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Abstract

Background: Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individual-
ized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only
traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models
including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accu-
racy when adding SNPs to a prediction model with only traditional risk factors.

Methods: We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk pre-
diction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number
of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We
estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using
random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with
AUC improvement.

Results: We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant
trend in AUC improvement according to the number of SNPs (p for trend =0.774), and no correlation between the
number of SNPs and AUC improvement (p =0.695). Pooled AUC improvement was 0.040 (95% Cl: 0.035, 0.045), and
the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement
obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved
better AUC improvement with the incorporation of SNPs compared with those developed among individuals of
European ancestry.

Conclusions: Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of
SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further
research is needed.

Keywords: Colorectal cancer, Prediction models, Single nucleotide polymorphisms, Genetic risk score, Polygenic,
Meta-analysis

Introduction

Colorectal cancer (CRC) is currently the third most com-

monly diagnosed type of cancer and the second cause

of cancer death worldwide, with an estimated 1.8 mil-
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of the country, with a cumulative risk of CRC or CRC
death three times higher in countries with a high Human
Development Index (HDI) than countries with a medium
or low HDI [1].

Over the last decade, the majority of the countries
in Europe, Oceania and North America witnessed a
decrease in CRC mortality [2]. Likely, one of the main
reasons for such a reduction in mortality rates in West-
ern or developed countries could be related to the
adoption of screening programs for CRC. As for CRC
screening, different methods and strategies are effective
at reducing its mortality and have been implemented
in different countries worldwide, the most represented
by fecal occult blood testing and fecal immunochemi-
cal test [3—-6]. However, in recent years researchers have
explored the possibilities of stratified screening, through
the use of prediction models that could guide CRC risk
assessment for asymptomatic patients [7]. In particu-
lar, most recent research in this field has focused on the
inclusion of genetic factors into prediction models, par-
ticularly through the use of a genetic risk score (GRS)
or a polygenic risk score (PRS) [8]. Furthermore, the
increasing number of genome-wide association studies
(GWASs) that are being conducted, with more than 70
GWASs currently published for CRC [9], is leading to a
progressive improvement of our knowledge regarding the
impact of common genetic variants or single nucleotide
polymorphisms (SNPs) on the risk of CRC. In this sense,
it should be noted that up to 35% of inter-individual vari-
ability in CRC risk has been attributed to genetic factors
[10, 11], thus making the importance of this field for pub-
lic health evident. Genetic factors could guide CRC risk
assessment, thus improving the effectiveness of currently
available screening strategies.

However, the methods currently used by researchers
to incorporate genetic factors into prediction models for
CRC and the characteristics of the latter are highly het-
erogeneous [8]. In addition, the potential improvement
in discriminatory accuracy yielded by the addition of
genetic factors to CRC prediction models including only
traditional risk factors is still unclear, as it is not certain
whether the number of genetic variants included in the
models are related to such improvement.

For these reasons, the primary aim of the present study
is to perform a systematic review regarding polygenic
risk prediction models for CRC in order to identify which
prediction models including genetic risk variants for
CRC have been reported in the Scientific Literature.

The secondary aim is to assess the impact, in terms of
improvement in discriminatory accuracy, of the addition
of SNPs into prediction models with only traditional risk
factors, and to test whether there is any relation between
the number of SNPs included in the models and the
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improvement of their discriminatory accuracy. In addi-
tion, we aimed to evaluate which factors, besides the
number of SNPs, influence the improvement of discrimi-
natory accuracy.

Methods and materials

We registered a protocol for this review on PROSPERO
(Record ID: CRD42019135304), the international pro-
spective register of systematic reviews. We uploaded on
the PROSPERO register, prior to completing data extrac-
tion, the review title, timescale, team details, methods,
and general information.

