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Abstract 

Background:  Colorectal adenoma (CA) is an important precancerous lesion and early screening target of colorectal 
cancer (CRC). Lipids with numerous physiological functions are proved to be involved in the development of CRC. 
However, there is no lipidomic study with large-scale serum samples on diagnostic biomarkers for CA.

Methods:  The serum lipidomics of CA patients (n = 50) and normal control (NR) (n = 50) was performed by ultra high 
performance liquid chromatography-high resolution mass spectrometry with electrospray ionization (UHPLC-ESI-
HRMS). Univariate and multivariate statistical analyses were utilized to screen the differential lipids between groups, 
and combining the constituent ratio analysis and diagnostic efficiency evaluation by receiver operating characteristic 
(ROC) curve disclosed the potential mechanism and biomarkers for CA.

Results:  There were obvious differences in serum lipid profiles between CA and NR groups. Totally, 79 differential 
lipids were selected by criterion of P < 0.05 and fold change > 1.5 or < 0.67. Triacylglycerols (TAGs) and phosphati-
dylcholines (PCs) were the major differential lipids with ratio > 60%, indicating these two lipid metabolic pathways 
showed evident disequilibrium, which could contribute to CA formation. Of them, 12 differential lipids had good 
diagnostic ability as candidate biomarkers for CA (AUC ≥ 0.900) by ROC analysis.

Conclusions:  To our knowledge, this is the first attempt to profile serum lipidomics and explore lipid biomarkers of 
CA to help early screening of CRC. 12 differential lipids are obtained to act as potential diagnostic markers of CA. PCs 
and fatty acids were the main dysregulated biomarkers for CA in serum.
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Background
Colorectal cancer (CRC) is a significant public health 
problem and lethal disease, causing more than 900,000 
deaths annually as a common malignant tumor world-
wide [1]. It is reported that the high mortality rate of 
CRC is primarily due to the diagnosis and discovery of 

late-stage tumors. The early CRC stage has no specific 
symptoms, which generally leads to poor diagnostic 
effects and low detection rate. While the treatment effect 
in the middle and late stage is less favorable and along 
with many side effects [2]. The 5-year survival rate of 
CRC patients diagnosed at the early stage is about 90%, 
while it dramatically decreases to 14% for patients diag-
nosed with advanced-stage CRC [3]. In addition, nearly 
90% of CRC evolves from colorectal adenoma (CA) [4]. 
The adenoma-carcinoma sequence is widely regarded as 
the main pathway for the formation and development of 
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CRC currently [5], and most CA patients are associated 
with better treatment outcome and prognosis [6]. Thus, 
CA is an important target for early screening of CRC, and 
effective CA screening reduces the morbidity and mortal-
ity of CRC enormously. At present, the mainstays of CA 
screening methods including the fecal occult-blood test, 
stool DNA test, sigmoidoscopy, CT colonography, and 
optical colonoscopy. However, these methods also have 
apparent defects, such as poor performance for early 
diagnosis, high cost and technical requirements, and low 
patient compliance [6], which seriously limit their appli-
cation in extensive screening of CA. Accordingly, it is 
vital to develop a minimally invasive diagnostic strategy 
with high performance to improve the early screening 
and prevention of CRC.

Lipids have emerged as important biomolecules 
involved in the numerous physiological processes of 
human that plays a diverse role in cell apoptosis, pro-
liferation, signal transduction, and energy metabolism 
[7–10]. Growing evidence suggests that metabolic disor-
der of lipid is closely related to the progression of CRC 
disease [11–13]. As a key branch and advanced tech-
nique of metabolomics, lipidomics systematically and 
comprehensively reflects the changes in lipid profiles and 
related metabolic pathways within organisms under dif-
ferent physiological or pathological states [14]. Ultra high 
performance liquid chromatography tandem high reso-
lution mass spectrometry with electrospray ionization 
(UHPLC-ESI-HRMS) has become the most prevalent 
analytical tool in lipidomics study due to its advantages 
of high selectivity, high sensitivity, and high throughput 
[15]. Currently, lipidomics has developed into a field with 
widespread application in biology, medicine, and chemis-
try science, because of its great potential in discovery of 
molecular mechanisms and biomarkers of diseases, and 
it has recently become a hotspot in omics research [16]. 
To date, several lipidomics studies on CRC have been 
reported. The lipidomics research found that lysophos-
phatidylcholines (LPCs) and phosphatidylcholines (PCs) 
are the most strongly related biomarkers of CRC for-
mation [17, 18]. In plasma, ethanolamine plasmalogens 
and fatty acids (FAs) are considered as early diagnostic 
biomarkers of CRC [19]. Furthermore, triacylglycerols 
(TAGs) are found to be the main disturbed lipid markers 
of CRC progression [20, 21]. However, no study has been 
reported to explore the biomarkers of CA through serum 
lipidomics. Plasma untargeted LC-MS-based metabo-
lomics is applied to investigate the potential mechanism 
of CA, indicating that L-tryptophan, L-proline, and 
lysoPC (C17:0) could be combined to serve as the bio-
marker to improve its diagnosis [22]. Studies suggest that 
total TAGs levels in serum or plasma are elevated may 
be associated with increased risk of CA [23]. According 

