk scores for 

treatment recommendations. Kaplan-Meier survival 
analysis showed that Cox combination model could not 
distinguish PFS in high- and low-risk patients (P > 0.05; 
Fig. 8A and C), whereas the RSF model could distinguish 
PFS in high- and low-risk patients (P < 0.001; Fig. 8B and 
D).

Discussion
In the present study, two different models were con-
structed to predict the PFS of LANPC patients after 
IC + CCRT. The current findings suggested that com-
pared with the conventional Cox model, the RSF model 
significantly improved the predictive value and success-
fully distinguished high-risk and low-risk patients, indi-
cating that it can be used as a noninvasive and useful tool 
for predicting the prognosis of LANPC patients.

Previous studies have demonstrated that EBV-DNA 
and TNM staging indicators can help predict the prog-
nosis of NPC [30, 31]. The present multivariate analy-
sis showed that EBV-DNA, T staging and overall stages 
before treatment were valuable in predicting PFS in 
LANPC patients, which was consistent with previous 
findings [3, 30, 31], so they were included in the predic-
tion model. However, the prediction performance of 
the Cox model based only on clinical features was rela-
tively low. In the training cohort, the AUC of the clinical 
model in predicting the 3- and 5-year PFS was 0.545 and 
0.556, respectively; in the testing cohort, it was 0.566 and 
0.591, respectively. The reasons may be as follows: First, 
patients are only in stage III-IVa, and the clinical stages 
are narrow and similar. Therefore, it will be more difficult 
to predict the PFS by clinical stages; second, the T and 
N stages of the present study are unbalanced, and there 
are only 5.2% T1 and 2.0% N0 patients in the training 
set. Even if the clinical staging is effective, it will produce 
large errors; third, the T staging and overall stages are 
based on the gross anatomical information of the tumor, 
and unable to reflect the heterogeneity within the tumor. 
Thus, despite the addition of EBV-DNA, the prediction 
performance of the model is still low.

Recently, radiomics has become a popular approach for 
tumor prognostic prediction. By the analysis of the whole 
tumor lesions, radiomics has successfully transformed 
medical imaging into excavated, quantitative, and high-
dimensional imaging features and reflects the heteroge-
neity of tumors to help patients assess risks and guide 
clinical decision-making [32, 33]; it is a non-invasive, 
effective, and reliable approach. Therefore, radiomics 
labelling can be a useful supplement to clinical features 
in terms of prognostic value, which can explain the prog-
nostic prediction performance of the radiomics model in 
the present study is better than that of the clinical model. 
The potential clinical value of predictive models based 

Table 2  Univariate and multivariate Cox regression analysis

Abbreviations and definitions: ALB Albumin, BMI Body mass index, EBV-
DNA Epstein-Barr virus DNA, WHO Grade WHO pathological subtype of 
nasopharyngeal carcinoma, Hb Hemoglobin, LYMP Lymphocyte count, NEUT 
Neutrophil count, N Lymph node, PLT Platelet, T Tumor, WBC White blood cell

Univariate cox 
regression

Multivariate cox 
regression

Factors HR (95% CI) P value HR (95% CI) P value

1 Age 0.993 (0.981-
1.005)

0.273 – –

2 ALB 0.928 (0.812-
1.06)

0.268 – –

3 BMI 1.015 (0.98-
1.05)

0.402 – –

4 EBV-DNA 1.605 (1.225-
2.101)

0.001 1.739 (1.248-
2.421)

0.001

6 Family 0.922 (0.66-
1.289)

0.634 – –

7 WHO Grade 1.317 (0.968-
1.791)

0.079 – –

8 Hb 0.999 (0.991-
1.008)

0.89 – –

9 Height 1.121 (0.974-
1.29)

0.11 – –

10 LYMP 1.052 (0.839-
1.32)

0.66 – –

11 NEUT 0.995 (0.93-
1.065)

0.89 – –

12 N stage 1.025 (0.864-
1.216)

0.779 – –

13 PLT 1 (0.998-1.002) 0.945 – –

14 Sex 0.747 (0.557-
1.003)

0.053 – –

15 Smoke 1.124 (1.475-
0.856)

0.399 – –

16 Overall stage 1.318 (1.013-
1.715)

0.04 1.272 (1.042-
1.553)

0.019

17 T stage 1.179 (1.022-
1.361)

0.024 1.676 (1.079-
2.604)

