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Abstract 

Background:  Glioblastoma multiforme (GBM) is one of the most malignant tumors in brain with high morbidity 
and mortality. Mitophagy plays a significant role in carcinogenesis, metastasis, and invasion. In our study, we aim to 
construct a mitophagy-related risk model to predict prognosis in GBM.

Methods:  RNA-seq data combined with clinical information were downloaded from TCGA. The 4-gene risk model 
and nomograph was then constructed and validated in external cohort. Evaluation of immune infiltration, functional 
enrichment and tumor microenvironment (TME) were then performed.

Result:  A mitophagy-related risk model was established and patients in TCGA and CGGA were classified into low-risk 
and high-risk groups. In both cohorts, patients in low-risk group had improved survival, while high-risk group had 
poor prognosis. Also, the risk model was identified as an independent factor for predicting overall survival via Cox 
regression. Furthermore, a prognostic nomogram including mitophagy signatures was established with excellent 
predictive performance. In addition, the risk model was closely associated with regulation of immune infiltration as 
well as TME.

Conclusion:  In conclusion, our study constructed a mitophagy-related risk model, which can be utilized for the clini-
cal prognostic prediction in GBM.
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Introduction
Gliomas are the most common brain tumors in central 
nervous systems and represent 75% malignant brain can-
cer in adults. Glioblastoma (GBM), also known as glio-
blastoma multiforme, is the most lethal type in gliomas 
(World Health Organization [WHO] grade IV), with 
a 5-year relative survival of 3 ~ 7% [1, 2]. Despite of the 
progress in multimodality therapies including surgical 
resection, radiotherapy, systemic therapies (chemother-
apy, targeted therapy) and supportive care, the median 
survival time of GBM is less than 2 years [3]. These con-
ditions suggest that the conventional stage system for 
predicting prognosis such as WHO grade is insufficient 
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to cover the clinical diversity of GBM. Thus, a novel prog-
nostic model for GBM is needed to be established.

The role of autophagy in malignant metastasis and 
response to treatment has been elucidated in many types 
of tumors, which is characterized by degrading dys-
functional and cellular materials or damaged organelles 
through lysosomal system to maintain cellular homeo-
stasis [4, 5]. Mitophagy, as a specific type of autophagy, 
is a fundamental process of removing damaged or exces-
sive mitochondria via autophagolysosomes. This process 
is often triggered by oxidative stress or increasing need 
of bioenergy, which is necessary for cancer formation 
and invasion [6]. Some studies have discovered the role 
of mitophagy in gliomas [7, 8]. Huang et  al. found that 
inhibition of mitophagy partially reverted cannabidiol-
induced glioma cell death, suggesting the positive role of 
mitophagy on anti-tumor [9]. Two studies demonstrated 
that induction of mitophagy by FOXO3a protect the glio-
mas from temozolomide-induced cytotoxicity, indicat-
ing double-sword effect of mitophagy on glioma [10, 11]. 
Thus, whether mitophagy is correlated to the prognosis 
of GBM, and the possible involvement of mitophagy-
related genes remain to be explored.

Given the existing findings, we constructed a 
mitophagy-related prognostic model based on mRNA 
expression and clinical data of GBM patients from 
TCGA, and we also explored the correlations between 
mitophagy and the tumor immune microenvironment.

Materials and methods
Datasets
RNA sequencing (RNA-seq) data of 169 GBM patients 
with 5 normal controls were extracted from TCGA data-
base on 1 August 2021 (https://​portal.​gdc.​cancer.​gov/​
repos​itory). The validation data were extracted from 
CGGA database mRNAseq_693 on 1 August 2021 with a 
total of 134 GBM patients [12, 13] (http://​www.​cgga.​org.​
cn/).

Identification of mitophagy‑related differential expressed 
genes (DEGs)
Fifty-one mitophagy-related genes were extracted from 
Gene Set Enrichment Analysis (http://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp) combined with GeneCards (https://​
www.​genec​ards.​org/). Then mRNA expression data 
were compared utilizing “limma” package between 169 
GBM patients and 5 controls [14]. DEGs were screened 
out with the following cut off: P value < 0.05. PPI net-
work of DEGs was constructed using Search Tool for the 
Retrieval of Interacting Genes (STRING), version 11.0 
(https://​string-​db.​org/).

Establishment and validation of risk model for prognosis
To further screen out DEGs with high predicting value, 
we performed Cox regression analysis to evaluate the 
relation between DEGs and survival status in TCGA 
cohort. 5 mitophagy-related genes were firstly identi-
fied for further analysis with P < 0.1. LASSO regression 
analysis was performed via R package “glmnet” to iden-
tify prognosis-related DEGs and developed risk model 
[15]. Finally, 4 genes were selected as the optimal gene 
to construct risk score. The calculation of risk score 
was as follows: Risk Score = ∑ 

∑
4

i
Xi × Yi (X: coeffi-

cients, Y: gene expression level). According to median 
value of the risk score, patients in TCGA were well 
classified into low-risk and high-risk groups and the 
survival status of 2 groups were further compared using 
Kaplan–Meier analysis. PCA of 4-genes risk model was 
constructed by R package “Rtsne”. The time-depend-
ent ROC curve was applied to evaluate the predicting 
efficacy of risk score utilizing R “survivalROC” pack-
age [16]. The images of immunohistochemistry (IHC) 
staining of prognosis-related genes were extracted from 
The Human Protein Atlas database [17]. To analyze 
independent prognosis value, univariate and multivari-
able Cox regression models were employed in TCGA 
cohort and CGGA cohort. To validate the risk model, 
CGGA cohort (mRNAseq_693) was applied. 4-genes 
risk signature was then calculated by the same method 
in TCGA cohort and patients in CGGA were divided 
into low-risk and high-risk groups and the difference 
was further analyzed according to method mentioned 
above. The nomograph was constructed using R pack-
age “rms”, “foreign”, “survival” and evaluated by ROC 
curve. The Calibration plots were applied to evaluate 
the discriminative ability of the nomogram.