to some authors, the disruption of polyunsaturated fatty 
acids (PUFAs) is correlated with CA development [24, 
25]. Therefore, the discovery of CA biomarkers based on 
serum lipidomics still needs to be studied, and which will 
be expected to solve the shortcomings of current screen-
ing methods for CA.

In this study, we performed a lipidomics study of serum 
samples from fifty CA patients and fifty healthy subjects 
by the UHPLC-ESI-HRMS technique. By compared 
with serum lipid profiles of CA and normal control (NR) 
groups, the differential lipids and potential mechanism 
of lipid metabolism pathways were explored by univari-
ate and multivariate statistical analysis. Then, combined 
with receiver operating characteristic (ROC) curve analy-
sis and trend change analysis of differential lipids, the 
potential lipid markers for CA diagnosis were evaluated 
and selected, which would provide a reference for early 
screening of CRC.

Methods
Chemicals and reagents
HPLC grade methanol, dichloromethane, isopropanol, 
acetonitrile, formic acid and ammonium formate were 
purchased from Merck & Co. (Billerica, MA, USA). 
Ultrapure water was prepared by a Millipore Milli-Q 
system (Billerica, MA, USA). Lipid standards including 
palmitoyl ethanolamide, palmitic acid, methyl palmitate, 
2-arachidonoyl glycerol, and 4-dodecylbenzenesulfonic 
acid were obtained from Sigma-Aldrich (St Louis, MO, 
USA).

Study cohort and sample collection
Prior to study, the medical ethics approval was obtained 
from the People’s Hospital of Guangxi Zhuang Autono-
mous Region (No.KY-DZX202008) and written informed 
consent was obtained by each subject. The study was 
carried out in accordance with the Declaration of Hel-
sinki. For serum lipidomics analysis, a total of 100 sub-
jects including 50 NR and 50 CA subjects were enrolled 
in this study. At the same time, we evaluated for possi-
ble sex and age-associated differences by Chi-square test 
and Student’s test. Detailed characteristics of the study 
cohort were shown in Table 1. All whole-blood samples 
were taken after an 8-h fast, left to stand at room temper-
ature for 25 min, and serum was then collected following 
centrifugation at 5000 rpm/min for 10 min at 4 °C. The 
serum samples were immediately stored at-80 °C prior to 
analysis.

Sample preparation for lipidomic analysis
For sample preparation, 50 μL serum sample was added 
and mixed with 500 μL precooling dichloromethane-
methanol (3:1, v/v) solution. After vortexed for 5 min 
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and placed in ice bath for 10 min, the solution was cen-
trifuged at 13,000 rpm/min at 4 °C for 10 min. 300 μL 
lower dichloromethane solution was dried in vacuum at 
room temperature. The dried samples were redissolved 
with 600 μL acetonitrile-isopropanol (1:1, v/v) solution, 
then vortexed for 2 min and ultrasonicated in ice bath 
for 5 min. Next vortexed for 1 min, the mixture was cen-
trifuged at 13,000 rpm/min at 4 °C for 15 min, and the 
supernatant was used for serum lipid analysis. Quality 
control (QC) samples were prepared by mixing 5 μL of 
each sample to ensure the stability and reproducibility of 
data acquisition.

UHPLC–ESI‑HRMS‑based lipidomic analysis
A Dionex Ultimate 3000 liquid chromatography sys-
tem (Sunnyvale, CA, USA) (SN: 7254012) coupled to a 
Thermo Fisher Q Exactive Orbitrap mass spectrometry 
system (Waltham, MA, USA) (SN: SN02386L) were used 
for lipidomics analysis. The LC conditions were as fol-
lows: column, Waters Acquity UPLC HSS T3 (1.8 μm, 
2.1 × 100 mm; Milford, MA, USA); mobile phase A, 
acetonitrile-water (60:40, v/v) containing 0.1% formic 
acid and 10 mM ammonium formate; mobile phase B, 
isopropanol-acetonitrile (90:10, v/v) containing 0.1% for-
mic acid and 10 mM ammonium format; The gradient 
conditions were set as follows: 0.0–4.0 min, 30 to 60% B; 
4.0–9.0 min, 60 to 100% B; 9.0–15.0 min, 100% B; 15.0–
18.0 min, 100% B to 30% B. The injection volume was 
5 μL, and the column temperature was 50 °C, as well as 
the flow rate was 0.3 mL/min.

