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Abstract 

Background:  Pancreatic ductal adenocarcinoma (PDAC) is the major subtype of pancreatic cancer and head PDACs 
show distinct characteristics from body/tail PDACs. With limited studies based on Asian population, the mutational 
landscape of Asian PDAC remains unclear.

Methods:  One hundred fifty-one Chinese patients with head PDAC were selected and underwent targeted 425-
gene sequencing. Genomic alterations, tumor mutational burden, and microsatellite instability were analyzed and 
compared with a TCGA cohort.

Results:  The genomic landscape of Chinese and Western head PDAC had identical frequently-mutated genes includ-
ing KRAS, TP53, SMAD4, and CDKN2A. KRAS hotspot in both cohorts was codon 12 but Chinese PDACs containing more 
G12V but fewer G12R variants. Potentially pathogenic fusions, CHD2-BRAF and KANK1-MET were identified in two KRAS 
wild-type patients. Serum cancer antigens CA125 and CA19-9 were positively associated with SMAD4 alterations while 
high CEA was enriched in wild-type CDKN2A subgroup. The probability of vascular invasion was lower in patients with 
RNF43 alterations. The nomogram developed including histology grade, the mutation status of SMAD4, TGFBR2, and 
PREX2 could calculate the risk score of prognoses validated by Chinese and TCGA cohort.

Conclusions:  Chinese head PDAC contained more KRAS G12V mutation than Western population. The well-per-
formed nomogram may improve post-operation care in real-world practice.
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Background
Pancreatic cancer is one of the most deadly cancers with 
a five-year survival rate of less than 9% [1]. The prognosis 
of pancreatic patients is highly associated with the diag-
nosis stage. For early-stage patients, the five-year survival 
rate can reach 37% but for those with distant metastases, 
it drops to 3%. The incidence rate of pancreatic cancer 

is trending upward in China and worldwide [1, 2]. Pan-
creatic ductal adenocarcinoma (PDAC) is the leading 
histological subtype and covers over 90% of all pancre-
atic cancers [3]. 80% of PDACs are located at the head 
of the pancreas, which arises from different embryonic 
origins compared with the tail of the pancreas. The ven-
tral bud forms the posterior part of the head or uncinate 
process, while the dorsal bud forms the rest of the pan-
creas [4]. The prognosis between head PDAC and body/
tail PDAC were extremely controversial. Some studies 
indicated primary head PDAC has a better prognosis 
than body/tail PDAC [5, 6], while others suggested the 
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opposite outcome in resectable or early advanced PDAC 
[7, 8]. As the comprehensive studies revealed 4 molecu-
lar subtypes of PDAC, squamous, pancreatic progenitor, 
immunogenic, and aberrantly differentiated endocrine 
exocrine (ADEX), the squamous subtype was associated 
with a poor prognosis [9, 10]. Later studies found head 
and body/tail PDAC have different gene expression sig-
natures and are rich in different molecular subtypes, with 
body/tail PDAC containing more squamous subtype and 
less immunogenic subtype than head tumors, which may 
contribute to their diverse clinical manifestations and 
outcomes [11, 12].

Previous whole-genome studies have investigated the 
mutational profiles of PDAC in Western populations and 
uncovered four abundantly common mutations, includ-
ing KRAS, TP53, SMAD4, and CDKN2A  [13, 14]. Due 
to the limited studies based on the Asian population, 
the genetic landscape of Asian PDAC patients remains 
unclear. Several genes were found survival-related in 
PDAC [15, 16]. However, no risk stratification was devel-
oped based on intra-tumor genetic heterogeneity.

The incidence of mismatch repair deficiency in PDAC 
is only 2% according to a Danish cohort study [17]. But 
it’s still worth investigating further as they may benefit 
from immune therapy especially under the circumstance 
of very limited treatment options for PDAC patients. 
Tumor biomarker CA19-9 is applied in clinical practice 
for PDAC diagnosis, treatment guidance, and follow-ups 
[18]. Serum tumor marker carcinoembryonic antigen 
(CEA) and carbohydrate antigen CA125 are widely used 
in colorectal can ovarian cancer screening. Over the past 
few years, it is revealed they may benefit PDAC diagnosis 
and postoperative monitor [19, 20]. However, the corre-
lation between these antigen levels and genomic altera-
tions is rarely studied. To comprehensively study the 
genetic alterations in the Chinese PDAC patients and if 
these alterations affect the clinical outcome, 151 Chinese 
PDAC patients were retrospectively investigated and a 
nomogram was established to calculate postoperative 
risk score to predict prognosis.