Functional enrichment based on GO and KEGG
Gene Ontology analysis was performed to enrich the 
biological processes, molecular functions and cellular 
components based on DEGs between low-risk and high-
risk groups. And the Kyoto Encyclopedia of Genes and 
Genomes pathway analysis were conducted to deter-
mine the pathway corelated to the Mitophagy-related risk 
signature. GO and KEGG analysis both used R package 
“clusterProfiler” [18].

Estimation of immune infiltration and immune related 
pathway
The scores of infiltrating immune cells and immune-
related pathways were evaluated using R package 
“gvsa” in TCGA cohort and CGGA cohort [19]. Fur-
thermore, the relationships between immune cells and 
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mitophagy-related genes were analyzed through TIMER 
database [20] (https://​cistr​ome.​shiny​apps.​io/​timer/).

Tumor microenvironment analysis
The 22 types of immune cells composition in subgroups 
were analyzed using CIBERSORT algorithm (https://​
ciber​sort.​stanf​ord.​edu/). The correlations between 22 
immune cells composition were evaluated via “corrplot” 
R package.

Statistical analysis
R software (version 4.1.0), SPSS (version 23.0) and R 
studio (version 1.1.463) were used to perform statistical 
analysis. Single-factor analysis was utilized to compare 
the different expression of genes. Person chi-square test 
was used to evaluate the categorical variables. Kaplan-
Meier method combined with log-rank test was used 
to analyze the overall survival (OS) of GBM patients. 
Univariate and multivariate Cox regression were used 
to assess the independent prognostic value of the risk 
model. The analysis of immune cell infiltration and 
immune pathways were conducted via Wilcoxon test.

Results
Identifying prognostic‑related DEGs that were associated 
with mitophagy
A total of 5 normal and 169 GBM samples with mRNA 
expression profile and clinical data were extracted from 
TCGA. The 51 mitophagy-related genetic expressions 
were compared between normal group and tumor group 
via “limma” package. Twenty-seven mitophagy-related 
DEGs were identified with P < 0.05, among which 15 
genes (GABARAPL1, PRKN, OPTN, PINK1, MAP1LC3A, 
ULK1, DNM1L, AMBRA1, TOMM20, ATG13, MFN2, 
PTEN, TOMM70, RNF41, VPS13C) were downregu-
lated while 12 genes (TOMM40, GABARAP, CSNK2B, 
TOMM22, TOMM5, ROCK1, TOMM7, RIPK2, MTERF3, 
UBA52, PHB2, RPS27A) were upregulated. The heatmap 
of 51 DEGs was illustrated in Fig. 1A. To further explore 
the interaction between DEGs, we performed protein–
protein interaction (PPI) on mitophagy-related gene 
(Fig. 1B). We identified 28 hub genes with the minimum 
required interaction score of 0.900 (highest confidence), 
among which 10 genes (ATG 13, CSNK2B, DNM1L, 
GABARAP, MAP1LC3A, MFN2, MTERF3, OPTN, 
PINK1, PTEN) were DEGs (Fig. 1B). The correlation net-
work of 33 mitophagy-related genes expressions with 

Fig. 1  Expression pattern of 51 mitophagy-related genes between GBM and normal patients in TCGA cohort. A Heatmap indicating different 
expression genes (DEGs) between tumor (red) and normal sample (blue). * P < 0.05, **P < 0.01, *** P < 0.001. B PPI network for the interaction between 
mitophagy-related genes. (Interaction score = 0.9). C The correlation network of the 33 DEGs. (Red line: positive relation, blue line: negative relation)
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significant difference is further shown in Fig. 1C (caption: 
red = positive correlations; blue = negative correlations).

Consensus clustering analysis of GBM based on different 
expression pattern
To further classify GBM subtypes based on their distinct 
expression pattern of mitophagy-related DEGs, we con-
structed consensus clustering analysis in GBM patient 
in the TCGA cohort. By using ConsensusClusterPlus 
package based on 27 mitophagy-related DEGs, we iden-
tified 2 different regulation patterns (k = 2) including 
139 cases in cluster 1 and 30 in cluster 2 with the high-
est intragroup correlations (Fig. 2A). Then we integrated 
the cluster with the mRNA expression level and clinical 
informations including age (≤60 or > 60 years), sex (male 
or female) and survival status (dead or alive), which are 
illustrated in heatmap (Fig. 2B).