The MS spectrometric parameters were as follows: 
spray voltage, 3.5 kV; sheath gas flow rate, 50 psi; auxil-
iary gas flow rate, 13 arb; capillary temperature, 320 °C; 
auxiliary gas heater temperature, 420 °C; scan modes, 
full MS (resolution 70,000) and ddMS2 (resolution 
17,500 with stepped collision energy (10, 20, and 40 eV); 
and scan range, m/z 100–1200. All data were acquired 

using the Thermo Scientific Xcalibur 3.1 software 
(Waltham, MA, USA).

Statistical analysis
Univariate statistical analysis: Raw data files were 
imported into the Compound Discoverer™3.1 (Thermo 
Scientific, Fremont, CA, USA) for data analysis. Lipidom-
ics data (including all ion features with their RT, m/z, and 
peak intensity) were extracted and normalization was 
conducted by using QC samples to effectively uncover 
differential lipids. The feature differences between groups 
were analyzed with Mann-Whitney U test or Student’ 
t-test based on distribution characteristics of the data. 
The value of P < 0.05 was considered to indicate signifi-
cant differences. A list of potential lipids was identified 
depending on Thermo mzVault and LipidBlast database. 
The main parameters were as follows: minimum peak 
intensity, 500,000, mass error, 10 ppm, RT tolerance, 
0.2 min, intensity tolerance, 30%, S/N, 3.

Multivariate statistical analysis: Principal component 
analysis (PCA) and orthogonal partial least squares dis-
criminant analysis (OPLS-DA) were performed with the 
software SIMCA-P 14.1 (Umetrics, UMEA, Sweden). To 
avoid overfitting, 200 times permutation test was carried 
out on the analytical model. The criteria of fold change 
> 1.5 or < 0.67 and P < 0.05 were set as the cut-off values 
for selection of differential lipids between groups. The 
ROC analysis of the differential lipids was performed by 
MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/) to 
evaluate the diagnostic performance and to explore the 
potential biomarkers for CA patients.

Results
Differential lipid profiles between CA and NR
PCA and OPLS-DA models, the common multivariate 
statistical methods used in omics study, were utilized 
to evaluate the differences between groups regarding 
lipid metabolism of CA and NR groups. Firstly, the PCA 
model was constructed and its score plots performed on 
all the samples revealed that the QC samples were clus-
tered closely in both ESI modes, indicating the analysis 
system with excellent robustness and reproducibility dur-
ing the batch analysis process (Fig.  1A and B). In addi-
tion, most samples contained in the 95% confidence 
interval apart from a few exceptions. It could be consid-
ered individual variations for a few samples outside the 
confidence interval (Fig. 1A and B). The relatively smaller 
individual difference of lipid profiles in NR patients was 
seen compared with the CA patients, which could be due 
to the pathogenic factors. In addition, a distinct separa-
tion between the two groups presented in two modes also 
reflected their differences in lipid metabolism (Fig.  1A 

Table 1  Information of clinical characteristics for study cohort

The statistical analysis for composition of gender and age between NR and CA 
groups was conducted by Chi-square test and Student’s test, respectively

Abbreviations: CA Colorectal adenoma, NR Normal control

Group Gender 
(Female/
Male)

Age (year) Position Vienna 
classification

NR (n = 50) 21/29 53 ± 8 – –

CA (n = 50) 18/32 56 ± 12 Rectum (23) High (26)

Colon (27) Low (24)

P vaule 0.682 0.238 – –

https://www.metaboanalyst.ca/
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and B). Meanwhile, Relative to the ESI- mode, the ESI+ 
mode had more obvious separation trend (Fig. 1A and B). 
To evaluate the effect of gender and age on the difference 
in lipid profiles between two groups, statistical analysis 

was conducted and the results showed no significant dif-
ference between CA and NR groups for the gender and 
age in study cohort (Table 1).

