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Abstract 

Background:  Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individual-
ized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only 
traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models 
including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accu-
racy when adding SNPs to a prediction model with only traditional risk factors.

Methods:  We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk pre-
diction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number 
of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We 
estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using 
random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with 
AUC improvement.

Results:  We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant 
trend in AUC improvement according to the number of SNPs (p for trend = 0.774), and no correlation between the 
number of SNPs and AUC improvement (p = 0.695). Pooled AUC improvement was 0.040 (95% CI: 0.035, 0.045), and 
the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement 
obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved 
better AUC improvement with the incorporation of SNPs compared with those developed among individuals of 
European ancestry.

Conclusions:  Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of 
SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further 
research is needed.

Keywords:  Colorectal cancer, Prediction models, Single nucleotide polymorphisms, Genetic risk score, Polygenic, 
Meta-analysis
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Introduction
Colorectal cancer (CRC) is currently the third most com-
monly diagnosed type of cancer and the second cause 
of cancer death worldwide, with an estimated 1.8 mil-
lion new cases and 880 thousands deaths in 2018, with a 
greater burden among males respect to females [1]. Typi-
cally, CRC can be considered a disease related to wealth. 
National levels of both CRC incidence and mortality 
are closely related to the income and development level 
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of the country, with a cumulative risk of CRC or CRC 
death three times higher in countries with a high Human 
Development Index (HDI) than countries with a medium 
or low HDI [1].

Over the last decade, the majority of the countries 
in Europe, Oceania and North America witnessed a 
decrease in CRC mortality [2]. Likely, one of the main 
reasons for such a reduction in mortality rates in West-
ern or developed countries could be related to the 
adoption of screening programs for CRC. As for CRC 
screening, different methods and strategies are effective 
at reducing its mortality and have been implemented 
in different countries worldwide, the most represented 
by fecal occult blood testing and fecal immunochemi-
cal test [3–6]. However, in recent years researchers have 
explored the possibilities of stratified screening, through 
the use of prediction models that could guide CRC risk 
assessment for asymptomatic patients [7]. In particu-
lar, most recent research in this field has focused on the 
inclusion of genetic factors into prediction models, par-
ticularly through the use of a genetic risk score (GRS) 
or a polygenic risk score (PRS) [8]. Furthermore, the 
increasing number of genome-wide association studies 
(GWASs) that are being conducted, with more than 70 
GWASs currently published for CRC [9], is leading to a 
progressive improvement of our knowledge regarding the 
impact of common genetic variants or single nucleotide 
polymorphisms (SNPs) on the risk of CRC. In this sense, 
it should be noted that up to 35% of inter-individual vari-
ability in CRC risk has been attributed to genetic factors 
[10, 11], thus making the importance of this field for pub-
lic health evident. Genetic factors could guide CRC risk 
assessment, thus improving the effectiveness of currently 
available screening strategies.

However, the methods currently used by researchers 
to incorporate genetic factors into prediction models for 
CRC and the characteristics of the latter are highly het-
erogeneous [8]. In addition, the potential improvement 
in discriminatory accuracy yielded by the addition of 
genetic factors to CRC prediction models including only 
traditional risk factors is still unclear, as it is not certain 
whether the number of genetic variants included in the 
models are related to such improvement.

For these reasons, the primary aim of the present study 
is to perform a systematic review regarding polygenic 
risk prediction models for CRC in order to identify which 
prediction models including genetic risk variants for 
CRC have been reported in the Scientific Literature.

The secondary aim is to assess the impact, in terms of 
improvement in discriminatory accuracy, of the addition 
of SNPs into prediction models with only traditional risk 
factors, and to test whether there is any relation between 
the number of SNPs included in the models and the 

improvement of their discriminatory accuracy. In addi-
tion, we aimed to evaluate which factors, besides the 
number of SNPs, influence the improvement of discrimi-
natory accuracy.