Search strategy and study selection

We queried Pubmed, Web of Knowledge, Embase and
CINAHL Complete electronic databases up to February
2020 using the elements of the Population, Intervention,
Comparator, Outcome (PICO) model (P, population/
patient; I, intervention/indicator; C, comparator/con-
trol; and O, outcome) [12]. In detail, our study population
was represented by colorectal cancer; the intervention
by SNPs; the comparator was none, and outcome was
represented by risk prediction models. For this rea-
son the following search string was built: (“Colorectal
Neoplasms”[Mesh] OR “colorectal cancer” OR “colon
cancer”) AND (“genetic variant” OR “genetic variants”
OR “genetic variation” OR “genetic data” OR polymor-
phism OR SNP OR SNPs OR polygenic) AND (“risk
stratification” OR “risk model” OR “risk profile” OR “risk
profiling” OR “risk prediction” OR “risk determination”
OR “risk discrimination” OR “risk score” OR “predictive
model” OR “prediction model” OR “prediction models”
OR “stratified screening”). The search was refined by
hand searching and analysis of bibliographic citations in
order to identify missing articles. No publication time
limits were applied.

The manuscript was written following the recommen-
dations of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement (Sup-
plementary material) [13].

We systematically searched databases to retrieve all
eligible scientific studies that developed, compared or
validated a prediction model (or clinical prediction rule
based on a model) using multiple (at least two) SNPs to
predict the risk of CRC.

Two independent investigators (M.M. and M.S.)
screened titles and abstracts of all potentially pertinent
articles to identify eligible studies. We obtained, read and
included, if relevant, full papers following the same pro-
cedures. At all levels, any discrepancies and disagreement
were solved by consensus or by involving a third investi-
gator (R.P).
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We included English-written peer-reviewed papers
focusing on sporadic CRC reporting primary data and
that evaluated the combined effect of two or more genes
on CRC risk (e.g. GRS or PRS) or that reported a formal
prediction model using genetic factors.

We excluded all studies that tested a model on simu-
lated populations, pediatric populations, or dealing with
inherited forms of colorectal cancer (e.g. Lynch syn-
drome). Furthermore, we did not include in this review
commentaries, editorials, review papers, case reports,
case series, book chapters, and articles with no primary
data. Lastly, as for articles updating previous ones, we
included only the last updated study.

Data extraction

Data extraction was conducted independently by two
researchers (M.M. and M.S.), for articles deemed rel-
evant, using an in-depth piloted data extraction form and
following an adapted version of the “CHecklist for critical
Appraisal and data extraction for systematic Reviews of
prediction Modelling Studies” (CHARMS) checklist [14].
Disagreements were solved through discussion or refer-
ral to a third reviewer (R.P.).

Extracted data include information regarding: author
details; year of publication; study design; study popu-
lation; sample size; genetic factors analyzed; GRS and
related methods used to calculate it; factors other than
genetic included in the model; internal and external vali-
dation; Area Under Curve (AUC) of non-SNP-enhanced
models; AUC of SNP-enhanced models; Integrated dis-
crimination improvement (IDI); and net reclassification
improvement (NRI). In particular, NRI and IDI are meas-
ures used to compare the performances of two models,
specifically an old model and a new model resulting from
the addition of one or more predictors to the old one. The
AUC is a measure of discriminatory accuracy and quan-
tifies the ability of the model to discriminate between
individuals with and without the outcome of interest
[15], while NRI quantifies the ability of the new model
to reclassify individuals compared to the previous one
[16, 17], and IDI represents the difference in discrimina-
tion slopes of the new and the previous models, with the
discrimination slope being the absolute difference in the
averages of estimated probabilities of the event between
those who experienced the event and those who did not
[17-19].

For studies including both individuals with adenomas
and CRC, we only extracted information about results
related to CRC.

Quality assessment
The risk of bias of included studies was assessed by two
investigators (M.M. and M.S.) using the Prediction
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model Risk Of Bias ASsessment Tool (PROBAST) [20].
PROBAST is a tool developed to assess the risk of bias
and applicability of prediction model studies and con-
tains a total of 20 signaling questions divided into 4 key
domains that regard: participants, predictors, outcome,
and analysis. Each domain is rated for risk of bias (low,
high or unclear risk of bias). The signaling questions can
be rated as “yes’, “probably yes’, “probably no’, “no” or “no
information”. Every signaling question is phrased so that
“yes” or “probably yes” mean absence of bias, while “no”
or “probably no” warn for potential risk of bias. The first
three domains that regard participants, predictors and
outcome are also assessed for concerns for applicability
(high, low, or unclear) to the defined review question.