Fig. 1  Multivariate statistical analysis of differential lipid features between NR and CA groups in both ESI modes. Principal component analysis (PCA) 
of two groups in ESI+ and ESI- modes, respectively (A, B); orthogonal partial least squares discriminant analysis (OPLS-DA) of the two groups in ESI+ 
and ESI- modes, respectively (C, D); Overfitting test for OPLS-DA model in ESI+ and ESI- modes, respectively (E, F). Abbreviations: ESI, electrospray 
ionization; CA, colorectal adenoma; NR, normal control
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Table 2  Differential lipids between NR and CA groups in both ESI modes

Name Formula Scan mode Detective m/z RT (min) P value Fold change AUC​

Triheptanoin C24 H44 O6 ESI+ 451.30408 5.32 0.000 30.57 0.850

TAG 58:7 C61 H104 O6 950.81793 12.64 0.024 0.44 0.665

TAG 55:2 C58 H108 O6 914.84888 14.23 0.010 0.27 0.756

TAG 54:8 C57 H94 O6 892.73761 11.49 0.029 0.46 0.674

TAG 54:7 C57 H96 O6 894.74548 11.76 0.001 0.53 0.725

TAG 54:1 C57 H108 O6 906.84503 14.32 0.001 0.38 0.791

TAG 54:0 C57 H110 O6 908.86298 14.54 0.020 0.28 0.705

TAG 53:2 C56 H104 O6 890.80969 13.09 0.000 4.02 0.862

TAG 53:0 C56 H108 O6 894.84143 14.24 0.032 0.20 0.778

TAG 52:6 C55 H94 O6 873.69482 11.36 0.000 0.39 0.703

TAG 51:5 C54 H94 O6 856.73828 11.67 0.006 0.57 0.668

TAG 50:5 C53 H92 O6 842.72321 11.48 0.005 0.50 0.698

TAG 49:3 C52 H94 O6 832.73969 12.17 0.006 0.38 0.664

TAG 49:2 C52 H96 O6 834.74469 12.07 0.001 0.60 0.728

TAG 49:1 C52 H98 O6 836.77118 12.75 0.032 0.40 0.704

TAG 49:0 C52 H100 O6 838.78638 13.55 0.003 0.39 0.745

TAG 48:1 C51 H96 O6 822.75482 12.36 0.000 0.60 0.809

TAG 46:1 C49 H92 O6 794.72369 11.88 0.000 0.50 0.752

TAG 46:0 C49 H94 O6 796.74139 12.42 0.000 0.41 0.815

TAG 45:0 C48 H92 O6 782.71979 12.11 0.000 0.55 0.780

TAG 44:1 C47 H88 O6 766.69427 11.31 0.000 0.33 0.824

TAG 44:0 C47 H90 O6 768.70270 11.68 0.000 0.42 0.860

SM d43:1 C48 H97 N2 O6 P 829.71655 10.61 0.000 0.66 0.752

SM d35:2 C40 H79 N2 O6 P 715.57685 8.47 0.000 0.63 0.787

SM d31:1 C36 H73 N2 O6 P 661.52917 7.66 0.000 0.64 0.747

PC 36:5e C44 H80 N O7 P 766.57556 8.67 0.006 0.57 0.718

PC 44:5 C52 H94 N O8 P 892.67596 10.43 0.000 0.03 1.000

PC 39:8 C47 H78 N O8 P 816.55990 8.55 0.001 0.55 0.760

PC 37:3 C45 H84 N O8 P 798.60315 9.31 0.003 0.22 0.709

PC 32:2 C40 H76 N O8 P 730.53705 8.50 0.004 0.49 0.616

PC 21:4 C29 H50 N O8 P 572.33582 2.70 0.000 0.47 0.900

PC 34:2 C42 H80 N O8 P 758.57068 8.60 0.001 0.56 0.744

Palmitoyl ethanolamide C18 H37 N O2 300.28989 4.32 0.000 2.02 0.973

Palmitic acid C16 H32 O2 274.27435 1.19 0.000 17.64 0.930

Oleoyl ethanolamide C20 H39 N O2 326.30597 4.71 0.000 2.01 0.883

O-(4,8-dimethylnonanoyl)carnitine C18 H35 N O4 330.26450 1.04 0.000 0.47 0.872