Methods and materials
We registered a protocol for this review on PROSPERO 
(Record ID: CRD42019135304), the international pro-
spective register of systematic reviews. We uploaded on 
the PROSPERO register, prior to completing data extrac-
tion, the review title, timescale, team details, methods, 
and general information.

Search strategy and study selection
We queried Pubmed, Web of Knowledge, Embase and 
CINAHL Complete electronic databases up to February 
2020 using the elements of the Population, Intervention, 
Comparator, Outcome (PICO) model (P, population/
patient; I, intervention/indicator; C, comparator/con-
trol; and O, outcome) [12]. In detail, our study population 
was represented by colorectal cancer; the intervention 
by SNPs; the comparator was none, and outcome was 
represented by risk prediction models. For this rea-
son the following search string was built: (“Colorectal 
Neoplasms”[Mesh] OR “colorectal cancer” OR “colon 
cancer”) AND (“genetic variant” OR “genetic variants” 
OR “genetic variation” OR “genetic data” OR polymor-
phism OR SNP OR SNPs OR polygenic) AND (“risk 
stratification” OR “risk model” OR “risk profile” OR “risk 
profiling” OR “risk prediction” OR “risk determination” 
OR “risk discrimination” OR “risk score” OR “predictive 
model” OR “prediction model” OR “prediction models” 
OR “stratified screening”). The search was refined by 
hand searching and analysis of bibliographic citations in 
order to identify missing articles. No publication time 
limits were applied.

The manuscript was written following the recommen-
dations of the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement (Sup-
plementary material) [13].

We systematically searched databases to retrieve all 
eligible scientific studies that developed, compared or 
validated a prediction model (or clinical prediction rule 
based on a model) using multiple (at least two) SNPs to 
predict the risk of CRC.

Two independent investigators (M.M. and M.S.) 
screened titles and abstracts of all potentially pertinent 
articles to identify eligible studies. We obtained, read and 
included, if relevant, full papers following the same pro-
cedures. At all levels, any discrepancies and disagreement 
were solved by consensus or by involving a third investi-
gator (R.P.).
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We included English-written peer-reviewed papers 
focusing on sporadic CRC reporting primary data and 
that evaluated the combined effect of two or more genes 
on CRC risk (e.g. GRS or PRS) or that reported a formal 
prediction model using genetic factors.

We excluded all studies that tested a model on simu-
lated populations, pediatric populations, or dealing with 
inherited forms of colorectal cancer (e.g. Lynch syn-
drome). Furthermore, we did not include in this review 
commentaries, editorials, review papers, case reports, 
case series, book chapters, and articles with no primary 
data. Lastly, as for articles updating previous ones, we 
included only the last updated study.

Data extraction
Data extraction was conducted independently by two 
researchers (M.M. and M.S.), for articles deemed rel-
evant, using an in-depth piloted data extraction form and 
following an adapted version of the “CHecklist for critical 
Appraisal and data extraction for systematic Reviews of 
prediction Modelling Studies” (CHARMS) checklist [14]. 
Disagreements were solved through discussion or refer-
ral to a third reviewer (R.P.).

Extracted data include information regarding: author 
details; year of publication; study design; study popu-
lation; sample size; genetic factors analyzed; GRS and 
related methods used to calculate it; factors other than 
genetic included in the model; internal and external vali-
dation; Area Under Curve (AUC) of non-SNP-enhanced 
models; AUC of SNP-enhanced models; Integrated dis-
crimination improvement (IDI); and net reclassification 
improvement (NRI). In particular, NRI and IDI are meas-
ures used to compare the performances of two models, 
specifically an old model and a new model resulting from 
the addition of one or more predictors to the old one. The 
AUC is a measure of discriminatory accuracy and quan-
tifies the ability of the model to discriminate between 
individuals with and without the outcome of interest 
[15], while NRI quantifies the ability of the new model 
to reclassify individuals compared to the previous one 
[16, 17], and IDI represents the difference in discrimina-
tion slopes of the new and the previous models, with the 
discrimination slope being the absolute difference in the 
averages of estimated probabilities of the event between 
those who experienced the event and those who did not 
[17–19].