0.022

18 WBC 1.007 (0.949-
1.069)

0.808 – –

19 Weight 1.005 (0.994-
1.016)

0.382 – –
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Fig. 2  Visual nomogram of the clinical + radiomic Cox model in predicting 3- and 5-year PFS. Note: EBV-DNA, Epstein-Barr virus DNA (0, < 1000 
copies/ml; 1, ≥1000 copies/ml). Nomogram is used: First, all predictor nodes can be found on the “node” line (EBV-DNA < 1000 copies/ml is rated 0 
point, and EBV-DNA ≥ 1000 copies/ml 7.5 points; overall stage 3 is rated 0 point, and the overall stage 4 3.0 points; stage T1 is rated 0 points, stage 
T2 2.0 points, stage T3 4.0 points, and T4 6.0 points, and so on) . Then ten predicted nodes are added to the “total score” row. Finally, a vertical line 
was plotted down from the “total score” to the “3- or 5-year survival rate” axis

Fig. 3  ROC curve of each model in the training cohort. Note: A ROC curve of clinical Cox model; B ROC curve of radiomics Cox model; C ROC curve 
of clinical + radiomics Cox model; D ROC curve of clinical + radiomics RSF model

Fig. 4  ROC curve of each model in the testing cohort. Note: A ROC curve of clinical Cox model; B radiomics Cox model; C ROC curve of clinical + 
radiomics Cox model; D ROC curve of clinical + radiomics RSF model
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on radiomics in predicting PFS in NPC patients has 
been previously emphasized [21, 34]. However, previous 
reports mostly used the Cox model to predict the prog-
nosis of NPC. Different studies included different stages 
and treatment methods for NPC patients, resulting in 

different clinical and radiomics features, thereby increas-
ing the study heterogeneity and affecting the prediction 
performance [21–23]. A study [35] constructed a Cox 
proportional hazard regression model to predict the PFS 
of NPC patients. However, as compared with the clinical 

Table 3  AUC results of the models

AUC​ clinical Cox model radiomics Cox model Clinical + radiomics Cox 
model

Clinical + 
radiomics RSF 
model

Training 3-Year PFS 0.545 0.648 0.648 0.899

5-Year PFS 0.556 0.604 0.611 0.897

Testing 3-Year PFS 0.566 0.736 0.73 0.861

5-Year PFS 0.591 0.661 0.676 0.847

Fig. 5  Curve chart of the error rate of the RSF model and importance bar chart of the most important features. Note: A Curve chart of the error rate 
of the RSF model. The abscissa is the number of survival trees, and the ordinate is the error rate of the model in the training set. It can be observed 
that when there are more than 20 trees in the forest, the error rate tends to be stable and maintains around 0.1-0.3. B Importance bar chart of the 
most important features. The importance order of the most important radiomics features for the RSF model in predicting the PFS. The RSF model is 
constructed according to the optimal parameter ntree to obtain the importance of each predictive variable, and sorting is conducted based on the 
importance score in the order of the largest to the smallest

Fig. 6  Survival rate curve and cumulative hazard curve: for predicting PFS in LANPC patients. Note: A Survival rate curve; B Cumulative hazard curve
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Fig. 7  Decision rule of the RSF (Taking the tree depth of 4 (depth = 4) as an example). Note: The positive samples in the initial training set sample 
account for 76/294, which are continuously split according to the split rule of the index below the jade pendant icon. If the condition is met (yes), 
it will be extended to the left, and if the condition is not met (no), it will be extended to the right. After each split, 2 sub-data sets can be obtained. 
When the expected depth (depth = 4) is reached, the model stops splitting