Methyl palmitate C17 H34 O2 288.29022 1.35 0.000 1.52 0.943

LPC 20:5 C28 H48 N O7 P 542.32483 1.95 0.046 0.35 0.772

PC 32:0 C40 H80 N O8 P 734.57001 9.07 0.005 0.47 0.712

DAG 38:6 C41 H68 O5 641.51538 9.23 0.015 0.33 0.758

DAG 36:5 C39 H66 O5 615.49921 8.99 0.001 0.40 0.777

DAG 34:2 C37 H68 O5 609.59497 9.67 0.002 0.50 0.742

Decanoylcarnitine C17 H33 N O4 316.24884 0.97 0.000 0.62 0.781

Cer (d18:1/25:0) C43 H85 N O3 664.66088 11.05 0.001 2.50 0.661

Cer (d18:1/24:0) C42 H83 N O3 650.64496 10.84 0.002 0.40 0.779

DAG 38:3 C41 H74 O5 647.56055 10.11 0.017 0.32 0.777

2-Arachidonoyl glycerol C23 H38 O4 379.28247 5.25 0.000 0.24 0.933

TAG 56:9 C59 H96 O6 918.75745 11.46 0.003 0.56 0.686

PC 32:3 C40 H74 N O8 P 728.52399 7.89 0.001 0.51 0.712
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Furthermore, to maximize the discovery of differ-
ential lipid features in the serum between CA and NR 
groups, the OPLS-DA model was established using 
all of detected lipid features. Results showed that two 
groups were clearly discriminated at ESI+ mode (R2X 
[cum] = 0.386, R2Y [cum] = 0.962, Q2 [cum] = 0.956) 
and ESI- mode (R2X [cum] = 0.492, R2Y [cum] = 0.945, 
Q2 [cum] = 0.890), respectively, which indicated remark-
able differences between groups in both ESI modes and 
obvious dysregulation in lipid metabolism of CA relative 
to NR group (Fig.  1C and D). Meanwhile, a 200 times 
permutation test was performed to verify the reliability 
and applicability of OPLS-DA model for data analysis. 
The intercept of the R2Y and Q2 was 0.668 and − 0.355 
in ESI+ mode, and R2Y and Q2 was 0.685 and − 0.358 

in ESI- mode, and value of P (CV-ANOVA) was 0.000 in 
both modes, respectively (Fig.  1E and F). Concurrently, 
R2Y and Q2 values derived from the permutation test 
were all lower than corresponding original values, which 
provided proof that OPLS-DA model was rational and 
not overfitting for the data analysis in both ESI modes.

Screening and identification of diagnostic lipid biomarkers 
for CA
The difference analysis in serum lipid profiles between 
NR and CA groups was performed using the univariate 
and multivariate statistical methods. To minimize false 
positives, combined with fold change > 1.5 or < 0.67 and 
P < 0.05, finally, a total of 79 differential lipids were found 
between the groups, including 4 in ESI- mode and 75 in 

Fold change: the arithmetic mean values of peak intensity of CA/NR

Abbreviations: AUC​ Area under the curve, RT Retention time, m/z Mass to charge ratio, DAG Diacylglycerol, TAG​ Triacylglycerol, LPC Lysophosphatidylcholine, PC 
Phosphatidylcholine, PE Phosphatidylethanolamine, Cer Ceramide, SM sphingomyelin

Table 2  (continued)