For studies including both individuals with adenomas 
and CRC, we only extracted information about results 
related to CRC.

Quality assessment
The risk of bias of included studies was assessed by two 
investigators (M.M. and M.S.) using the Prediction 

model Risk Of Bias ASsessment Tool (PROBAST) [20]. 
PROBAST is a tool developed to assess the risk of bias 
and applicability of prediction model studies and con-
tains a total of 20 signaling questions divided into 4 key 
domains that regard: participants, predictors, outcome, 
and analysis. Each domain is rated for risk of bias (low, 
high or unclear risk of bias). The signaling questions can 
be rated as “yes”, “probably yes”, “probably no”, “no” or “no 
information”. Every signaling question is phrased so that 
“yes” or “probably yes” mean absence of bias, while “no” 
or “probably no” warn for potential risk of bias. The first 
three domains that regard participants, predictors and 
outcome are also assessed for concerns for applicability 
(high, low, or unclear) to the defined review question.

Statistical analysis
Statistical analysis was carried out including only stud-
ies that reported both a model with only traditional 
risk factors and one incorporating also genetic factors. 
For studies that calculated the AUCs of the same model 
constructed in different ways (e.g. counted GRS and 
weighted GRS), only the model showing the best perfor-
mance or, for those showing the same values of AUC, the 
simplest one was included in the analysis. Stratification 
according to the number of SNPs was conducted using 
tertiles based on the distribution of the number of SNPs 
included in the models across included studies, with low-
est, mid, and highest tertile being represented by ≤22, 
23–47, and ≥ 48 SNPs, respectively. We calculated stand-
ard errors of AUCs using the Hanley and McNeil method 
[15].

First, we tested whether a significant trend in the 
increase of the AUC of the SNP-enhanced models 
according to the number of SNPs included in the mod-
els could be observed. Secondly, we estimated the Pear-
son’s correlation coefficient between AUC improvement 
and number of SNPs. Eventually, we investigated whether 
the increasing number of SNPs added to the baseline 
models determined an observable trend in the improve-
ment of the AUC by drawing a forest plot. In order to 
calculate a pooled AUC improvement for SNP-enhanced 
models compared with non-SNP-enhanced models, 
we conducted a meta-analysis using the random effects 
model, based on the assumption that clinical and meth-
odological heterogeneity was very likely to occur and to 
have an effect on the results. We quantified statistical 
inconsistency using the I2 statistic. Moreover, we assessed 
whether specific factors (number of cases, number of 
SNPs, publication year, AUC of non-SNP-enhanced 
model, ethnicity of study participants, number of tra-
ditional risk factors in the model, and inclusion of gen-
der in the model both as a covariate or by stratification) 
were significantly associated with AUC improvement and 
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explained statistical heterogeneity by conducting meta-
regression, with p-values adjusted for multiple testing 
computed using 1000 Monte-Carlo permutations.

All statistical analyses were conducted using the Stata 
software version 13.0 [21].

Results
Study selection
The results of abstract and full-text screening with rea-
sons for exclusion are shown in the PRISMA flow dia-
gram [13] in Fig.  1. The database research resulted in 
749 records. A total of 6 articles were retrieved through 
hand search. After checking for duplicates, 566 articles 
were analyzed for eligibility and 472 were excluded after 
title and abstract screening. The remaining 94 articles 
were selected for full-text review, resulting in 33 articles 
included in the qualitative synthesis and 10, eventually, 
included in the meta-analysis. The main causes for exclu-
sion were represented by: articles with no primary data or 
with simulated populations (35%), non-pertinent articles 

(30%); articles with population represented by individuals 
with inherited forms of colorectal cancer (20%); eventu-
ally, studies that were later updated and published (10%) 
or that gathered together with CRC cancer and colorectal 
benign polyps without distinguishing these two popula-
tions (5%).