Statistical analysis

Statistical analysis was carried out including only stud-
ies that reported both a model with only traditional
risk factors and one incorporating also genetic factors.
For studies that calculated the AUCs of the same model
constructed in different ways (e.g. counted GRS and
weighted GRS), only the model showing the best perfor-
mance or, for those showing the same values of AUC, the
simplest one was included in the analysis. Stratification
according to the number of SNPs was conducted using
tertiles based on the distribution of the number of SNPs
included in the models across included studies, with low-
est, mid, and highest tertile being represented by <22,
23-47, and > 48 SNPs, respectively. We calculated stand-
ard errors of AUCs using the Hanley and McNeil method
[15].

First, we tested whether a significant trend in the
increase of the AUC of the SNP-enhanced models
according to the number of SNPs included in the mod-
els could be observed. Secondly, we estimated the Pear-
son’s correlation coefficient between AUC improvement
and number of SNPs. Eventually, we investigated whether
the increasing number of SNPs added to the baseline
models determined an observable trend in the improve-
ment of the AUC by drawing a forest plot. In order to
calculate a pooled AUC improvement for SNP-enhanced
models compared with non-SNP-enhanced models,
we conducted a meta-analysis using the random effects
model, based on the assumption that clinical and meth-
odological heterogeneity was very likely to occur and to
have an effect on the results. We quantified statistical
inconsistency using the I statistic. Moreover, we assessed
whether specific factors (number of cases, number of
SNPs, publication year, AUC of non-SNP-enhanced
model, ethnicity of study participants, number of tra-
ditional risk factors in the model, and inclusion of gen-
der in the model both as a covariate or by stratification)
were significantly associated with AUC improvement and
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explained statistical heterogeneity by conducting meta-
regression, with p-values adjusted for multiple testing
computed using 1000 Monte-Carlo permutations.

All statistical analyses were conducted using the Stata
software version 13.0 [21].

Results

Study selection

The results of abstract and full-text screening with rea-
sons for exclusion are shown in the PRISMA flow dia-
gram [13] in Fig. 1. The database research resulted in
749 records. A total of 6 articles were retrieved through
hand search. After checking for duplicates, 566 articles
were analyzed for eligibility and 472 were excluded after
title and abstract screening. The remaining 94 articles
were selected for full-text review, resulting in 33 articles
included in the qualitative synthesis and 10, eventually,
included in the meta-analysis. The main causes for exclu-
sion were represented by: articles with no primary data or
with simulated populations (35%), non-pertinent articles
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(30%); articles with population represented by individuals
with inherited forms of colorectal cancer (20%); eventu-
ally, studies that were later updated and published (10%)
or that gathered together with CRC cancer and colorectal
benign polyps without distinguishing these two popula-
tions (5%).

Study and population characteristics

The main characteristics of the articles included in the
systematic review are summarized in Table 1. Studies
included in this review were published from 2008 and
2019. Most of them were case-control studies (78.79%)
[22, 23, 25, 27-36, 39, 41-43, 45-47, 49-54], followed
by 5 cohort studies (15.15%) [24, 38, 40, 44, 48], and 2
(6.06%) case-cohort studies [26, 37]. No sample overlap
can be reported across studies. Twenty-one (63.64%)
evaluated risk prediction models among individuals of
European ancestry [23, 24, 26-28, 30-32, 34, 35, 38—
46, 49, 50], 12 (36.36%) among a population of Asian