Construction of risk signature based on the TCGA cohort
After deleting duplicate and missing value, a total of 159 
GBM samples were match with clinical information. To 
screen out candidates for constructing risk signature, 
we performed univariate Cox regression analysis on 
DEGs and identified 5 genes (MAP1LC3A, TOMM20, 
TOMM22, PHB2, UBA52) with the criteria of P < 0.1 
(Fig. 3A). Among them, 1 gene (MAP1LC3A) was related 
to increased risk with HRs > 1, while the other 4 genes 
(TOMM20, TOMM22, PHB2, UBA52) were associated 

with protective effect with HRs < 1 (Fig. 3A). Next, least 
absolute shrinkage and selection operator (LASSO) Cox 
regression analysis was used to identified 4 survival-
related genes (MAP1LC3A, TOMM20, PHB2, UBA52) 
to construct risk model for prognosis according to 
the optimum λ value (Fig.  3B, C). The risk score for-
mula was as follows: risk score = (0.0272 * MAP1LC3A 
exp.) + (− 0.00546 * PHB2 exp.) + (− 0.008623 * 
TOMM20 exp.) + (− 0.002654 * UBA52 exp.). The down-
regulation of MAP1L3A, TOMM20 and upregulation of 
PHB2, UBA52 in GBM tissue were further validated by 
The Human Protein Atlas database (Fig. 3D).

The 159 samples were classified into high-risk group 
(79) and low-risk group (80) (Fig.  4A). Principal com-
ponent analysis (PCA) showed that GBM patients were 
well divided into 2 clusters (Fig. 4B). As shown in Fig. 4C, 
patients in high-risk group exhibited more death (red 
dot) and lower survival time compared to low-risk group. 
Furthermore, the difference of OS between high-risk and 
low-risk groups was prominent (P = 0.0033) (Fig.  4D). 
Time-dependent ROC curves were utilized to evaluate 
the predictive performance of the model and the area 
under the curve (AUC) was 0.635 for 1-year, 0.75 for 
2-year, and 0.724 for 3-year survival (Fig. 4E).

To evaluate whether risk score was an independent risk 
factor, we utilized univariate and multivariable Cox regres-
sion analyses in TCGA cohort. In univariate Cox regres-
sion, the risk model had a significant relationship with OS 

Fig. 2  Classification of tumor samples based on mitophagy-related DEGs. A 159 GBM patients were separated into two clusters based on the 
consensus clustering matrix (k = 2). B Heatmap of two clusters with clinical information
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(HR = 1.7566, 95%CI (1.1988–2.5739), P < 0.005) (Fig. 4F). 
The multivariate analysis also indicated the risk model was 
an important factor correlated to OS (HR = 1.6734, 95%CI 
(1.1368–2. 4633), P < 0.01) (Fig.  4G). Furthermore, the 
heatmap of clinical features showed that the survival status 
was better in the low-risk group (Fig. 4H).

Validation of the prognostic model in the Chinese Gliomas 
Genome Atlas (CGGA) databases
After screening out, 134 GBM patient’s samples with 
clinical informations were extracted from CGGA 
mRNAseq_693. According to the median risk score 
built in TCGA cohort, patients were classified into high-
risk (66) and low-risk (67) groups (Fig. 5A). PCA analy-
sis indicated that patients were separated well into two 
groups (Fig.  5B). The dot line plot showed that patients 
with low-risk exhibited better survival time and survival 
rate (Fig.  5C). Furthermore, Kaplan–Meier analysis also 
showed significant difference in survival status between 
two groups (P = 0.0175) (Fig. 5D). Time-dependent ROC 
curves indicated that the 1-year, 2-year, 3-year AUC were 
0.603, 0.709, 0.653 respectively, suggesting satisfactory 
predicting efficacy of the risk score model (Fig. 5E).

To evaluate whether risk score was an independent 
risk factor, we utilized univariate and multivariable Cox 
regression analyses in CCGA cohort. In univariate Cox 
regression, the risk model had a significant relation-
ship with OS (HR = 1.5757, 95%CI (1.0786–2.3019), 
P = 0.0187) (Fig. 5F). The multivariate analysis also indi-
cated the risk model was an important factor correlated 
to OS (HR = 1.5702, 95%CI (1.0599–2. 3262), P = 0.0245) 
(Fig. 5G).

Establishment and validation of nomograph
To construct a clinical-based method for predict-
ing the prognosis of GBM patients, we established a 
nomograph based on 4 prognostic parameters includ-
ing age, sex, radiation therapy, riskscore (Fig.  6A). The 
calibration plots indicated excellent agreement between 
the predicted and actual observation in both training 
and validation cohort (Fig.  6B, C). The AUC of nomo-
graph in predicting 1-year, 2-year, 3-year survival were 
0.693, 0.726, 0.731 respectively in TCGA cohort and 
were 0.637, 0.704, 0.681 respectively in CGGA cohort, 
indicating a favorable predictive ability of nomograph 
(Fig. 6D, E).

Fig. 3  Construction of risk model in TCGA cohort based on mitophagy-related genes. A Univariate cox regression analysis of OS for 5 
mitophagy-relation genes with P < 0.1. B least absolute shrinkage and selection operator (LASSO) regression of 5 OS-related genes. Black: MAP1LC3A, 
Blue: TOMM 22, Baby blue: PHB2, Red: TOMM 20, Green: UBA52. C Cross-validation in LASSO regression. D Immunohistochemistry staining of normal 
and tumor sample. Positive area was measured by image J
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The GO and KEGG enrichment analysis based on risk model
To further clarify the pathway and the biological func-
tion of DEGs according to risk model, we performed 
Gene ontology (GO) enrichment analysis and Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) path-
way analysis on DEGs between low-risk and high-risk 
groups in TCGA cohort. First, we applied limma pack-
age in R language to identify 187 DEGs between two 
groups with the criteria FDR < 0.05 and |log2FC | ≥ 1. 
In 187 DEGs, 27 genes were downregulated in high-risk 
group, while the other 160 genes were upregulated. GO 
and KEGG enrichment analysis were applied on DEGs. 
According to GO analysis, DEGs based on risk model 
were mainly enriched in neurotransmitter transport, 

presynapse, ion channel activity (P < 0.005) (Fig. 7A, B). 
KEGG analysis showed that DEGs were closely associ-
ated with neuroactive ligand−receptor interaction and 
calcium signaling pathway (P < 0.01) (Fig. 7C, D).