Study and population characteristics
The main characteristics of the articles included in the 
systematic review are summarized in Table  1. Studies 
included in this review were published from 2008 and 
2019. Most of them were case-control studies (78.79%) 
[22, 23, 25, 27–36, 39, 41–43, 45–47, 49–54], followed 
by 5 cohort studies (15.15%) [24, 38, 40, 44, 48], and 2 
(6.06%) case-cohort studies [26, 37]. No sample overlap 
can be reported across studies. Twenty-one (63.64%) 
evaluated risk prediction models among individuals of 
European ancestry [23, 24, 26–28, 30–32, 34, 35, 38–
46, 49, 50], 12 (36.36%) among a population of Asian 

Fig. 1  PRISMA flow-chart of the study selection process
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ancestry [22, 25, 29, 33, 36, 37, 47, 48, 51–54]. Population 
sizes ranged from 603 [47] to 361,543 [44] individuals.

Risk prediction models characteristics
The number of genetic variants evaluated in the risk pre-
diction model ranged from 4 [54] to 696 SNPs [45]. A 
complete list of SNPs included in each study is provided 
in Table S1.

In order to include genetic factors into prediction mod-
els, different methodologies were investigated across the 
included studies. In particular, 26 (78.79%) studies used 
a GRS, 11 (42.31%) of which used a weighted GRS [31, 
33–35, 40, 42–46, 52], other 6 (23.08%) studies used an 
unweighted GRS [22, 24, 26–29]. Instead, a total of 9 
studies (34.62%) used both unweighted and weighted 
methods to develop risk scores [23, 25, 30, 32, 36, 37, 
49–51].

Of the remaining 7 studies that did not use GRS 
(21.21%), one [39] derived 7 genes from a larger set. After 
gene profiling and cluster analysis, specific genes were 
selected, further validated and evaluated for predictive 
performance. The second one performed a Mendelian 
randomization analysis to assess the association between 
hyperlipidemia and CRC using Burgess statistics [55] and 
a fixed-effects meta-analysis to derive final odds ratios 
[41], while another one [47] applied logistic regression, 
Jackknife feature selection and ANOVA testing to con-
struct the prediction model. Other authors [53] applied 
a stepwise selection procedure in order to determine the 
inclusion or exclusion of the putative risk factors from 
the models, and the combined effect of genes on colorec-
tal cancer risk was assessed by multivariate unconditional 
logistic regression. Instead, 2 studies used machine learn-
ing approaches [38, 54]; the last one evaluated the predic-
tive accuracy of genetic corrected serum levels of specific 
biomarkers compared to uncorrected ones [48].

Difference in discriminatory accuracy 
between SNP‑enhanced and traditional risk factor models
Using the Swets classification [56], i.e. low accuracy 
when the AUC is between 0.5 and 0.7, moderate accu-
racy between 0.7 and 0.9, only two of the studies that 
included both a traditional risk factor only model and 
one incorporating also genetic factors found a moder-
ate discriminatory accuracy. The first study [36] showed 
that, only among males, AUC values for models includ-
ing counted GRS and weighted GRS reached 0.729 (95% 
CI: 0.682, 0.767) and 0.719 (95% CI: 0.677, 0.761), respec-
tively; while models without SNPs showed low accuracy 
(i.e. AUC lower than 0.7). The second study [37] found 
moderate discriminatory accuracy for both SNP and 
non-SNP-enhanced models. In particular when overall 
colon and rectal cancer risk, colon cancer risk only, and 

rectal cancer risk only were separately considered, SNP-
enhanced models yielded AUC values of 0.74 (95% CI: 
0.70, 0.78), 0.75 (95% CI: 0.69, 0.81), and 0.74 (95% CI: 
0.68, 0.79), respectively; while non-SNP-enhanced model 
yielded AUC values of 0.73 (95% CI: 0.69, 0.78), 0.76 (95% 
CI: 0.70, 0.83), and 0.71 (95% CI: 0.65, 0.77), respectively.