Records identified through
PR database searching
Pubmed (n = 89)
S ISI Web of Science (n = 193) Additional ds identified
= Embase (n = 173) itional records identifie:
& CINAHL (n = 294) through other sources
£ (n=6)
3
) v v
. Records after duplicates removed
(n =566)
£
s
L
@ Records screened R Records excluded
(n =566) g (n=472)
Full-text articles assessed Full-text articles excluded (n =
2 for eligibility > 20), reasons:
3 (n=53)
E’ no primary data (n=7),
“ topic not of interest(n = 6),
colorectal cancer risk
S Studies included in evaluated among specific
qualitative synthesis populations e.g.
) (n=33) familiarity/syndromes (n = 4),
studies that were updated (n
° =2),
< studies with individuals with
% Studies included in polyps or colorectal cancer
= quantitative synthesis together (n = 1).
(meta-analysis)
L (n=10)
Fig. 1 PRISMA flow-chart of the study selection process
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ancestry [22, 25, 29, 33, 36, 37, 47, 48, 51-54]. Population
sizes ranged from 603 [47] to 361,543 [44] individuals.

Risk prediction models characteristics

The number of genetic variants evaluated in the risk pre-
diction model ranged from 4 [54] to 696 SNPs [45]. A
complete list of SNPs included in each study is provided
in Table S1.

In order to include genetic factors into prediction mod-
els, different methodologies were investigated across the
included studies. In particular, 26 (78.79%) studies used
a GRS, 11 (42.31%) of which used a weighted GRS [31,
33-35, 40, 42-46, 52], other 6 (23.08%) studies used an
unweighted GRS [22, 24, 26-29]. Instead, a total of 9
studies (34.62%) used both unweighted and weighted
methods to develop risk scores [23, 25, 30, 32, 36, 37,
49-51].

Of the remaining 7 studies that did not use GRS
(21.21%), one [39] derived 7 genes from a larger set. After
gene profiling and cluster analysis, specific genes were
selected, further validated and evaluated for predictive
performance. The second one performed a Mendelian
randomization analysis to assess the association between
hyperlipidemia and CRC using Burgess statistics [55] and
a fixed-effects meta-analysis to derive final odds ratios
[41], while another one [47] applied logistic regression,
Jackknife feature selection and ANOVA testing to con-
struct the prediction model. Other authors [53] applied
a stepwise selection procedure in order to determine the
inclusion or exclusion of the putative risk factors from
the models, and the combined effect of genes on colorec-
tal cancer risk was assessed by multivariate unconditional
logistic regression. Instead, 2 studies used machine learn-
ing approaches [38, 54]; the last one evaluated the predic-
tive accuracy of genetic corrected serum levels of specific
biomarkers compared to uncorrected ones [48].

Difference in discriminatory accuracy

between SNP-enhanced and traditional risk factor models
Using the Swets classification [56], i.e. low accuracy
when the AUC is between 0.5 and 0.7, moderate accu-
racy between 0.7 and 0.9, only two of the studies that
included both a traditional risk factor only model and
one incorporating also genetic factors found a moder-
ate discriminatory accuracy. The first study [36] showed
that, only among males, AUC values for models includ-
ing counted GRS and weighted GRS reached 0.729 (95%
CI: 0.682, 0.767) and 0.719 (95% CI: 0.677, 0.761), respec-
tively; while models without SNPs showed low accuracy
(i.e. AUC lower than 0.7). The second study [37] found
moderate discriminatory accuracy for both SNP and
non-SNP-enhanced models. In particular when overall
colon and rectal cancer risk, colon cancer risk only, and
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rectal cancer risk only were separately considered, SNP-
enhanced models yielded AUC values of 0.74 (95% CI:
0.70, 0.78), 0.75 (95% CL 0.69, 0.81), and 0.74 (95% CI:
0.68, 0.79), respectively; while non-SNP-enhanced model
yielded AUC values of 0.73 (95% CI: 0.69, 0.78), 0.76 (95%
CI:0.70, 0.83), and 0.71 (95% CI: 0.65, 0.77), respectively.