Evaluation of the immune activity between subgroups
As immune micro-environmental abnormality plays 
an important part in oncogenesis, invasion and metas-
tasis, we further evaluated the enrichment of 16 types 
of immune cells and 13 immune-related pathways in 
TCGA and CGGA in different risk score via single-sam-
ple gene set enrichment analysis (ssGSEA) package. As 
shown  in TCGA boxplot, patients in high-risk group 
showed lower level of immune cells (CD8+ T cells, 

Fig. 4  Predicting value of risk model in TCGA cohort. A Distribution of patients according to risk model. B Principal component analysis (PCA) plot 
of GBM patient based on risk model. C The survival status and time of patient with GBM. (Low-risk: on the left side of dotted line. High-risk on the 
right side of dotted line). D Kaplan-meier (KM) survival analysis of patients in low-risk and high-risk groups. E ROC curve for predicting efficiency of 
the risk model. F Univariate Cox regression analysis of risk score in TCGA cohort. G Multivariate Cox regression analysis of risk score in TCGA cohort. H 
Heatmap of patients in different risk group with clinical information. (Red: positive expression. Blue: negative expression)
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natural killer (NK) cells, follicular helper T cell (Tfh) 
cells, Th2 cell) than those in low-risk group (P < 0.05) 
(Fig.  8A), while the difference in immune pathway is 
not prominent (Fig. 8B).

In CGGA cohort, high-risk group had lower infiltra-
tion of immune cells (CD8+ T cells, NK cells, activated 
dendritic cells (aDCs), Mast cells, Neutrophils), which 
was almost the same as TCGA (Fig.  8C). Additionally, 
APC co stimulation, cytolytic, inflammation promot-
ing, Type I IFN response were enriched in low-risk 
group, indicated the low immune activity in high-risk 
group (Fig.  8D). To further analyze the relationship 
between mitophagy-related DEGs (MAP1LC3A, 
TOMM20, PHB2, UBA52) and immune cells, the 
TIMER 2.0 was applied (Fig.  9). As shown in Fig.  9, 
TOMM20 was positively associated with CD8+ T cells 

(P < 0.0001) and negatively related to B cells and CD4+ 
cells (P = 0.043, 0.0052). UBA52 had positively relation-
ship with macrophage, neutrophil, dendritic cell  (DC) 
(P = 0.00076, 0.0045, 0.017). PHB2 had negatively rela-
tionship with CD4+ cells (P = 0.016). These findings 
suggested that the risk model genes were closely associ-
ated with immune infiltration.

Evaluation of the tumor microenvironment 
between subgroups
Due to the close relationship between mitophagy-related 
risk model and immune activity, CIBERSORT was uti-
lized to analysis the tumor microenvironment (TME) 
between low-risk and high-risk groups. The overview 
of 22 immune cell compositions in GBM samples was 

Fig. 5  Validation of risk model in CGGA cohort. A Distribution of patients according to risk model in CGGA cohort. B Principal component analysis 
(PCA) plot of GBM patient based on risk model. C The survival status and time of patient with GBM. (Low-risk: on the left side of dotted line. High-risk 
on the right side of dotted line). D Kaplan-meier (KM) survival analysis of patients in low-risk and high-risk groups. E ROC curve for predicting 
efficiency of the risk model. F Univariate Cox regression analysis of risk score in CGGA cohort. G Multivariate Cox regression analysis of risk score in 
CGGA cohort

(See figure on next page.)
Fig. 6  Establishment of nomograph for predicting 1-year, 2-year and 3-year survival probability. A Construction of prognostic nomograph 
to predict survival of GBM in TCGA cohort. B Calibration curves of the prognostic nomogram for predicting 1-year, 2-year and 3-year survival 
probability in the TCGA cohort. C Calibration curves of the prognostic nomogram for predicting 1-year, 2-year and 3-year survival probability in the 
CGGA cohort. The prognostic value of the nomogram evaluated by ROC curve in training (D) and validation cohort (E)
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Fig. 6  (See legend on previous page.)
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shown in Fig. 10A. The high-risk group had higher pro-
portion of resting NK cells as well as plasm cells, while 
low-risk group had increased proportion of activated NK 
cells, indicating that the activation of NK cells regulated 
anti-tumor effects in low-risk group (Fig. 10B, C).

Discussion
The heterogeneity of GBM and the lack of effective stage 
make it important to develop stable prognostic model. 
Our current study firstly analyzed the relationship 
between 51 mitophagy-related genes and the prognosis 
of GBM in TCGA cohort and constructed a mitophagy-
related prognostic predicting model containing 4 genes 
(MAP1LC3A, TOMM20, PHB2, UBA52), which was 
validated well in external databases. Also, we then con-
structed a mitophagy-based nomograph with potent 
predicting value. Furthermore, GO and KEGG pathway 
enrichment analysis uncovered that the mitophagy-
related genes are associated with synaptic activity, ion 
channel, neuroactive ligand-receptor interaction and 

calcium signaling. In addition, the mitophagy genes were 
closely related to immune infiltration and TME.