A total of 4 articles [33, 37, 49, 51] used the NRI and/
or the IDI to compare the performances of two models 
(traditional only vs genetic enhanced model). In the first 
article [37], the NRI for a prediction model with GRS 
respect to the traditional risk score model was 0.17 (95% 
CI: − 0.05, 0.37) for CRC, − 0.17 (95% CI: − 0.33, 0.21) 
for colon cancer only, and 0.41 (95% CI: 0.10, 0.68) for 
rectal cancer only. The second one [33] found an increase 
in the inclusive model compared to the non-genetic 
model for the mean IDI (0.015) and the mean continuous 
NRI (0.39). After defining risk categories of NRI by arbi-
trary cut-off values of 1.5 and 3% of 10-year absolute risk 
of developing colorectal cancer, the mean NRI value was 
equal to 0.12 when the non-genetic and inclusive mod-
els were compared. The third [49] showed an increase in 
the NRI in all the models when different variables were 
included in the model (Table 1). Eventually, the last one 
[51] found that the traditional model with smoking sta-
tus showed worse performance respect to the combined 
model that included genetic (simple count GRS,) and 
smoking factors: NRI of 0.317 (95% CI: 0.225, 0.408) and 
IDI of 0.031 (95% CI: 0.023, 0.039).

AUC analysis
A total of 14 risk prediction models, from 10 stud-
ies were included in the AUC analysis [23, 30, 32, 33, 
35–37, 44, 49, 51]. We found no significant trend regard-
ing the increase in the AUC of the SNP-enhanced risk 
prediction models according to the number of SNPs 
included in the models and, when the AUC was tested 
for trend, no significant association was retrieved (p for 
trend = 0.774). Pearson’s correlation coefficient between 
AUC improvement and number of SNPs was also esti-
mated, r = − 0.0993 (95% CI: − 0.541, 0.385; p = 0.6951). 
No correlation could be found between the number of 
SNPs and AUC increase.

The meta-analysis resulted in a pooled estimate of AUC 
improvement for SNP-enhanced prediction models com-
pared with non-SNP-enhanced models of 0.040 (95% CI: 
0.035, 0.045) for all 14 models (Fig. 2). High heterogene-
ity was found reaching 98.5% (p < 0.001).

A stratified analysis by number of SNPs included across 
models was performed (Fig.  3). The AUC difference 
between the SNPs-enhanced models respect to non-SNP-
enhanced models for the lowest tertile of SNPs added to 
the model (less than or equal to 22 SNPs) resulted in an 
improvement of 0.044 (95% CI: 0.022, 0.067). As to the 



Page 14 of 21Sassano et al. BMC Cancer           (2022) 22:65 

mid (23–47 SNPs) and highest tertiles (more than or 
equal to 48 SNPs) of SNPs added, the estimates showed 
an improvement in the AUC of 0.018 (95% CI: 0.014, 
0.022) and 0.045 (95% CI: 0.031, 0.058), respectively.

The results of the meta-regression (Table  2) showed 
that the factor more strongly associated, inversely, with 
AUC improvement after the addition of SNPs to a model 
with only traditional risk factors was the AUC of the 
non-SNP-enhanced model (p < 0.001). Furthermore, an 
inverse significant association was found also between 
the number of cases included in the study and AUC 
improvement (p = 0.002). Eventually, ethnicity was asso-
ciated with AUC improvement too (p = 0.023), with bet-
ter AUC improvements achieved by models constructed 
among Asians compared with individuals with European 
ancestry. No significant associations were found for other 
investigated factors. Overall, the factors included in the 
meta-regression explained almost half statistical hetero-
geneity, with a residual I2 equal to 54.18%.

Quality assessment
Results of the overall risk of bias and applicability assess-
ment can be found in Table 3.