A total of 4 articles [33, 37, 49, 51] used the NRI and/
or the IDI to compare the performances of two models
(traditional only vs genetic enhanced model). In the first
article [37], the NRI for a prediction model with GRS
respect to the traditional risk score model was 0.17 (95%
CI: —0.05, 0.37) for CRC, —0.17 (95% CIL: —0.33, 0.21)
for colon cancer only, and 0.41 (95% CI: 0.10, 0.68) for
rectal cancer only. The second one [33] found an increase
in the inclusive model compared to the non-genetic
model for the mean IDI (0.015) and the mean continuous
NRI (0.39). After defining risk categories of NRI by arbi-
trary cut-off values of 1.5 and 3% of 10-year absolute risk
of developing colorectal cancer, the mean NRI value was
equal to 0.12 when the non-genetic and inclusive mod-
els were compared. The third [49] showed an increase in
the NRI in all the models when different variables were
included in the model (Table 1). Eventually, the last one
[51] found that the traditional model with smoking sta-
tus showed worse performance respect to the combined
model that included genetic (simple count GRS,) and
smoking factors: NRI of 0.317 (95% CI: 0.225, 0.408) and
IDI of 0.031 (95% CI: 0.023, 0.039).

AUC analysis

A total of 14 risk prediction models, from 10 stud-
ies were included in the AUC analysis [23, 30, 32, 33,
35-37, 44, 49, 51]. We found no significant trend regard-
ing the increase in the AUC of the SNP-enhanced risk
prediction models according to the number of SNPs
included in the models and, when the AUC was tested
for trend, no significant association was retrieved (p for
trend =0.774). Pearson’s correlation coefficient between
AUC improvement and number of SNPs was also esti-
mated, r=—0.0993 (95% CI: —0.541, 0.385; p=0.6951).
No correlation could be found between the number of
SNPs and AUC increase.

The meta-analysis resulted in a pooled estimate of AUC
improvement for SNP-enhanced prediction models com-
pared with non-SNP-enhanced models of 0.040 (95% CI:
0.035, 0.045) for all 14 models (Fig. 2). High heterogene-
ity was found reaching 98.5% (p < 0.001).

A stratified analysis by number of SNPs included across
models was performed (Fig. 3). The AUC difference
between the SNPs-enhanced models respect to non-SNP-
enhanced models for the lowest tertile of SNPs added to
the model (less than or equal to 22 SNPs) resulted in an
improvement of 0.044 (95% CI: 0.022, 0.067). As to the
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Difference in % Number
Author, year AUC (95% Cl) Weight of SNPs
Jo J, 2012 - Count GRS, males —0-:— 0.037 (0.024, 0.050) 4.75 3
Jo J, 2012 - Count GRS, females —_— 0.047 (0.028, 0.066) 3.38 5
lwasaki M, 2017 i —_— 0.060 (0.047, 0.073) 4.60 6
Jung KJ, 2015 - ! 0.010 (0.006, 0.014) 6.92 7
Xin J, 2018 i —_— 0.084 (0.075, 0.093) 5.72 14
Ibafiez-Sanz G, 2017 - ERS and FH - 0.030 (0.025, 0.035) 6.76 21
Hsu L, 2015 - Females —_— 0.040 (0.025, 0.055) 4.19 27
Hsu L, 2015 - Males i —<¢—— 0.080 (0.063, 0.097) 3.59 27
Balavarca Y, 2019 - Count GRS 1'—0— 0.052 (0.039, 0.065) 4.74 39
Smith T, 2018 - Wells model * i 0.010 (0.009, 0.011) 7.26 41
Smith T, 2018 - Taylor model * : 0.010 (0.009, 0.011) 7.26 41
Weigl K, 2018 - Age, sex, previous colonoscopy, physical activity -5—0— 0.051 (0.039, 0.063) 4.82 48
Weigl K, 2018 - Age, sex, previous colonoscopy, physical activity, BMI ~ ——e—— 0.050 (0.038, 0.062) 4.86 48
Weigl K, 2018 - Age, sex i—o— 0.054 (0.041, 0.067) 4.72 48
Jeon J, 2018 - FH and ERS, males —— 0.030 (0.025, 0.035) 6.72 63
Jeon J, 2018 - FH, females | —— 0.050 (0.044, 0.056) 6.52 63
Jeon J, 2018 - FH, males i — 0.060 (0.053, 0.067) 6.25 63
Jeon J, 2018 - FH and ERS, females - : 0.020 (0.016, 0.024) 6.95 63
Overall, DL (12 = 98.5%, p = 0.000) <> 0.040 (0.035, 0.045)00.00
I T T I I
0 .025 .05 .075 A
NOTE: Weights are from random-effects model
Fig. 2 Overall improvement in AUC for SNP-enhanced prediction models compared with non-SNP-enhanced models