Mitophagy, an evolutionarily conserved programmed 
cell death essential for cellular homeostasis, is an 
autophagic response targeting damaged, dysfunction 
mitochondria. Despite numerous studies have pointed 
out that the autophagy plays a vital part in tumorigenesis, 
metastasis and drug resistance, limited studies reported 
about the role of mitophagy in cancer especially glio-
mas [6, 21]. In our research, we systematically combined 
mitophagy-related genes with survival data and con-
structed a 4-gene prognostic predicting model to predict 
OS in GBM patients, suggesting a strong relationship 
between GBM and mitophagy.

Four important mitophagy-related genes (MAP1LC3A, 
TOMM20, PHB2, UBA52) were identified in our study. 
Microtubule Associated Protein 1 Light Chain 3 Alpha 
(MAP1LC3A) encodes 2 different isoforms: MAP1A 
and MAP1B. MAP1A and MAP1B are two microtu-
bule-related proteins mediating the physical interac-
tions between microtubules and components of the 

Fig. 7  Functional enrichment of DEGs based on low-risk and high-risk groups. A, B Gene Ontology (GO) enrichment analysis of DEGs. C, D Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs
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cytoskeleton. Compelling studies reported that the expres-
sion of MAP1LC3A was suppressed in many tumor cells 
including GBM, indicating that it might be involve in the 
tumorigenesis of various cancers [22, 23]. Wang reported 
that upregulation of MAP1LC3A in GBM could predict 
poor prognosis [24]. Consistent with the studies above, we 

observed that the MAP1LC3A was downregulated in GBM 
samples compared to normal samples and it was enriched 
in high-risk group. Further Cox regression analysis showed 
that high expression of MAP1LC3A was related to poor 
survival, suggesting that dysregulation of mitophagy pro-
moted the tumor progression. Translocase Of Outer 

Fig. 8  Differences of immune cells infiltration and immune pathway based on risk score. A, B ssGSEA scores of immune cells (A.16 immune cells) 
and immune pathway (B.13 immune pathways) in TCGA cohort. C, D single-sample gene set enrichment analysis (ssGSEA) scores of immune cells 
(A.16 immune cells) and immune pathway (B.13 immune pathways) in CGGA cohort. * P < 0.05, ** P < 0.01, *** P < 0.001



Page 11 of 14Wang et al. BMC Cancer          (2022) 22:644 	

A

B

C

D

MAP1LC3A
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UBA52

Fig. 9  TIMER analysis of correlations between prognostic genes and immune cell infiltration. A, B, C, D Relationship between MAP1LC3A, TOMM20, 
PHB2, UBA52 and immune cell infiltration

Fig. 10  CIBERSORT analysis of immune cell composition in TCGA. A Overview of immune cell composition in GBM sample. B immune cell 
composition in high-risk and low-risk groups
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Mitochondrial Membrane 20 (TOMM20) is a pre-protein 
receptor on the translocation complex of the mitochon-
drial outer membrane. According to previous studies, 
upregulation of TOMM20 could be observed in many 
cancers such as hepatocarcinoma [25–28]. However, the 
expression of TOMM20 was lower in GBM compared to 
normal samples in our study and it was highly expressed in 
low-risk group. One possible explanation is that TOMM20 
upregulated the CD8+ T cell, providing tumor-suppres-
sive effect in our study based on TIMER analysis (Fig. 9). 
Prohibitin 2 (PHB2) is highly conserved protein mainly 
in mitochondria, nucleus and plasma membrane, which 
is required for Parkin-induced mitophagy in mammalian 
cells and cancer cell proliferation and adhesion [29]. Over-
expression of PHB2 had been reported in hepatocarci-
noma, breast cancer as well as lung cancer [30–32]. PHB2 
was upregulated in GBM patients and enriched mainly in 
low-risk group in our study. The current discrepancy still 
urged further exploration on the two-edge sword effect 
of mitophagy. Ubiquitin A-52 Residue Ribosomal Pro-
tein Fusion Product 1 (UBA52) is a ubiquitin coding gene 
encoding a ubiquitin fusion protein which is comprised of 
ribosomal protein L40 at C-terminus and ubiquitin at the 
N-terminus [33]. Ubiquitin is closely related to cell cycle 
regulation and lysosomal degradation. Also,  UBA52 was 
observed in tumor tissues [34, 35]. It is reported that over-
expression of UBA52 induced cellular apoptosis in tumor 
tissue [36] and UBA52 was mainly enriched in low-risk 
group in our study.

Until now, the role of mitophagy in tumor has not 
been fully understood. On the one hand, inhibition of 
mitophagy suppressed the growth of glioblastoma cells 
[7]. On the other hands, lethal mitophagy can inhibited 
the proliferation of glioma [9]. According to data from 
TCGA cohort, about 56% mitophagy-related DEGs were 
downregulated with 44% upregulated in tumor sam-
ple, indicating the two-edges sword effect of mitophagy, 
which is consistent with the findings above. Furthermore, 
the TOMM20 can facilitate ROS-induced pyroptosis and 
PHB2 is associated with apoptosis, indicating the interac-
tion and coexistence of different programmed cell death 
as tumor grows [37].

Through LASSO and Cox regression analysis, we then 
constructed a mitophagy-related risk model and nomo-
graph to predict prognosis of GBM. Based on risk model, 
patients were divided into high-risk and low-risk group. 
As patients with high-risk developed poor prognosis, 
more aggressive methods and closer follow-up time 
interval are required, indicating the risk model offer pre-
cise individualized treatment in clinical practice. Nomo-
graph is characterized by intuitive visual presentation in 
guiding clinical practice and we established a mitophagy-
related nomograph for the first time with excellent 

predictive performance, which is superior than conven-
tional WHO stage.