The majority of the studies (93.94%) were scored as 
having high risk of bias [22–30, 32–42, 44–54, 57], 2 
(6.06%) studies were rated as having an overall unclear 
risk of bias [31, 43].

A total of 22 (66.67%) studies were assessed only for 
the development of the model, 8 (24.24%) studies were 
assessed for both model development and validation, 3 
(9.09%) only for model validation.

As to the model development, 66.67, 36.67, 20.00 
and 70.00% of the studies were assessed as having high 
risk of bias respect to participants, predictors, out-
come and statistical analysis, respectively; 33.33, 20.00, 
63.33, 3.33% were deemed as having a low risk of bias, 
while 0.00, 43.33, 16.67, 26.67% were assessed as having 
unclear risk of bias respectively for participants, pre-
dictors, outcome and statistical analysis assessment.

As to validation models, 27.27, 36.36, 45.45, 9.09% of 
the included studies were assessed as having low risk of 
bias for participants, predictors, outcome and statisti-
cal analysis, respectively; while 72.73, 63.64, 54.55 and 
90.91% were rated as high or unclear risk of bias.

Regarding the applicability of prediction models, in 
development model studies 30.00, 3.33, and 0.00% were 

Fig. 2  Overall improvement in AUC for SNP-enhanced prediction models compared with non-SNP-enhanced models
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at high or unclear risk; in validation studies 18.18, 0.00, 
9.09% were at high or unclear risk as to, respectively, 
participants, predictors and outcome.

Discussion
Overall, from the 35 studies that we included in our 
systematic review we identified prediction models 
for CRC incorporating genetic factors, with extreme 

heterogeneity regarding the number of genetic factors 
included. Instead, as for the methods to include genetic 
factors in the prediction model, most studies used a 
weighted GRS, with a minority of them using either the 
count model or both the weighted and count methods.

As for studies reporting the AUC value of the model, 
most of them could not find a satisfactory discrimina-
tory accuracy (e.g. AUC > 0.7 [56]) for their models, even 

Fig. 3  Improvement in AUC for SNP-enhanced prediction models compared with non-SNP-enhanced models stratified by the tertile of number of 
SNPs included in the model

Table 2  Results of the meta-regression assessing which factors are associated with AUC improvement of SNP-enhanced models 
compared with non-SNP enhanced models

SNP single nucleotide polymorphism

Coefficient 95% Confidence Interval p-value Adjusted p-value

Number of cases −0.000016 −0.0000243, − 7.63*10− 6 0.002 0.027

Number of SNPs 0.0004986 0.0000216, 0.0009757 0.042 0.170

Year of publication 0.0021238 −0.0012521, 0.0054998 0.191 0.468

AUC of non-SNP enhanced model −0.3485498 −0.4171094, − 0.2799903 < 0.001 < 0.001

Ethnicity (Asian vs European) 0.0313164 0.0151622, 0.0474705 0.002 0.023

Number of traditional risk factors in the model −0.0000322 −0.0010623, 0.0009979 0.946 1.000

Gender considered in the construction of the model −0.0086505 −0.0191019, 0.001801 0.095 0.316
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though the addition of genetic factors to traditional risk 
factors improved it, with an improvement in the AUC 
ranging from 0.010 [37, 44] to 0.084 [51]. Nonetheless, 
similarly to what was previously reported for breast can-
cer [58], we found no evidence of association or correla-
tion between the number of SNPs included in the model 
and the improvement in the AUC value. However, among 
studies comparing two or more models, only a minority 
reported data on NRI or IDI, witnessing the need to bet-
ter quantify and report the improvement of accuracy of a 
model when adding new biomarkers or genetic data [59]. 
According to the interpretation suggested by Pencina 
et al. for NRI values, all these four studies showed a weak 
or intermediate strength of SNPs (for all of them in the 
form of a GRS), in terms of discriminatory potential, when 
added to models with only traditional risk factors [17].