Methods
Patient cohort and samples
A total of 153 patients diagnosed with head PDAC and 
underwent surgery (both resectable and palliative) in 
the First Affiliated Hospital of Nanjing Medical Univer-
sity (also known as Jiangsu Province Hospital), China 
between October 2017 to February 2019 were retro-
spectively assessed in this study in accordance with the 
Declaration of Helsinki. The study was approved by the 
ethics committee of the First Affiliated Hospital of Nan-
jing Medical University(2020-SR-273), and informed-
consents were obtained from all participants. Patients 

who received neoadjuvant chemotherapy or died of 
post-operation complications within 30  days after sur-
gery were excluded. Formalin-fixed, paraffin-embedded 
(FFPE) tumor samples were obtained from all patients 
for DNA extraction and sequencing. Two patients were 
excluded from the following analysis whose samples 
failed the quality control process.

The western cohort that consisted of 91 head PDAC 
patients was identified from The Cancer Genome Atlas 
dataset (version # 2016–01-28). Whole-exome sequenc-
ing data of the TCGA cohort were analyzed.

DNA extraction, library preparation, and targeted 
sequencing
Genomic DNA was extracted from FFPE specimen using 
QIAamp DNA FFPE Tissue Kit (Qiagen), according to 
the manufacturers’ protocols. DNA was quantified using 
the dsDNA HS Assay Kit on a Qubit 3.0 Fluorometer 
(Life Technologies, Carlsbad, CA). The complete DNA 
concentrations are listed in Supplementary Table S5 
with a median concentration of 116 ng/μL (range: 9.3—
368 ng/μL). The extracted DNA was also qualified using a 
Nanodrop2000 (Thermo Fisher Scientific, Waltham, MA) 
and the same amount of DNA (2000  ng) was uploaded 
for the following sequencing process. For the five sam-
ples whose total amount of extracted DNA was below 
2000 ng, all extracted DNA was used (837—1890 ng) and 
all had passed the following quality control. Sequencing 
libraries were prepared using the KAPA Hyper Prep Kit 
(KAPA Biosystems). Genomic DNA was sheared into 
200–350  bp fragments using the Covaris M220 instru-
ment (Covaris) and underwent end-repairing, A-tailing, 
and ligation with indexed sequencing adapters sequen-
tially. Libraries were then amplified by PCR and puri-
fied using Agencourt AMPure XP beads. For targeted 
enrichment, DNA libraries were pooled for hybridization 
using customized xGen lockdown probes (Integrated 
DNA Technologies) for 425 cancer-related genes. Cap-
tured libraries were subjected to PCR amplification with 
KAPA HiFi HotStart ReadyMix (KAPA Biosystems). The 
purified library was quantified using the KAPA Library 
Quantification Kit (KAPA Biosystems), and its fragment 
size distribution was analyzed using a Bioanalyzer 2100. 
Enriched libraries were amplified and subjected for next-
generation sequencing (NGS) on Illumina Hiseq4000 
platforms (Illumina) using paired-end sequencing to a 
targeted mean coverage depth of 700 × , which was con-
trolled by data collection software (Illumina).

Sequencing data processing
FASTQ files were processed with Trimmomatic for 
quality control. Sequencing data were mapped to 
the Human Genome version 19 (hg19) using the 
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Burrows-Wheeler Aligner [21]. PCR duplicates were 
removed by Picard (available at https://​broad​insti​tute.​
github.​io/​picard/) and the Genome Analysis Toolkit 
(GATK) was used to perform local realignments 
around indels and base quality recalibration [22]. Single 
nucleotide variants and indels were called by VarScan2 
and HaplotypeCaller / UnifiedGenotyper in GATK, 
with the mutant allele frequency (MAF) cutoff as 0.5% 
and a minimum of three unique mutant reads. Com-
mon SNPs were removed using dbSNP and the 1000 
Genome project [23]. The resulting somatic variants 
were further filtered through an in-house list of recur-
rent sequencing errors that were generated from over 
10,000 normal control samples on the same sequencing 
platform.

Copy number variations (CNVs) were called as losses 
or gains relative to the overall sample-wide estimated 
ploidy as previously described [24, 25]. Arm gain or 
loss was called when more than 50% of the chromo-
some have copy number gain or loss. Gene fusion 
(common fusion regions/introns captured in the target 
panel) was called using DELLY [26]. Tumor mutational 
burden (TMB) was defined as the number of somatic 
synonymous mutations per megabase in each sample, 
with hotspot/fusion mutations excluded.

Fifty-two microsatellite loci are incidentally captured 
and evaluated during the targeted 425 gene panels. 
Based on previous validation studies, a fraction of > 0.4 
(> 40% unstable loci) was considered microsatellite 
unstable [27, 28]. Structural variants were detected 
using FACTERA (Fusion And Chromosomal Translo-
cation Enumeration and Recovery Algorithm) with the 
default parameter [29]. Likely germline mutations were 
identified using a computational prediction method, 
namely Toseq (Genseeq Technology), which is an algo-
rithm developed using machine learning based on past 
archived patients’ mutational features.