To further analyze the functional enrichment between 
low-risk and high-risk groups, GO and KEGG pathway 
analysis were conducted. Go analysis suggested that the 
DEGs mainly involved in synaptic activity and ion chan-
nel, which is consistent with previous findings that syn-
aptic activity drives the progression of gliomas and ion 
channel is closely related to the proliferation, metasta-
sis, invasion of GBM [38, 39]. KEGG pathway analysis 
indicated that the DEGs between 2 subgroups mainly 
enriched in neuroactive ligand-receptor interaction as 
well as calcium signaling. Previous studies demonstrated 
that neuroactive ligand-receptor interaction plays an 
important part in development of GBM [40, 41]. A com-
prehensive analysis conducted by Pal J found that GBM 
patients with defective neuroactive ligand-receptor inter-
action had poor prognosis [40]. Calcium signaling was 
closely related to the tumorigenesis, progression of GBM 
[42]. These findings suggested that the 4-gene risk model 
might regulate tumor progression through the pathways 
or processes above.

As previous studies suggested that immune infiltra-
tion played a crucial role in the prognosis of patients with 
glioma, we further analyzed and demonstrated that the 
immune filtration and immune pathway were statisti-
cally different between 2 subgroups [43]. It is reported by 
recent studies that GBM patient with numerous CD8+ T 
cells tend to have better survival, while activated NK cells 
predict better prognosis in GBM [44]. In our study, the 
level of CD8+ T cells, NK+ cells, Tfh cells and Th2 T cells 
were all downregulated in high-risk group, suggesting 
a suppressive immune infiltration in patients with poor 
prognosis. In addition, the prognostic gene TOMM20 
is positively corelated to CD8+ T cells in TIMER analy-
sis (Fig.  9), suggesting a close link between mitophagy 
and immune infiltration. The enigmatic and sophis-
ticated association linking immunity with mitophagy 
are being gradually uncovered with the progress of the 
experimental research. One study from Paul K revealed 
that mitophagy could trigger the proliferation of CD8+ 
cell to improve prognosis in cancer [45]. Another study 
from Alejandro López-Soto suggested that the function 
of NK cell can be modulated by mitophagy [46]. Further-
more, the immune pathway analysis mainly focused on 
APC costimulation, inflammation-promoting, type I IFN 
response pathway. Finally, CIBERSORT analysis revealed 
that the primary immune cells enriched in the low-risk 
group were activated NK cells, suggesting the crucial 
role of activation of NK cells in mediating better prog-
nosis. Taken all together, our studies indicated that the 
mitophagy-related genes modulated immune microenvi-
ronment and affected the prognosis.
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There are some limitations in our study. First, the clini-
cal data from TCGA are incomplete such as therapy and 
therapeutic effect, which might provide clues on bio-
marker of treatment. Second, validation of risk signature 
is best carried out in vivo or well-established study, as 
external databases often have bias on race or area.

Conclusion
In summary, we utilized 4 mitophagy-related genes 
to construct a risk model that accurately predicts the 
prognosis of GBM patients. Our findings suggested 
the crucial role of mitophagy in GBM, which might be 
related to tumor immune microenvironment modula-
tion. Further studies are needed to verify these results 
in vitro and in vivo.

Abbreviations
GBM: Glioblastoma multiforme; DEGs: Differentially expressed genes; LASSO: 
Least absolute shrinkage and selection operator; TME: Tumor microenviron-
ment; PPI: Protein protein interaction; PCA: Principal component analysis; AUC​
: Area under the curve; KEGG: Kyoto Encyclopaedia of Genes and Genomes; 
ssGSEA: Aingle-sample gene set enrichment analysis; GO: Gene ontology; 
STRING: Search Tool for the Retrieval of Interacting Genes; NK: Natural killer; 
Tfh: Follicular helper T cell; MAP1LC3A: Microtubule Associated Protein 1 Light 
Chain 3 Alpha; TOMM20: Translocase Of Outer Mitochondrial Membrane 20; 
PHB2: Prohibitin 2; UBA52: Ubiquitin A-52 Residue Ribosomal Protein Fusion 
Product 1.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​022-​09707-w.

Additional file 1. 

Additional file 2. 

Additional file 3. 

Additional file 4. 

Acknowledgements
We thank TCGA for providing dataset. And all methods were carried out in 
accordance with relevant guidelines and regulations from TCGA.

Authors’ contributions
WJH, CH, ZWZ, QXQ, JYH acquired the data, performed the analysis and wrote 
the manuscript. ZWZ, RJZ, JYH, YQ, WHH, GKH participated in data analysis. YJL, 
WH, YHL were involved in study design, supervision and acquiring funding. All 
authors contributed to editorial changes in the manuscript. All authors read 
and approved the final manuscript.

Funding
This work is supported by the National Natural Science Foundation of China 
(82100238, 82171698, 82170561, 81300279, 81741067), the Natural Science 
Foundation for Distinguished Young Scholars of Guangdong Province 
(2021B1515020003), the Climbing Program of Introduced Talents and High-
level Hospital Construction Project of Guangdong Provincial People’s Hospital 
(DFJH201923, DFJH201803, KJ012019099, KJ012021143, KY012021183).