Regarding the pooled improvement in AUC, a clear 
trend in the improvement of AUC related to the num-
ber of SNPs could not be found. The best results were 
achieved in the lowest (≤22 SNPs) and highest (≥48 
SNPs) tertiles of SNPs incorporated into the models, 
which led to a larger improvement in AUC compared 
with the mid tertile (23–47 SNPs). As expected, due 
to the extremely high heterogeneity among variables, 
regarding various SNPs and several environmental fac-
tors included in the retrieved prediction models and 
among statistical methods used to incorporate such vari-
ables in the models, our meta-analysis results show sig-
nificant statistical heterogeneity, witnessed by the high 
values of the I2 obtained. For this reason, the results of 
our study should be interpreted cautiously and cannot be 
considered conclusive.

Similarly to our results, Fung et  al. reported that the 
addition of genetic information improved discriminatory 
accuracy of the identified prediction models for breast 
cancer, even though AUC improvement was found to be 
not correlated or associated with the number of SNPs 
that were included in the model [58].

It should be noted that the improvement of AUC val-
ues with the addition of biomarkers, such as SNPs, to a 
model depends on the starting AUC value, which means 
the higher the AUC value of the model including only 
traditional risk factors, the smaller the improvement in 
AUC after adding genetic information into the model 
[17, 60, 61]. This was further confirmed by the results 
of our meta-regression. In addition, an inverse relation 
with AUC improvement was found also for the num-
ber of cases included in the study, which could actually 
be linked to the AUC of the non-SNP enhanced model. 
Likely, the higher the number of cases in the study, the 
larger the AUC of the non-SNP enhanced model and, 
hence, the smaller the AUC improvement.

Furthermore, the ethnicity of study participants was 
found to significantly affect AUC improvement, sug-
gesting possible differences in the role of genetic factors 
between different populations, and witnessing the need 
to foster research in the field of genetic prediction mod-
els for all ethnicities [62]. The distribution of genetic fac-
tors associated with a specific cancer may vary between 
different ethnicities even more than traditional risk fac-
tors, thus the need for ethnicity-specific genome-wide 
association studies (GWAS) is crucial to inform the 
development of specific prediction models for different 
ethnicities [22, 63]. Furthermore, the importance of the 
chosen population in the construction of predictive mod-
els should be properly taken into account, as a model is 
applicable only to the specific population it was designed 
for [60].

Eventually, results of the meta-regression showed that 
the number of SNPs, publication year, the number of tra-
ditional risk factors in the model, and inclusion of gender 
in the model were not associated with AUC improve-
ment. However, they largely explained statistical hetero-
geneity between included studies.

As far as we know, previous systematic reviews on 
prediction models for CRC including genetic factors 
were limited to a qualitative synthesis [8]. Hence, to our 
knowledge, our study is the first to investigate, through 
a quantitative approach, the improvement in discrimi-
natory accuracy that can be obtained through the incor-
poration of SNPs into prediction models for CRC in 
addition to traditional risk factors. We also assessed 
which factors affect such improvement.

However, our study has some limitations. As previously 
mentioned, we identified extremely different prediction 
models, both in terms of genetic factors included in the 
models and in the methods used to include them -which 
range from weighted and unweighted GRS, to machine 
learning methods. The accuracy of a model, in terms of 
AUC values, depends not only on predictors that were 
used, but also on the method used for its construction. 
[64] Hence, as expected, this led to high heterogeneity 
of the results of our meta-analysis, which parallels what 
was previously described by Fung et al. regarding breast 
cancer [58]. Even though we showed that some factors 
partially explain such heterogeneity, our results should 
be considered exploratory and not conclusive due to the 
differences showed by included studies regarding chosen 
SNPs and traditional risk factors, as well as GRS compu-
tation methods.