Data collection and analysis
Clinical pathological features including age, sex, tumor 
diametre, microscopic vascular and perineural inva-
sion, pTNM stage, resection margin, family, and per-
sonal cancer history were collected in this study. 
Resection margin status was classified into R2 (macro-
scopically positive), R1 (macroscopically negative but 
tumor found within less than 1  mm from the margin 
under the microscope), and R0 (macroscopically and 
microscopically negative). AJCC staging manual 7th 
edition was used to normalize tumor stage in Chinese 
cohort with the TCGA cohort. Tumor stage in other 
parts of this article was under the guidance of AJCC 
staging manual 8th edition.

Statistical analysis and nomogram development
Data were analyzed using R 4.0.1 [30]. Categorical vari-
ables between groups were compared using χ2 or Fish-
er’s exact test. Continuous variables between groups 
were compared using two-sided Mann–Whitney U test 
should the variables failed to obey normal distribution 
and using Student’s t-test if they follow normal distri-
bution. Kaplan–Meier method was used to determine 
median overall survival (OS) and the significance of 
survival analysis was determined by the log-rank test. A 
nomogram was developed to predict one-year survival 
post-operation based on multivariate Cox regression 
using R package “rms”. Variables with a P value of less 
than 0.1 in univariable analysis and met proportional 
hazard assumption were chosen for multivariable Cox 
regression. Patients in Chinese cohort were assigned in 
chronological order to two groups, training group and 
Chinese external validation group for nomogram vali-
dation, which contains 92 and 49 patients, respectively. 
65 patients in the western cohort with available CNV 
data comprised the second validation cohort. X-tile was 
used to determine the cut-off of the risk score calcu-
lated by the nomogram [31]. Other R packages used in 
this study include “ComplexHeatmap”, “ggplot2”, “sur-
vival”, “survminer”, “waterfall”, and “Hmisc”. Stage IV 
cases were excluded in survival analysis. P < 0.05 was 
considered statistically significant. 

Results
Clinical and pathological features
A total of 151 Chinese head PDAC patients were 
enrolled in this study. The median age at diagnosis 
was 63 (ranging from 31 to 85) and 50.3% (76/151) 
were male (Table  1). The majority (80.1%, 121/151) 
of patients have stage I or II PDAC. 111 patients had 
lymph nodes metastasis, including regional (105/151, 
69.5%), non-regional (3/151, 2.0%), and both (3/151, 
2.0%) lymph nodes metastasis. Other pathology stages, 
histology grade, and invasion status were summarized 
in Table 1. Additionally, 4 out of 151 (2.6%) patients had 
solitary liver metastasis and thirteen (8.6%) patients 
reported cancer history including colorectal (4/13), 
breast (3/13), endometrial (2/13), bladder(2/13), esoph-
ageal (1/13), gastric (1/13), and basal cell skin cancer 
(1/13). In comparison, the TCGA (n = 91) had a higher 
proportion of early-stage patients (stage I/II: 95.6%, 
87/91). The pathology T stage and histologic grade 
were significantly higher in Chinese cohort, while N 
stage was higher in TCGA cohort. More patients in the 
TCGA cohort achieved microscopically margin-nega-
tive resection (53.8% vs. 33.1%). The invasion informa-
tion was not available from TCGA database.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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Genetic landscape of Chinese cohort and comparison 
with TCGA cohort
The genomic mutation profiles of all 151 patients in Chi-
nese cohort were generated by the panel NGS target-
ing 425 cancer-related genes. The median TMB was 5.7 
Mutations/Mb (ranging from 0 to 73.6). As shown in 
Fig.  1A, the most frequently mutated genes were KRAS 
(94.7%), TP53 (81.5%), SMAD4 (33.8%), and CDKN2A 
(25.2%) which were also at the top in TCGA cohort sug-
gesting a similar mutational pattern in Chinese and 
Western populations. By comparing the frequencies of 
commonly mutated genes, DNA damage repair path-
way, and other oncogenes between this study and TCGA 
cohort, the majority of them showed roughly equal fre-
quency such as TGFBR2 (9.3% vs. 6.6%, P-value 0.63) 
and PREX2 (6.0% vs. 3.3%, P-value 0.54). However, Chi-
nese cohort tended to have more TP53 mutations (81.5% 

vs. 67.0%) but no DNMT3A alteration (0% vs. 5.5%), 
the P-value of which were 0.013 and 0.007, respectively 
(Fig. 1B).