Availability of data and materials
The datasets used and/or analysed during the current study available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Hematology, Guangdong Provincial People’s Hospital, 
Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. 
2 Zhuguang Community Healthcare Center, Guangzhou 510080, China. 
3 Department of Otorhinolaryngology‑Head and Neck Surgery, Huizhou 
Municipal Central People’s Hospital, Huizhou 516001, People’s Republic 
of China. 4 School of Bioscience and Bioengineering, South China University 
of Technology, Guangzhou 510006, China. 5 Department of Gastroenterology, 
Guangdong Provincial People’s Hospital, Guangdong Academy of Medi-
cal Sciences, Guangzhou, Guangdong 510080, People’s Republic of China. 
6 Department of General Medicine, The First Affiliated Hospital of Guangzhou 
Medical University, Guangzhou 510120, China. 7 Department of Pathology 
and Laboratory Medicine, University of Cincinnati College of Medicine, Cincin-
nati, OH 45267, USA. 

Received: 27 March 2022   Accepted: 27 May 2022

References
	1.	 Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol 

Appl Neurobiol. 2018;44(2):139–50.
	2.	 Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS 

Statistical Report: Primary Brain and Other Central Nervous System 
Tumors Diagnosed in the United States in 2012-2016. Neuro-Oncology. 
2019;21(Suppl 5):v1–v100.

	3.	 Wang Y, Jiang T. Understanding high grade glioma: molecular 
mechanism, therapy and comprehensive management. Cancer Lett. 
2013;331(2):139–46.

	4.	 Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular 
mechanisms. Autophagy. 2018;14(2):207–15.

	5.	 Onorati AV, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in 
cancer. Cancer. 2018;124(16):3307–18.

	6.	 Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer. 
Oncogene. 2017;36(10):1315–27.

	7.	 Maiti P, Scott J, Sengupta D, Al-Gharaibeh A, Dunbar GL. Curcumin and 
solid lipid curcumin particles induce autophagy, but inhibit mitophagy 
and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int J Mol 
Sci. 2019;20(2):399.

	8.	 Liu C, Peng Z, Li P, Fu H, Feng J, Zhang Y, et al. lncRNA RMST suppressed 
gbm cell mitophagy through enhancing FUS SUMOylation. Mol Ther 
Nucleic Acids. 2020;19:1198–208.

	9.	 Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, et al. Cannabidiol inhibits 
human glioma by induction of lethal mitophagy through activating 
TRPV4. Autophagy. 2021:1–15.

	10.	 He C, Lu S, Wang XZ, Wang CC, Wang L, Liang SP, et al. FOXO3a protects glioma 
cells against temozolomide-induced DNA double strand breaks via promotion 
of BNIP3-mediated mitophagy. Acta Pharmacol Sin. 2021;42(8):1324–37.

	11.	 Zhang J, Liu L, Xue Y, Ma Y, Liu X, Li Z, et al. Endothelial monocyte-acti-
vating polypeptide-II induces BNIP3-mediated mitophagy to enhance 
temozolomide cytotoxicity of glioma stem cells via down-regulating 
MiR-24-3p. Front Mol Neurosci. 2018;11:92.

	12.	 Wang Y, Qian T, You G, Peng X, Chen C, You Y, et al. Localizing seizure-sus-
ceptible brain regions associated with low-grade gliomas using voxel-
based lesion-symptom mapping. Neuro-Oncology. 2015;17(2):282–8.

	13.	 Liu X, Li Y, Qian Z, Sun Z, Xu K, Wang K, et al. A radiomic signature as a 
non-invasive predictor of progression-free survival in patients with lower-
grade gliomas. Neuroimage Clin. 2018;20:1070–7.

https://doi.org/10.1186/s12885-022-09707-w
https://doi.org/10.1186/s12885-022-09707-w


Page 14 of 14Wang et al. BMC Cancer          (2022) 22:644 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	14.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

	15.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

	16.	 Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and compar-
ing time-dependent areas under receiver operating characteristic 
curves for censored event times with competing risks. Stat Med. 
2013;32(30):5381–97.

	17.	 Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu 
A, et al. Proteomics. Tissue-based map of the human proteome. Science. 
2015;347(6220):1260419.

	18.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

	19.	 Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

	20.	 Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of 
tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14.

	21.	 Ziegler PK, Bollrath J, Pallangyo CK, Matsutani T, Canli O, De Oliveira T, 
et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity 
during tumorigenesis. Cell. 2018;174(1):88–101.e116.

	22.	 Bai H, Inoue J, Kawano T, Inazawa J. A transcriptional variant of the LC3A 
gene is involved in autophagy and frequently inactivated in human 
cancers. Oncogene. 2012;31(40):4397–408.

	23.	 Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois CE, Haider S, 
et al. Autophagy and lysosomal related protein expression patterns in 
human glioblastoma. Cancer Biol Ther. 2014;15(11):1468–78.

	24.	 Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, et al. Development and 
validation of a nomogram with an autophagy-related gene signature 
for predicting survival in patients with glioblastoma. Aging (Albany NY). 
2019;11(24):12246–69.

	25.	 Johnson JM, Lai SY, Cotzia P, Cognetti D, Luginbuhl A, Pribitkin EA, et al. 
Mitochondrial metabolism as a treatment target in anaplastic thyroid 
cancer. Semin Oncol. 2015;42(6):915–22.

	26.	 Mikkilineni L, Whitaker-Menezes D, Domingo-Vidal M, Sprandio J, Avena P, 
Cotzia P, et al. Hodgkin lymphoma: A complex metabolic ecosystem with 
glycolytic reprogramming of the tumor microenvironment. Semin Oncol. 
2017;44(3):218–25.