mid (23-47 SNPs) and highest tertiles (more than or
equal to 48 SNPs) of SNPs added, the estimates showed
an improvement in the AUC of 0.018 (95% CI: 0.014,
0.022) and 0.045 (95% CI: 0.031, 0.058), respectively.

The results of the meta-regression (Table 2) showed
that the factor more strongly associated, inversely, with
AUC improvement after the addition of SNPs to a model
with only traditional risk factors was the AUC of the
non-SNP-enhanced model (p<0.001). Furthermore, an
inverse significant association was found also between
the number of cases included in the study and AUC
improvement (p=0.002). Eventually, ethnicity was asso-
ciated with AUC improvement too (p =0.023), with bet-
ter AUC improvements achieved by models constructed
among Asians compared with individuals with European
ancestry. No significant associations were found for other
investigated factors. Overall, the factors included in the
meta-regression explained almost half statistical hetero-
geneity, with a residual I equal to 54.18%.

Quality assessment
Results of the overall risk of bias and applicability assess-
ment can be found in Table 3.

The majority of the studies (93.94%) were scored as
having high risk of bias [22-30, 32-42, 44-54, 57], 2
(6.06%) studies were rated as having an overall unclear
risk of bias [31, 43].

A total of 22 (66.67%) studies were assessed only for
the development of the model, 8 (24.24%) studies were
assessed for both model development and validation, 3
(9.09%) only for model validation.

As to the model development, 66.67, 36.67, 20.00
and 70.00% of the studies were assessed as having high
risk of bias respect to participants, predictors, out-
come and statistical analysis, respectively; 33.33, 20.00,
63.33, 3.33% were deemed as having a low risk of bias,
while 0.00, 43.33, 16.67, 26.67% were assessed as having
unclear risk of bias respectively for participants, pre-
dictors, outcome and statistical analysis assessment.

As to validation models, 27.27, 36.36, 45.45, 9.09% of
the included studies were assessed as having low risk of
bias for participants, predictors, outcome and statisti-
cal analysis, respectively; while 72.73, 63.64, 54.55 and
90.91% were rated as high or unclear risk of bias.

Regarding the applicability of prediction models, in
development model studies 30.00, 3.33, and 0.00% were
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Difference in % Number

SNP group and Author, year AUC (95% ClI) Weight of SNPs
Small number (n. of SNPs=<22)
Jo J, 2012 - Count GRS, males —0:— 0.037 (0.024, 0.050) 4.75 3
Jo J, 2012 - Count GRS, females —:—0— 0.047 (0.028, 0.066)  3.38 5
Iwasaki M, 2017 | —— 0.060 (0.047, 0.073)  4.60 6
Jung KJ, 2015 - : 0.010 (0.006, 0.014)  6.92 7
Xin J, 2018 X —_—— 0.084 (0.075,0.093) 5.72 14
Ibafiez-Sanz G, 2017 - ERS and FH - 0.030 (0.025, 0.035) 6.76 21
Subgroup, DL (12 = 98.1%, p = 0.000) ‘<:>> 0.044 (0.022, 0.067) 32.13