The correlations between clinicopathological features 
and genomic mutations were investigated in the Chinses 
cohort. Serum tumor marker CEA and carbohydrate 
antigens, CA125 and CA19-9, were measured preopera-
tively. CA19-9 level didn’t correlate to tumor stage in the 
Chinese cohort (P = 0.85). A strong correlation between 
CEA and CDKN2A was observed as CEA level was signif-
icantly higher in patients with wild-type CDKN2A (Sup-
plementary Figure S2A, mean 8.37 vs. 4.10, P = 0.038). 
Furthermore, both preoperative CA125 and CA19-9 lev-
els were positively associated with SMAD4 alterations 
(P = 0.009 & 0.008, respectively, Supplementary Figure 
S2B-C), which were enriched in older patients(> 50-year-
old) (Supplementary Figure S2D, P = 0.031).

Table 1  Clinical characteristics of this study and TCGA cohorts

a 10 stage IV patients were excluded from prediction modeling

Characteristics This study TCGA​ P-value

All (N = 151) Training (N = 92) Validation (N = 49) All (N = 91)

Age(years)

   < 65 86(57.0%) 55(59.8%) 26(53.1%) 41(45.1%) 0.08

   ≥ 65 65(43.0%) 37(40.2%) 23(46.9%) 50(54.9%)

Gender

  Male 76(50.3%) 49(53.3%) 22(44.9%) 49(53.8%) 0.69

  Female 75(49.7%) 43(46.7%) 27(55.1%) 42(46.2%)

Stage (AJCC 7th)

  I-II 121(80.1%) 82(89.1%) 39(79.6%) 87(95.6%)  < 0.01

  III 22(14.6%) 10(10.9%) 12(24.5%) 3(3.3%)

  IV 8(5.3%) 0(0%)a 0(0%)a 1(1.1%)

Pathology T stage

  T1-2 5(3.3%) 2(2.2%) 3(6.1%) 11(12.1%) 0.01

  T3-4 146(96.7%) 90(97.8%) 46(93.9%) 80(87.9%)

Pathology N stage

  N0 42(27.8%) 27(29.3%) 15(30.6%) 14(15.4%) 0.04

  N1-2 109(72.2%) 65(70.7%) 34(69.4%) 77(84.6%)

Neoplasm histologic grade

  G1-2 120(79.5%) 84(91.3%) 31(63.3%) 47(51.6%) 8.01E-6

  G3 31(20.5%) 8(8.7) 18(36.7%) 44(48.4%)

Surgical margin resection status

  R0 50(33.1%) 28(30.4%) 18(36.7%) 49(53.8%) 1.36E-5

  R1 + R2 99 + 2(66.9%) 64(69.6%) 31(63.3%) 37(40.7%)

  Rx/NA 0(%) 0(%) 0(%) 5(5.5%)

Vascular invasion

  Negative 86(57.0%) 55(59.8%) 27(55.1%) -

  Positive 65(43%) 37(40.2%) 22(44.9%) -

Perineural invasion

  Negative 14(9.3%) 4(4.3%) 7(14.3%) -

  Positive 137(90.7%) 88(95.7%) 42(85.7%) -
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Fig. 1  Concurrent mutations in Chinese cohort and incidence comparison with TCGA cohort. A The oncoprint of all patients in the Chinese 
head PDAC cohort. The top panel includes the most frequently mutated genes. The genes in the middle and the bottom panel are DNA damage 
repair pathway related and other oncogenic genes, respectively. The alteration frequency of each gene is labled on the left side. B The alteration 
frequency comparison between the cohort in this study and the TCGA cohort with a coloured scale. The P-value less than 0.05 is statistically 
significant and highlighted in red. C A bar plot shows the proportion of each KRAS alteration subtype in this study and the TCGA cohort
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As vascular invasion occurred in nearly half cases 
(65/151, 43.0%) of Chinese cohort, the association 
between genomic mutations and vascular invasion were 
investigated. As shown in Supplementary Figure S3, 
RNF43 alteration was associated with negative micro-
scopic vascular invasion, the odds ratio of which was 0.18 
(95%CI: 0.02–0.84, P-value 0.01).

GNAS mutations were found in all three colloid car-
cinomas and six conventional PDACs. All three colloid 
carcinomas and six conventional PDAC have intraductal 
pancreatic neoplasm(IPMN) adjacent to invasive car-
cinoma, which was identified in 20(20/151, 13%) cases. 
Most GNAS mutations(8/9, 89%) were located in codon 
201 (R201C, R201H & R201L). 8 patients harboring 
GNAS alteration also had KRAS mutation. The one with-
out concurrent KRAS mutation had a histological appear-
ance of colloid carcinoma, with somatic ATM and APC 
mutation. TCGA cohort showed co-occurrent GNAS 
and RNF43 mutations(P = 0.024), but such a relation-
ship was not found in Chinese cohort(P = 0.20). Survival 
analysis showed no difference between GNAS/RNF43 
altered patients and wild-type patients. RICTOR, PREX2, 
TGFBR2 mutations were associated with IPMN-asso-
ciated PDAC(P < 0.05). No correlations were found 
between other histological subtypes and gene alterations.