	27.	 Grillon E, Farion R, Reuveni M, Glidle A, Remy C, Coles JA. Spatial profiles 
of markers of glycolysis, mitochondria, and proton pumps in a rat glioma 
suggest coordinated programming for proliferation. BMC Res Notes. 
2015;8:207.

	28.	 Park SH, Lee AR, Choi K, Joung S, Yoon JB, Kim S. TOMM20 as a potential 
therapeutic target of colorectal cancer. BMB Rep. 2019;52(12):712–7.

	29.	 Sievers C, Billig G, Gottschalk K, Rudel T. Prohibitins are required for cancer 
cell proliferation and adhesion. PLoS One. 2010;5(9):e12735.

	30.	 Zhang H, Yin C, Liu X, Bai X, Wang L, Xu H, et al. Prohibitin 2/PHB2 in 
Parkin-Mediated mitophagy: a potential therapeutic target for non-small 
cell lung carcinoma. Med Sci Monit. 2020;26:e923227.

	31.	 Cheng J, Gao F, Chen X, Wu J, Xing C, Lv Z, et al. Prohibitin-2 pro-
motes hepatocellular carcinoma malignancy progression in hypoxia 
based on a label-free quantitative proteomics strategy. Mol Carcinog. 
2014;53(10):820–32.

	32.	 Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigen-
esis and its implication in cancer diagnosis and treatment. Cell Death Dis. 
2018;9(6):580.

	33.	 Kobayashi M, Oshima S, Maeyashiki C, Nibe Y, Otsubo K, Matsuzawa Y, 
et al. The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribo-
some and sustains embryonic development. Sci Rep. 2016;6:36780.

	34.	 Kanayama H, Tanaka K, Aki M, Kagawa S, Miyaji H, Satoh M, et al. Changes 
in expressions of proteasome and ubiquitin genes in human renal cancer 
cells. Cancer Res. 1991;51(24):6677–85.

	35.	 Barnard GF, Mori M, Staniunas RJ, Begum NA, Bao S, Puder M, et al. Ubiq-
uitin fusion proteins are overexpressed in colon cancer but not in gastric 
cancer. Biochim Biophys Acta. 1995;1272(3):147–53.

	36.	 Han XJ, Lee MJ, Yu GR, Lee ZW, Bae JY, Bae YC, et al. Altered dynamics of 
ubiquitin hybrid proteins during tumor cell apoptosis. Cell Death Dis. 
2012;3:e255.

	37.	 Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, et al. Tom20 senses 
iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell 
Res. 2018;28(12):1171–85.

	38.	 Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, 
Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain 
tumour progression. Nature. 2019;573(7775):532–8.

	39.	 Griffin M, Khan R, Basu S, Smith S. Ion channels as therapeutic targets in 
high grade gliomas. Cancers (Basel). 2020;12(10):3068.

	40.	 Pal J, Patil V, Kumar A, Kaur K, Sarkar C, Somasundaram K. Loss-of-function 
mutations in Calcitonin Receptor (CALCR) identify highly aggressive 
glioblastoma with poor outcome. Clin Cancer Res. 2018;24(6):1448–58.

	41.	 Wei B, Wang L, Du C, Hu G, Wang L, Jin Y, et al. Identification of differen-
tially expressed genes regulated by transcription factors in glioblastomas 
by bioinformatics analysis. Mol Med Rep. 2015;11(4):2548–54.

	42.	 Leclerc C, Haeich J, Aulestia FJ, Kilhoffer MC, Miller AL, Neant I, et al. 
Calcium signaling orchestrates glioblastoma development: Facts and 
conjunctures. Biochim Biophys Acta. 2016;1863(6 Pt B):1447–59.

	43.	 Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. 
Immune microenvironment of gliomas. Lab Investig. 2017;97(5):498–518.

	44.	 Alexiou GA, Vartholomatos G, Karamoutsios A, Batistatou A, Kyritsis AP, 
Voulgaris S. Circulating progenitor cells: a comparison of patients with 
glioblastoma or meningioma. Acta Neurol Belg. 2013;113(1):7–11.

	45.	 Lobinger D, Gempt J, Sievert W, Barz M, Schmitt S, Nguyen HT, et al. 
Potential role of Hsp70 and activated NK cells for prediction of prognosis 
in glioblastoma patients. Front Mol Biosci. 2021;8:669366.

	46.	 Lopez-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez 
S. Involvement of autophagy in NK cell development and function. 
Autophagy. 2017;13(3):633–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Development and validation of a novel mitophagy-related gene prognostic signature for glioblastoma multiforme
	Abstract 
	Background: 
	Methods: 
	Result: 
	Conclusion: 

	Introduction
	Materials and methods
	Datasets
	Identification of mitophagy-related differential expressed genes (DEGs)
	Establishment and validation of risk model for prognosis
	Functional enrichment based on GO and KEGG
	Estimation of immune infiltration and immune related pathway
	Tumor microenvironment analysis
	Statistical analysis

	Results
	Identifying prognostic-related DEGs that were associated with mitophagy
	Consensus clustering analysis of GBM based on different expression pattern
	Construction of risk signature based on the TCGA cohort
	Validation of the prognostic model in the Chinese Gliomas Genome Atlas (CGGA) databases
	Establishment and validation of nomograph
	The GO and KEGG enrichment analysis based on risk model
	Evaluation of the immune activity between subgroups
	Evaluation of the tumor microenvironment between subgroups

	Discussion
	Conclusion
	Acknowledgements
	References