Name Formula Scan mode Detective m/z RT (min) P value Fold change AUC​

DAG 32:1 C35 H66 O5 584.52533 9.58 0.000 0.47 0.816

PC 31:2 C39 H74 N O8 P 716.56000 8.60 0.000 0.18 0.993

DAG 34:1 C37 H70 O5 612.55823 10.01 0.002 0.46 0.745

DAG 36:3 C39 H70 O5 636.55676 9.69 0.002 0.50 0.759

PC 36:3 C44 H82 N O8 P 784.58606 8.13 0.019 3.49 0.950

DAG 40:7 C43 H70 O5 667.53107 9.45 0.017 0.31 0.730

PC 30:1 C38 H74 N O8 P 704.52200 8.57 0.000 0.03 1.000

PE 36:4 C41 H74 N O8 P 740.52350 8.75 0.013 0.51 0.738

LPC 17:0 C25 H52 N O7 P 510.35626 4.22 0.000 0.63 0.822

DAG 54:9 C59 H90 O6 895.67676 11.11 0.001 0.18 0.753

DAG 52:7 C57 H90 O6 871.67627 11.35 0.004 0.46 0.703

DAG 48:4 C51 H90 O6 816.70032 11.38 0.005 0.48 0.680

DAG 50:5 C53 H92 O6 842.72473 11.46 0.004 0.50 0.696

PC 35:2 C43 H82 N O8 P 772.58594 8.97 0.000 0.46 0.777

PC 36:6 C44 H76 N O8 P 778.53882 7.52 0.002 0.21 0.784

PC 41:8 C49 H82 N O8 P 844.62268 9.07 0.000 1.65 0.990

PC 18:1 C60 H94 O16 536.33563 1.10 0.000 0.61 0.739

TAG 53:3 C56 H102 O6 888.80316 12.97 0.001 0.56 0.724

TAG 40:8 C43 H68 O5 665.51434 9.04 0.004 0.40 0.734

PC 39:4 C47 H86 N O8 P 824.61963 9.37 0.000 0.64 0.756

PC 37:7 C45 H76 N O8 P 790.53979 7.81 0.000 0.21 0.977

PC 38:7 C46 H78 N O8 P 804.55463 7.89 0.049 0.50 0.699

PC 42:9 C50 H82 N O8 P 856.58630 8.22 0.000 0.48 0.881

LPC 19:0 C27 H56 N O7 P 538.38757 5.25 0.000 0.55 0.824

PC 39:6 C47 H82 N O8 P 820.58752 8.74 0.000 0.55 0.699

PC 37:3e C45 H86 N O7 P 784.58527 9.39 0.008 0.64 0.714

PC 37:4 C46 H84 N O10 P ESI- 840.57782 8.93 0.001 0.54 0.707

Docosahexaenoic acid C22 H32 O2 327.23349 4.67 0.015 0.41 0.620

4-Dodecylbenzenesulfonic acid C18 H30 O3 S 325.18488 2.64 0.000 0.04 1.000

(15Z)-9,12,13-Trihydroxy-15-Octadecenoic acid C18 H34 O5 329.23358 0.92 0.012 0.54 0.765
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ESI+ mode (Table  2). These differential lipids mainly 
included monoacylglycerols (MAGs): 1.27%, diacylglyc-
erols (DAGs): 15.19%, TAGs: 31.65%, FAs: 11.39%, LPCs: 
3.80%, PCs: 29.11%, phosphatidylethanolamines (PEs): 
1.27%, ceramides (Cers): 2.53% and sphingomyelins 
(SMs): 3.80% (Fig. 2). TAGs and PCs made up the high-
est fraction in differential lipid types, followed by DAGs 
and then FAs. Therefore, the two lipid types accounted for 
60.76% of the total proportion, suggesting that dysregula-
tion of PC and TAG metabolism is closely associated with 
the diagnosis and pathogenesis of CA disease. Further-
more, to learn more about the distribution of relative lev-
els of differential lipids in two groups, the identified lipid 
data were analyzed using clustering heatmap. Just showed 
the Table  2 and Fig.  3, the majority of differential lipids 
features were significantly down-regulated in CA group 
compared to NR group. Taken together, PCs and TAGs 
are considered to be the main influencing factor that con-
tributed to the CA formation.

Performance evaluation and verification of potential lipid 
biomarkers of CA
The diagnostic performance of 79 differential lipids 
between CA and NR was evaluated by ROC analysis 
using MetaboAnalyst 5.0, which could maximize the area 
under the curve (AUC) as calculated by the trapezoidal 
method to select the most suitable cut-off point. Before 

performing ROC analysis, sum normalization and auto-
scaling were carried out for lipidomic data to effectively 
reduce the influence of individual differences and system-
atic errors. Generally, the AUC values of the differential 
lipids ranged from 0.616 to 1.000, and most of them had 
comparatively low AUC values (Table  2). By combining 
with AUC ≥ 0.900 as selected criteria, we obtained 12 
differential lipids with good diagnostic performance for 
CA (Fig. 4), mainly including 7 PCs, 4 FAs lipids, and 1 
MAG, and which were identified by matching the high 
resolution MS, MS/MS fragments, and RT from Thermo 
mzCloud and mzVault with Lipidblast databases (Fig. 5). 
Among them, PC 30:1, PC 44:5 and 4-dodecylbenzene-
sulfonic acid had the highest AUC values (1.000 (95% CI: 
1.000–1.000)), indicating outstanding diagnostic abil-
ity for CA (Fig.  4), while PC 21:4 had the relatively low 
AUC value (0.900 (95% CI: 0.830–0.969)). Based on the 
ROC analysis, we further explored the change trend of 
levels for these 12 potential lipid biomarkers with good 
distinguish efficacy between two groups. The results 
showed that five lipids including PC 41:8, PC 36:3, pal-
mitoyl ethanolamide, methyl palmitate, and palmitic acid 
were significantly up-regulated in the CA group, while 
the remaining seven lipids including 4-dodecylbenze-
nesulfonic acid, PC 44:5, PC 30:1, PC 31:2, PC 37:7, PC 
21:4, and 2-arachidonoyl glycerol were remarkably down-
regulated in the CA group compared with NR group 