1

1
Intermediate number (n. of SNPs:23-47) :
Hsu L, 2015 - Females —_—— 0.040 (0.025, 0.055)  4.19 27
Hsu L, 2015 - Males : ———<——— 0.080(0.063,0.097) 3.59 27
Balavarca Y, 2019 - Count GRS ‘I—O— 0.052 (0.039, 0.065) 4.74 39
Smith T, 2018 - Wells model * | 0.010 (0.009, 0.011)  7.26 41
Smith T, 2018 - Taylor model . : 0.010 (0.009, 0.011)  7.26 41
Subgroup, DL (12 = 96.6%, p = 0.000) <> : 0.018 (0.014, 0.022) 27.03

1
Large number (n. of SNPs=48) :
Weigl K, 2018 - Age, sex, previous colonoscopy, physical activity :—0— 0.051 (0.039, 0.063)  4.82 48
Weigl K, 2018 - Age, sex, previous colonoscopy, physical activity, BMI -:—0— 0.050 (0.038, 0.062) 4.86 48
Weigl K, 2018 - Age, sex |—— 0.054 (0.041, 0.067) 4.72 48
Jeon J, 2018 - FH and ERS, males —— : 0.030 (0.025, 0.035)  6.72 63
Jeon J, 2018 - FH, females : —_—— 0.050 (0.044, 0.056)  6.52 63
Jeon J, 2018 - FH, males 1 —_—— 0.060 (0.053, 0.067) 6.25 63
Jeon J, 2018 - FH and ERS, females - : 0.020 (0.016, 0.024)  6.95 63
Subgroup, DL (12 = 96.3%, p = 0.000) 0 0.045 (0.031, 0.058) 40.84

1
Heterogeneity between groups: p = 0.000 :
Overall, DL (I2 = 98.5%, p = 0.000) <> 0.040 (0.035, 0.045) 100.00

I I I I
0 .025 .05 .075 A

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model

Fig. 3 Improvement in AUC for SNP-enhanced prediction models compared with non-SNP-enhanced models stratified by the tertile of number of

SNPs included in the model

Table 2 Results of the meta-regression assessing which factors are associated with AUC improvement of SNP-enhanced models

compared with non-SNP enhanced models

Coefficient 95% Confidence Interval p-value Adjusted p-value
Number of cases —0.000016 —0.0000243, — 7.63*107° 0.002 0.027
Number of SNPs 0.0004986 0.0000216, 0.0009757 0.042 0.170
Year of publication 0.0021238 —0.0012521, 0.0054998 0.191 0.468
AUC of non-SNP enhanced model —0.3485498 —04171094, —0.2799903 <0.001 <0.001
Ethnicity (Asian vs European) 0.0313164 0.0151622,0.0474705 0.002 0.023
Number of traditional risk factors in the model —0.0000322 —0.0010623, 0.0009979 0.946 1.000
Gender considered in the construction of the model —0.0086505 —0.0191019,0.001801 0.095 0316

SNP single nucleotide polymorphism

at high or unclear risk; in validation studies 18.18, 0.00,
9.09% were at high or unclear risk as to, respectively,
participants, predictors and outcome.

Discussion

Overall, from the 35 studies that we included in our
systematic review we identified prediction models
for CRC incorporating genetic factors, with extreme

heterogeneity regarding the number of genetic factors
included. Instead, as for the methods to include genetic
factors in the prediction model, most studies used a
weighted GRS, with a minority of them using either the
count model or both the weighted and count methods.
As for studies reporting the AUC value of the model,
most of them could not find a satisfactory discrimina-
tory accuracy (e.g. AUC>0.7 [56]) for their models, even
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though the addition of genetic factors to traditional risk
factors improved it, with an improvement in the AUC
ranging from 0.010 [37, 44] to 0.084 [51]. Nonetheless,
similarly to what was previously reported for breast can-
cer [58], we found no evidence of association or correla-
tion between the number of SNPs included in the model
and the improvement in the AUC value. However, among
studies comparing two or more models, only a minority
reported data on NRI or IDI, witnessing the need to bet-
ter quantify and report the improvement of accuracy of a
model when adding new biomarkers or genetic data [59].
According to the interpretation suggested by Pencina
et al. for NRI values, all these four studies showed a weak
or intermediate strength of SNPs (for all of them in the
form of a GRS), in terms of discriminatory potential, when
added to models with only traditional risk factors [17].