Moreover, we found very limited high-quality evi-
dence, with only one study having an overall low risk of 
bias [65], while majority had a high risk of bias. This not 
only limits the strength of our results, but also strongly 
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suggests the need for better reporting, using as guidance 
the GRIPS Statement [66] or its updates, such as Poly-
genic Risk Score Reporting Standards (PRS-RS) [67], and 
higher quality research in the field of prediction models, 
which applies to CRC, and other chronic conditions – 
e.g. cardiovascular diseases [68]. Notably, all these factors 
affecting heterogeneity might have had an impact also on 
other estimates we reported in the analysis. Indeed, dis-
criminatory accuracy of prediction models is expected 
to improve with the addition of newly discovered SNPs, 
[60] partially in contrast with our results. However, 
recently Khera et al. constructed 30 PRSs using millions 
of SNPs for five common diseases, obtaining PRSs with 
lower AUC values than those based on genome-wide sig-
nificant SNPs only [69, 70]. This underlines the striking 
importance of an appropriate choice of SNPs to include 
in the models [58]. In addition, it should be noted that 
some SNPs used for risk prediction models by studies 
included in our analysis might have not been confirmed 
as risk loci by subsequent larger GWASs.

Furthermore, while recent research efforts in the field 
of PRS modelling are going towards the inclusion of 
thousand or even million SNPs into prediction mod-
els through the use of sophisticated methods, [70] such 
as LDpred2, lassosum, PRS-CS, and others, [71–73] the 
highest number of SNPs in the models included in our 
analyses was less than one hundred, thus limiting the 
applicability of our findings.

To further implement and advance knowledge in the 
field, in near the future, the adequate application of 
existing guidelines to improve the quality of prediction 
model studies, especially regarding study design and/or 
standardization of methodology to conduct these types 
of study, will be essential [20]. We showed that the addi-
tion of genetic factors into a prediction model with only 
traditional risk factors improves its performance, even 
if slightly. However, it is arguable if such improvement 
could really have an impact on populations’ health. In 
particular, in the field of disease prediction, great atten-
tion should be paid not only to the prediction perfor-
mance, but also to clinical utility of the models [60]. As 
for CRC, disease prediction might play a key role in the 
personalization of screening programs, which could start 
earlier for individuals proven to be at higher risk com-
pared with the average population. Hence, the use of a 
prediction model, especially if also incorporating genetic 
factors, might greatly impact starting age of screening 
[35, 74]. In addition, knowing own personal risk of cancer 
could also be a useful trigger for individuals to improve 
their adherence to screening programs, which is known 
to be far from the target levels [75].

The addition of genetic information may offer greater 
benefit when the models are used for risk prediction 

among specific subgroups of the population [8, 58]. This 
might imply that, in the future, this kinds of screen-
ing interventions could be an implemented multi-step 
process: the first regards the stratification of individuals 
according to their level of risk, followed by personaliza-
tion of the interventions to carry out [58].

Eventually, as recently reported by Naber et  al. [76], 
if a prediction model having an AUC of at least 0.65 is 
adopted, stratified screening for CRC becomes cost-
effective compared with the current uniform screening 
[77]. This further underlines the importance to carry out 
further research in this field to improve performances of 
developed prediction models.

Conclusions
The integration of genetic information into traditional 
prediction risk models improves the discrimination accu-
racy respect to CRC. However, we could not find any 
association or correlation respect to the number of SNPs 
added to the model and an AUC improvement. High het-
erogeneity in the choice of baseline model, method of 
incorporating genetic information, and studied popula-
tion suggest that standardization in the conduction of this 
kind of studies be needed. Further steps in research are 
surely needed in order to improve knowledge, increase 
comprehension and target people who would benefit 
more from this intervention. It is also crucial to consider 
how to apply the studied models into clinical and real-life 
settings, in fact, the implementation of prediction mod-
els into practice will require a better comprehension of 
potential economic benefits and organizational effects, 
as well as patient safety, ethical, social, and legal implica-
tions, which will make the impact of polygenic prediction 
models on Health Systems clearer.
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