KRAS mutation in Chinese and TCGA cohort
As KRAS was mutated in over 90% of patients in both 
Chinese and TCGA cohort, the alteration subtypes of 
KRAS mutations were futher investigated. As shown 
in Fig. 1C, the hotspot of KRAS is codon 12 which con-
tributed to 93.8% and 92.9% of all KRAS mutations in 
this study and TCGA cohort, respectively. The propor-
tion of KRAS G12D in the two cohorts was similar (this 
study 40.7% vs. TCGA 48.2%) while Chinese cohort had a 
higher mutation rate of G12V (43.5% vs. 22.4%) but lower 
with G12R (9.0% vs. 20.0%) comparing to TCGA. The 
TCGA cohort also had a unique subtype, G12H(1/91), 
which wasn’t detected in any patients from Chinese 
cohort. These G12 mutational subtypes were found 
not to be associated with OS as analyzed in this study 
(Supplementary Figure S1A). To be noted, ten stage IV 
patients were excluded from all survival analyses. Other 
KRAS subtypes mainly occurred in codon 59 and 61, 
including single or multiple amino acid substitution, with 
quite low frequency in both cohorts (Fig. 1C). BRAF mis-
sense mutations were identified in two KRAS-mutation 
patients at low allele frequency, which occurred in BRAF 
V413M and G469A, respectively.

The mutational status of eight patients with wild-type 
KRAS in Chinese cohort were examined and results 
showed that they all harbored other RAS pathway-related 

gene alterations including BRAF, BRCA1/2, EGFR, MET, 
TP53, TSC1, and TYMS.

Structural variances in Chinese head PDAC cohort
In Chinese cohort, a total of 35 CNVs were detected in 22 
patients involving 19 genes and two-thirds (23/35) were 
amplification (Fig.  1A). The most frequently amplified 
gene was DLL3 (n = 5) followed by AKT2 (n = 3), while 
CDKN2A (n = 4), CDKN2B (n = 3), and SMAD4 (n = 2) 
incurred copy number loss. Furthermore, 14 patients 
were detected with gene rearrangements (n = 20). It’s 
worth noting that two KRAS wild-type patients (P74 and 
P75) harbored potential pathogenic fusions. P74 had a 
CHD2-BRAF rearrangement which maintained the intact 
kinase domain of BRAF encoded by exon 11 to 18 (Sup-
plementary Figure S4A). No gene mutations but a MET 
gene rearrangement was found in P75 by the targeted 
panel NGS, where the intact MET kinase domain was 
fused to the coiled-coils of KANK1 (Supplementary Fig-
ure S4B).

Mismatch repair (MMR) deficiency (d‑MMR) 
and microsatellite instability (MSI) events
The reported frequencies of d-MMR in PDAC varied 
greatly and here in the present study nine patients (9/151, 
6%) were found with somatic and/or germline MMR 
mutations, including MLH1, MSH2, MSH6, PMS1, and 
POLD1 (Table  2). Only one MSH2 splice mutation was 
reported likely pathogenic in the database. Others have 
uncertain significance or weren’t recorded. Among the 
four patients with germline MMR mutations, two had 
MSI which was also detected in a third patient (P124) 
harboring somatic MSH2 mutation and accompanied 
by high TMB. The three MSI patients in Chinese cohort 
displayed a better prognosis as no one died of PDAC in 
12 to 29  months follow-up comparing to a median sur-
vival of 18 months in microsatellite stable patients. How-
ever, survival analysis found no significant association 
between MSI and prolonged survival (Supplementary 
Figure S1B, P = 0.14). Only four patients (4/151, 2.6%) 
were reported with a TMB over 20 mutations/Mb which 
were all identified as d-MMR and three of them harbored 
germline mutations. The remaining one was the above-
mentioned P74. Statistical analysis found no correlations 
between high TMB and prolonged OS (P-value = 0.43, 
Supplementary Figure S1C). Meanwhile, all four ger-
mline d-MMR patients had previous cancer history and/
or first-degree relatives’ cancer history (Table 2).