Fig. 2  The constituent ratio of differential lipids in serum between CA and NR groups. Abbreviations: CA, colorectal adenoma; NR, normal control; 
MAGs, monoacylglycerols; DAGs, diacylglycerols; TAGs, triacylglycerols; LPCs, lysophosphatidylcholines; PEs, phosphatidylethanolamines; Cers, 
ceramides; PCs, phosphatidylcholines; SMs, sphingomyelins; FAs, fatty acids
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(Fig.  6). Among them, PC 44:5, PC 30:1, palmitic acid 
and 4-dodecylbenzenesulfonic acid presented the most 
significant change trend with the fold change more than 
10 (Table  2), meanwhile, which was consistent with the 

clustering heatmap of differential lipids between groups. 
Additionally, to further confirm the potential lipid bio-
markers, we applied the commercial lipid standards to 
verify the potential lipid biomarkers of CA by matching 

Fig. 3  Level distribution of differential lipids between CA and NR groups. Clustering heatmap was draw using R software by data transforming 
with log10. The majority of differential lipids in the CA group showed a tendency of significant decrease compared to NR group. Abbreviations: CA, 
colorectal adenoma; NR, normal control; DAG, diacylglycerol; TAG, triacylglycerol; LPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; Cer, 
ceramide; PC, phosphatidylcholine; SM, sphingomyelin
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the exact mass, retention time and fragmentation pattern 
under the same LC-MS conditions for lipidomic study 
(Fig.  7). Hence, the above 5 differential lipids identified 
with lipid standards served as the potential diagnostic 
biomarkers for CA.

Discussion
In this study, serum lipid profiles were found to be dis-
tinctly different between the NR and CA groups. After 
an efficient and robust analysis, a total of 79 differen-
tial lipids were found between groups. Among them, 
TAGs and PCs were the main lipid types, disclosing 

the metabolic perturbation of TAGs and PCs could be 
involved in the CA formation. Furthermore, 12 differ-
ential lipids showed good diagnostic performance as 
the potential biomarkers for CA. PCs and FAs are the 
main dysregulated lipid biomarkers, particularly, three 
lipids of PC 30:1, PC 44:5, and 4-dodecylbenzenesul-
fonic acid with outstanding diagnostic ability for CA.

Over the past decade, although some research has 
overwhelmingly focused on the discovery of potential 
diagnostic biomarkers of CRC, few studies have com-
mitted to exploring the lipid markers for CA diagno-
sis. Rachieriu C et al. analyzed the serum lipid profiles 
of CRC patients by HPLC-QTOF-MS, and found 25 

Fig. 4  Performance evaluation of differential lipids between CA and NR groups. Potential lipid biomarkers for CA diagnosis were selected based on 
the AUC value more than 0.900. Abbreviations: CA, colorectal adenoma; NR, normal control; AUC, area under the curve; PC, phosphatidylcholine
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potential markers with AUC values > 0.750, principally 
including PCs, Cers, FAs [26]. Similarly, plasma lipi-
domics showed that PG 34:0, SM 42:2, Cer 44:5, LPC 
18:3, LPC 18:2, O-PE 36:3, O-PE 38:3 and SM 38:8 with 
good performance (AUC > 0.800) could act as prom-
ising diagnostic biomarkers for CRC screening [18]. 
Moreover, the combination of LPC 17:0, LPC 19:0, LPC 
19:1 and LPC 19:2 could better distinguish between 

NR and CRC patients (AUC = 0.863) through a tar-
geted lipidomic study [27]. As the severe stage of CA, 
colorectal advanced adenoma (CAA) was also consid-
ered as the effective target for CRC prevention. In our 
recent study, we disclosed that triglyceride (TAG) was 
the major dysregulated lipids in CAA, and 12 differen-
tial lipids served as the potential biomarkers of CAA 
diagnosis [28]. In addition to lipidomics, metabolomics 

Fig. 5  The identification of differential lipids with high discriminate ability (AUC ≥ 0.900) for the CA and NR groups. Abbreviations: CA, colorectal 
adenoma; NR, normal control; AUC, area under the curve; PC, phosphatidylcholine
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is also used extensively in the discovery of lipid bio-
markers for CA or CRC. Another study based on stool 
metabolomics showed that combination of ChoE 18:1, 
ChoE 18:2, ChoE 20:4, PE 16:0/18:1, SM d18:1/23:0, 
SM 42:3, and TAG 54:1 could effectively discriminate 
NR and CRC as the diagnostic biomarker, and its inte-
grated performance was good (AUC = 0.821) [29]. In 
the plasma metabolomics, 48 differential metabolites 
were uncovered between CA and CRC, mainly includ-
ing LPCs and PCs, and both of them were down-reg-
ulated in CRC [30]. In tissue metabolomics, PC 32:1 

was suggested as an invaluable biomarker, which could 
be used for clinical diagnosis for CRC by imaging mass 
spectrometry [31]. PCs are the important lipid carrier 
in plasma, and phospholipids related to choline were 
considered good biomarkers of CRC [32, 33]. Further-
more, the most abundant metabolic features identified 
in the CA patients were PCs and PEs, and LPC (P-16:1) 
could be a putatively novel lipid signature [24]. The 
disorder of PC metabolism was believed to be strongly 
linked with the risk of CA [34]. Similarly, our previous 
study reported that metabolism of linoleic acid and 