Table 4  Performance comparison among the models-Delong test

a  Training set; b Testing set

DeLong. Test clinical Cox model radiomics Cox 
model

Clinical+radiomics Cox 
model

Clinical+radiomics 
RSF model

clinical Cox model / 0.797 b 0.971 b < 0.001 b

radiomics
Cox model

0.436 a / 0.539 b < 0.001 b

clinical+radiomics Cox model 0.280 a 0.551 a / < 0.001 b

clinical+radiomics RSF model < 0.001a < 0.001 a < 0.001 a /

Fig. 8  Kaplan-Meier curves of different stratification methods. Note: The Kaplan–Meier survival analysis is conducted to estimate the high- and 
low-risk PFS in the training and testing cohorts. A risk stratification of the clinical + radiomics Cox model in the training cohort; B risk stratification 
of the RSF model in the training cohort; C risk stratification of the clinical + radiomics Cox model in the testing cohort; D risk stratification of the RSF 
model in the testing cohort
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Cox model alone or staging Cox model alone, the Cox 
model based on radiomics did not improve survival pre-
diction (in the training cohort, the time-dependent AUC 
of the radiomics Cox model, clinical Cox model, and 
staging Cox model was 0.71 vs 0.72 vs 0.70, respectively). 
Similarly, in the present study, the Cox model 3 with the 
addition of radiomics did not significantly improve the 
prognostic prediction of LANPC patients. In addition, 
when comparing survival differences among groups, the 
Cox model requires data to meet the precondition of pro-
portional hazard hypothesis [36]. When the data does 
not meet the prerequisite requirements, it should make 
the data meet the hypothesis through stratification or 
data conversion for analysis. At present, many research-
ers ignore the testing of the proportional hazard hypoth-
esis when using the Cox regression model, affecting the 
authenticity and reliability of the findings.

In the present study, based on the RSF model, the 
survival prediction study of LANPC patients after 
IC + CCRT was conducted. The findings showed that, 
as compared with the traditional Cox model, the RSF 
model significantly improved the prediction perfor-
mance for PFS of LANPC, and the model had better 
stability. It is reported in the literature that the RSF 
model has the advantages of general Random forest 
(RF) and can prevent the overfitting of its algorithm 
through two random sampling processes [24]. At the 
same time, the advantage of the RSF model is that it 
is not limited by conditions such as proportional haz-
ard and log-linear hypotheses [37]. Compared with 
traditional survival analysis methods such as the Cox 
model, the prediction accuracy of the RSF model is at 
least equal to or better than that of traditional survival 
analysis methods. Several studies have emphasized the 
important role of RF classifiers in the selection of radi-
omics features and model construction of NPC patients 
[38–40], which improves the accuracy of survival pre-
diction. Previous studies [28] reported that compared 
with models that included clinical or genetic features 
alone, the RSF model with the addition of radiomics to 
clinical and genetic features significantly improved the 
survival prediction of gliomas. Another study obtained 
radiomics features from CT images of 573 patients with 
non-small cell lung cancer and fitted the RSF model, 
revealing that the RSF model had the potential to pre-
dict distant metastasis in patients with non-small cell 
lung cancer [41]. It suggests that the RSF model has a 
good potential for predicting the prognosis of can-
cer patients. Therefore, the RSF model of the present 
study achieved better effects in both the PFS predic-
tion and risk stratification of LANPC patients. To our 
knowledge, there are few feasibility studies to explore 

the prognosis of LANPC patients after IC + CCRT by 
comparing two radiomics-based models, so the present 
study may be an important reference because it com-
pared the prediction performance of different models 
in the training cohort and testing cohort. Such compar-
ative studies may improve the reliability of predictive 
analysis models based on radiomics and help broaden 
the scope of radiomics in cancer treatment.

In addition, the RSF model based on clinical and radi-
omics features showed better prognostic prediction 
performance than the Cox model. The Kaplan-Meier sur-
vival curve was used to separate the patients. The PFS of 
the high-risk group was lower than that of the low-risk 
group, which was similar to previous findings [23, 32, 34, 
40]; it demonstrates a significant difference between the 
two models, which may help to accurately stratify indi-
vidual treatment strategies in clinical practice, thereby 
improving the clinical outcome of LANPC patients.

The present study has several limitations. First, the sin-
gle-center study may limit the applicability of the present 
findings for patients in other regions and centers, so it 
needs to be further verified by multiple centers. Second, 
the present study only extracts the radiomics features 
of the primary tumor and does not explore the lymph 
nodes. Further, N stage was not significantly associated 
with prognosis. This may be related to the small number 
of cases in this study. In addition, due to the retrospec-
tive nature, there may be selection bias. Thus, the well-
designed prospective studies are warranted.

In conclusion, the present study demonstrates that as 
compared with the Cox model, the RSF model includ-
ing clinical and radiomics features shows better perfor-
mance in predicting the PFS of LANPC patients after 
IC + CCRT. The RSF model can divide patients into 
low-risk and high-risk groups, and it may offer addi-
tional information for individual treatment strategies for 
LANPC patients. The construction and comparison of 
different radiomics prediction models will facilitate the 
application of radiomics in tumor precision medicine and 
clinical practice.
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