Nomogram calculating risk score and predicting prognosis
To establish a model to predict the prognosis of PDAC 
patients, Chinese cohort was divided into training 
(n = 92) and validation (n = 49) cohorts after excluding 10 
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stage IV patients. The clinical characteristic distribution 
of the two sub-cohorts remained comparative (Table 1). 
Univariate and multivariate analyses were performed on 
training group to evaluate the association between all 
factors and OS. As shown in Table 3, the four factors with 
a P-value of less than 0.1 in the univariate analysis were 
included in the multivariate analysis: histology grade, 
SMAD4, TGFBR2, and PREX2 mutations (Fig. 2A). A risk 
score was calculated based on the nomogram and the 
cut-off of 15 was determined by X-tile [31]. Patients with 

a risk score of over 15 were considered as high risk whose 
one-year mortality probability was over 28%. The median 
OS of low-risk patients was 23.0  months while for the 
high-risk group, it dropped to 10.5 months (Fig. 2B). The 
performance of the nomogram was then assessed in the 
Chinese validation cohort and TCGA validation cohort. 
As shown in Fig. 2C, the median OS of low-risk and high-
risk patients in the Chinese validation cohort was 29.0 
and 16.0  months, respectively with a P-value of 0.0347. 
Similarly, in the TCGA validaton cohort, which included 

Table 2  Nine d-MMR patients’ medical histories and mutational profiles

F Female, M Male, MMR mismatch repair, MSI microsatellite instability, TMB tumor mutational burden

Case Sex Age MMR gene mutation Medical history (age) Family medical history MSI TMB (muts/Mb)

17 F 66 MSH6(p.R911Q) Breast (54) - No 9.2

22 M 41 PMS1(p.L146Ffs*5) - - No 8

42 M 55 POLD1(p.P116Hfs*53)
MLH1(Germline: splice donor)

Bladder (41);
Colon (54)

Mother: unknown cancer Yes 73.6

51 M 55 MSH6(Germline: p.R248Tfs*8) - Father: colon;
Mother: esophagus

No 23

63 F 54 MSH2(Germline: p.H839R) - Father: bile duct No 5.7

83 M 54 PMS1(p.L813R) - - No 8

99 F 55 MSH2(splice),
MSH2(Germline: p.A714Lfs*6)

Endometrial (49) - Yes 23

102 F 66 POLD1(splice) - - No 3.4

124 F 74 MSH2(ex7_6del) - - Yes 59.8

Table 3  Univariate and Multivariate analysis of patients’ characteristics and OS

WT wild-type, HR hazard ratio, CI confidence interval, Inf infinity

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Gender: Male (vs. Female) 1.22 0.67 ~ 2.24 0.52 - - -

TNM Stage: III (vs. I-II) 1.07 0.56 ~ 2.06 0.84 - - -

Margin status: R1-2 (vs. R0) 1.55 0.76 ~ 3.14 0.22 - - -

Vascular Invasion:
Positive (vs. Negative)

1.44 0.79 ~ 2.64 0.23 - - -

Perineural Invasion:
Positive (vs. Negative)

2.63E + 07 0 ~ Inf 0.13 - - -

pT: T3-4(vs. T1-2) 1.49 0.81 ~ 2.76 0.2 - - -

pN: N1-2(vs. N0) 1.62 0.80 ~ 3.30 0.18 - - -

KRAS mutation (vs. WT) 0.88 0.21 ~ 3.70 0.863 - - -

TP53 mutation (vs. WT) 0.64 0.32 ~ 1.27 0.199 - - -

Age: ≥ 65 yrs (vs. < 65 yrs) 2.17 1.19 ~ 3.95 0.010 1.79 0.93 ~ 3.47 0.084

Grade: G3 (vs. G1-2) 2.18 0.85 ~ 5.56 0.095 3.79 1.35 ~ 10.6 0.011

SMAD4 variant (vs. WT) 1.92 1.06 ~ 3.50 0.030 2.05 1.05 ~ 4.01 0.036

TGFBR2 mutation (vs. WT) 3.15 1.44 ~ 6.91 0.002 3.55 1.55 ~ 8.15 0.003

PREX2 mutation (vs. WT) 4.03 1.57 ~ 10.4 0.002 4.03 1.48 ~ 10.98 0.006

ATM mutation (vs. WT) 2.47 0.88 ~ 6.96 0.077 1.43 0.45 ~ 4.51 0.545

ERCC1 SNP (vs. WT) 0.58 0.31 ~ 1.08 0.081 0.54 0.28 ~ 1.04 0.067
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PDAC in all sites, the nomogram was able to accurately 
predict the prognosis with a 0.31 HR (95% CI: 0.16–0.58, 
Fig. 2D).