Fig. 6  The change trend of 12 differential lipids with high performance for CA diagnosis between two groups. The levels of differential lipids 
between CA and NR groups were displayed with mean ± SEM. The “★” represented statistical significance of the variate with P < 0.05 between two 
groups. Abbreviations: CA, colorectal adenoma; NR, normal control; AUC, area under the curve; PC, phosphatidylcholine; SEM, standard error of 
mean
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phospholipid exhibited remarkable dysregulation in the 
CA patients by plasma metabolomics [22]. In this study, 
the PCs also acted as the main potential lipid markers 
for CA diagnosis (Figs. 2 and 4).

Apart from PCs, FAs are also potential diagnostic 
markers for distinguishing CRC or CA from NR accord-
ing to the previous reports [19, 35]. Altered plasma levels 
of decanoic acid in CRC could serve as a new diagnostic 
biomarker [36]. Studies have noted a rise in the level of 
total TAGs in serum or plasma may be related to the ele-
vated risk of CA [23]. Similar result that TAGs were the 
main dysregulated lipids in the CA group was observed 
in our study (Fig. 2). TAGs storage in adipose tissue is the 
major reservoir for energy metabolism in mammals. Dur-
ing lipolysis, FAs are hydrolyzed from TAGs stores and 
then transported to other tissues for catabolism [37]. So, 
the perturbation of TAG metabolism generally dysregu-
lates the FA metabolism. Furthermore, FAs as essential 
components of biological membranes. It has been found 
that many cancer cells express higher levels of FAs than 
corresponding normal cells because cancer cells require 
substantial lipids for energy synthesis, signal transduc-
tion, and more membranes for vigorous metabolism [38, 

39]. However, although few FAs including triheptanoin, 
palmitoyl ethanolamide, palmitic acid, oleoyl ethanola-
mide, methyl palmitate had increase levels in CA group, 
most of FAs presented significant down-regulation in 
CA (Table 2 and Fig. 3). Additionally, the fecal metabo-
lome results found the level of palmitoyl ethanolamide 
in CA group was visibly higher than NR group, which 
could serve as putative biomarker of CA [25]. For serum 
metabolomics [40], the level of palmitic acid in CRC 
patients showed a noticeable up-regulation trend, mean-
while, which also exhibited significant increase with fold 
change of 17.64 in CA (Table  2 and Fig.  3), indicating 
which could be a candidate biomarker of CRC progres-
sion. In ROC analysis, the 12 potential lipid biomarkers 
presented good diagnostic performance for CA screen-
ing (AUC ≥ 0.900), containing 7 PCs, 4 FAs, and 1 MAG 
(Fig. 4), which may contribute to the early discovery and 
prevention of CRC. In summary, the perturbation of PCs 
and TAGs metabolism may be closely relevant to CA for-
mation, and the PCs and FAs are the major dysregulated 
potential biomarkers for CA diagnosis. These discoveries 
should provide a valuable reference for the early screen-
ing and carcinogenesis of CRC.

Fig. 7  Verification of potential lipid biomarkers with high performance for CA diagnosis by lipid standards. Abbreviations: CA, colorectal adenoma
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Conclusions
To our knowledge, the present study is the first to explore 
lipid biomarkers for CA based on serum lipidomics 
with large-scale samples. In this research, obvious dif-
ferences in the serum lipid profiles between CA and NR 
were observed, and 79 differential lipids were selected by 
UHPLC-ESI-HRMS-based serum lipidomics. TAGs and 
PCs were predominant components of differential lipids, 
indicating the abnormal metabolism of them should con-
tribute to the formation of CA. In addition, 12 serum dif-
ferential lipids were verified as the potential biomarkers for 
CA screening owing to their excellent diagnostic perfor-
mance. Generally, this study provides a novel light into the 
lipid metabolism pathways associated with CA formation. 
Simultaneously, the discovery of lipid biomarkers for CA 
may also offer new insights for its clinical diagnosis. Due to 
limitations in sample sizes and study models, undoubtedly, 
further validation is needed for our discovery.
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