Discussion
In the present study, a gene-related nomogram was 
developed to predict 1-year postoperative risk and inves-
tigated the genetic landscape of head PDAC based on 
the Chinese population. Nomogram was internally and 
externally validated and shows good performance in 
PDAC at all sites and races. It’s worth pointing out that 
different technologies were used in the two cohorts for 
DNA sequencing. Chinese cohort used extracted DNA 
from FFPE tumor samples which then underwent a panel 
NGS targeting 425 cancer-related genes. In contrast, the 
TCGA cohort used fresh-frozen samples and WES for 

mutational analysis. Other than that, the average exam-
ined lymph node number in the TCGA cohort is higher 
than Chinese cohort (19 vs. 16) which may explain the 
overall lower pathology N stage observed in Chinese 
cohort. A higher TP53 mutational frequency (81.5%) 
was observed in Chinese cohort than the TCGA cohort 
(67.0%) which is also higher than another pan-site PDAC 
study (73.5%) reported by Singhi et al. [32]. Besides, more 
high-TMB (> 20 mutations/Mb) patients were present 
in Chinese cohort (2.6%) comparing to previous stud-
ies, in which the reported TMB-high rates were less than 
1% [32, 33]. This might be caused by the relatively high 
incidence of d-MMR in this study (9%) as other stud-
ies showed about 1% d-MMR by NGS and IHC [34]. 
Furthermore, whether MSI is associated with survival 
remained inconclusive and no significant association was 
found between MSI and prolonged survival in Chinese 

Fig. 2  Nomogram for risk score calculation and its performance validation. A The nomogram calculating the risk score of one-year mortality 
probability based on the selected four features. The status of each feature corresponds to the score on the top panel. The risk score is the sum of 
the scores corresponding to each feature which then represents the one-year mortality probability according to the scale bars. The risk score of 
15 is the cutoff of the high and low risk groups. The overall survival (OS) curves of patients with high (> 15, red) and low (≤ 15, blue) in the Chinese 
training cohort (B), Chinese validation cohort (C), and the TCGA cohort (D) are shown. Median OS (MOS), HR (95% CI), and P-value are labeled on the 
right-up corner of each figure
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cohort [35]. However, three MSI patients did display a 
better prognosis who were all alive at the latest follow-up 
in the period of 12, 19, and 29 months compared to the 
median OS of 18 months in microsatellite stable patients. 
And these MSI patients were all TMB-high, which is con-
sistent with previous observations [36].

Studies have found that somatic GNAS and RNF43 
mutations were recurrently identified in IPMN [37, 38], 
so the relationship between GNAS/RNF43 mutations and 
PDAC with adjuvant IPMN was investigated. Majority 
of the GNAS mutations occurred in codon 201, which 
is consistent with the previous report [38]. Studies had 
shown colloid carcinomas of the pancreas were arose in 
association with IPMN, and GNAS codon 201 mutations 
can be identified in the majority of colloid carcinoma 
[39, 40], which are also verified in present study. RNF43 
alteration wasn’t related to any histological subtypes or 
co-altered with GNAS, however, alterations of RNF43 
may contribute to negative vascular invasion. In human 
hepatocellular carcinoma (HHC), RNF43 overexpression 
frequently occurred and study had shown correlated with 
RNF43 expression and vascular invasion [41].

PDAC is a tumor driven by KRAS mutation, which 
explained its striking prevalence of over 94% [42]. Stud-
ies have shown KRAS downstream signaling is affected 
by different KRAS mutations in an allele-specific man-
ner [43, 44]. Therefore, personalized therapies according 
to specific KRAS mutations are being extensively inves-
tigated. Several inhibitors have been developed targeting 
KRAS G12C mutation to inhibit KRAS signaling, which 
unfortunately is quite rare in PDAC, and not present in 
Chinese cohort [45, 46]. Other inhibitors targeting KRAS 
G12V, G12D, or G12A were currently under pre-clinical 
development and showed promising results in pancreatic 
patient-derived cell lines and xenografts [47]. The present 
study revealed a difference in Chinese and Western KRAS 
mutation spectrum. Chinese PDAC had a higher muta-
tion rate of KRAS G12V but a lower KRAS G12R muta-
tion rate comparing to TCGA cohort. Two recent studies 
presented at the 2020 ESMO Congress about Chinese 
PDAC molecular profiling also reported a similar KRAS 
G12 spectrum as this study [48, 49].

Our study showed Chinese cohort had more TP53 
mutation than TCGA cohort. The mutation frequency 
of TP53 varies from study to study but is usually over 
50%. Sinn et  al.reported TP53 mutations in 60% of the 
368 PDAC patients enrolled in Germany and Austria 
which is comparable to the frequency of TCGA cohort 
we reported here (67%) [50]. Lin Shui et al.reported more 
TP53 mutations in a Chinese PDAC cohort compared to 
TCGA (62.05% vs 51%) [51]. To be noted, these two stud-
ies didn’t specify the subtype of PDAC (head vs body/
tail). Another study based on the Chinese population 

identified 81.8% of patients (n = 154) carrying TP53 
mutations [52]. Notably, no significant difference was 
observed in TP53 mutation frequency between the 85 
head and the 69 body/tail PDAC patients in their study. 
Thus, the ethnic difference could be a potential expla-
nation of different TP53 mutation frequencies. The 
cohort sizes of the above-mentioned Chinese studies 
were similar to ours which might lead to cohort bias, 
further larger sample study is needed to validate the 
results.

Previous studies suggested BRAF V600E mutations 
and in-frame deletions near the αC-helix region of the 
kinase domain are mutually exclusive with KRAS muta-
tions [13, 53]. However, about 0.3–0.4% of KRAS mutant 
PDACs have concurrent BRAF mutations [32, 54], which 
explained the concurrent BRAF and KRAS mutations in 
Chinese cohort. In KRAS wild-type PDAC patients, two 
novel potentially pathogenic fusions, CHD2 –BRAF and 
KANK1-MET, were discovered. The former retained an 
intact BRAF kinase domain, which might cause the acti-
vation of BRAF signaling. The intact MET kinase domain 
of KANK1-MET fusion was fused with the coiled-coils 
of KANK1, which were located in the N-terminus of 
KANK1 and reported to be required for KANK1 associ-
ated fusion induced cell growth and signaling [55]. It’s 
worth investigating the efficacy of second-generation 
BRAF inhibitors and MEK inhibitors in these patients in 
the future [56].

This study reported, to our knowledge, for the first time 
the relationship between common tumor biomarker and 
gene alterations. Further larger sample analysis needs to 
be performed to verify the results and adjust for possible 
involvement of other characteristics. Higher preoperative 
CA125 and CA19-9 were associated with SMAD4 altera-
tions, and elevated CEA was associated with CDKN2A 
wild-type. Elevated CA125 and CA19-9 were associ-
ated with a worse prognosis in PDAC [57, 58]. SMAD4 
was also found to be survival-related in several studies 
and this study [15, 59], whether there are common path-
ways involved in SMAD4 mutation and elevated tumor 
biomarkers needs future experiments to clarify. Previ-
ous studies suggested CA19-9 levels were correlated to 
TNM staging as high pre-operation CA19-9 was asso-
ciated with adverse pathologic features and advanced 
stage [18], however, no correlation was found in the Chi-
nese cohort. Study has shown as CA19-9 increased, the 
tumor trends toward unresectable [60]. Since all samples 
from the cohort were obtained from resected tumors, it 
is our hypothesize that many high CA19-9 patients were 
excluded due to the tumor being unresectable, result-
ing in the irrelevancy. Because of this, the correlation 
between SMAD4 and CA19-9 was less likely due to the 
bias of increased tumor staging.
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SMAD4 alteration was identified as a predictive marker 
of short OS in this study. However, the association of 
SMAD4 and onset age was controversial in previous 
studies. The study showed that SMAD4 alterations were 
more enriched in older patients which is consistent with 
a large-size (n = 3,594) study which suggested patients 
older than 50 were more likely to harbor SMAD4 altera-
tions [32]. However, Ben-Aharon et al. reported a higher 
mutational rate of SMAD4 in younger patients with a 
cutoff of 55  years old [61]. Checking the patients’ char-
acteristics between the studies, we found the majority of 
early-onset patients (80%) in Ben-Aharon et  al.’s cohort 
were of stage IV, which may affect SMAD4 mutation 
prevalence as loss of SMAD4 can lead to tumor metasta-
ses [62, 63].

The two gene alterations, SMAD4 and TGFBR2, 
included in the established nomogram are partners in 
the TGF-β signaling pathway [64]. A recent study sug-
gested the predominant function of SMAD4 in collec-
tive invasion in PDAC organoids and somatic mutation 
of TGFBR2 also showed a similar invasion phenotype 
[65]. Therefore, it’s worth paying attention to the TGF-β 
signaling pathway in PDAC and investigating the specific 
mechanism of tumor progression.

Some limitations should be noted. First, the regional 
effect on PDAC genomic landscape was not taken into 
account. The epidemiology study showed the prevalence 
of pancreatic cancer is higher in the East China region 
[2], but because all patients were selected in a single-
center, patients were limited to a certain geographical 
breadth across China. Secondly, the cohort size is rela-
tively small especially in the situation of lacking pub-
lished Chinese PDAC genetic information as a reference. 
Thirdly, the molecular profiling were performed using a 
targeted panel NGS which is less comprehensive than the 
WES results of the TCGA database. Finally, due to the 
study being retrospective, patients lacked the treatment 
response information.

Conclusions
The present study investigated the genetic landscape of 
Chinese head PDAC and compared it to the Western 
population. The study also provided new insights into 
clinicopathological features and gene alterations. A nom-
ogram was established to predict PDAC prognosis based 
on tumor genetic alterations and clinical features whose 
performance was promising in both Chinese and West-
ern cohorts. This study may shed light on the Chinese 
PDAC molecular profiling and provide a new method to 
predict prognosis in clinical practice.
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