Regarding the pooled improvement in AUC, a clear
trend in the improvement of AUC related to the num-
ber of SNPs could not be found. The best results were
achieved in the lowest (<22 SNPs) and highest (>48
SNPs) tertiles of SNPs incorporated into the models,
which led to a larger improvement in AUC compared
with the mid tertile (23-47 SNPs). As expected, due
to the extremely high heterogeneity among variables,
regarding various SNPs and several environmental fac-
tors included in the retrieved prediction models and
among statistical methods used to incorporate such vari-
ables in the models, our meta-analysis results show sig-
nificant statistical heterogeneity, witnessed by the high
values of the I? obtained. For this reason, the results of
our study should be interpreted cautiously and cannot be
considered conclusive.

Similarly to our results, Fung et al. reported that the
addition of genetic information improved discriminatory
accuracy of the identified prediction models for breast
cancer, even though AUC improvement was found to be
not correlated or associated with the number of SNPs
that were included in the model [58].

It should be noted that the improvement of AUC val-
ues with the addition of biomarkers, such as SNPs, to a
model depends on the starting AUC value, which means
the higher the AUC value of the model including only
traditional risk factors, the smaller the improvement in
AUC after adding genetic information into the model
[17, 60, 61]. This was further confirmed by the results
of our meta-regression. In addition, an inverse relation
with AUC improvement was found also for the num-
ber of cases included in the study, which could actually
be linked to the AUC of the non-SNP enhanced model.
Likely, the higher the number of cases in the study, the
larger the AUC of the non-SNP enhanced model and,
hence, the smaller the AUC improvement.
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Furthermore, the ethnicity of study participants was
found to significantly affect AUC improvement, sug-
gesting possible differences in the role of genetic factors
between different populations, and witnessing the need
to foster research in the field of genetic prediction mod-
els for all ethnicities [62]. The distribution of genetic fac-
tors associated with a specific cancer may vary between
different ethnicities even more than traditional risk fac-
tors, thus the need for ethnicity-specific genome-wide
association studies (GWAS) is crucial to inform the
development of specific prediction models for different
ethnicities [22, 63]. Furthermore, the importance of the
chosen population in the construction of predictive mod-
els should be properly taken into account, as a model is
applicable only to the specific population it was designed
for [60].

Eventually, results of the meta-regression showed that
the number of SNPs, publication year, the number of tra-
ditional risk factors in the model, and inclusion of gender
in the model were not associated with AUC improve-
ment. However, they largely explained statistical hetero-
geneity between included studies.

As far as we know, previous systematic reviews on
prediction models for CRC including genetic factors
were limited to a qualitative synthesis [8]. Hence, to our
knowledge, our study is the first to investigate, through
a quantitative approach, the improvement in discrimi-
natory accuracy that can be obtained through the incor-
poration of SNPs into prediction models for CRC in
addition to traditional risk factors. We also assessed
which factors affect such improvement.

However, our study has some limitations. As previously
mentioned, we identified extremely different prediction
models, both in terms of genetic factors included in the
models and in the methods used to include them -which
range from weighted and unweighted GRS, to machine
learning methods. The accuracy of a model, in terms of
AUC values, depends not only on predictors that were
used, but also on the method used for its construction.
[64] Hence, as expected, this led to high heterogeneity
of the results of our meta-analysis, which parallels what
was previously described by Fung et al. regarding breast
cancer [58]. Even though we showed that some factors
partially explain such heterogeneity, our results should
be considered exploratory and not conclusive due to the
differences showed by included studies regarding chosen
SNPs and traditional risk factors, as well as GRS compu-
tation methods.

Moreover, we found very limited high-quality evi-
dence, with only one study having an overall low risk of
bias [65], while majority had a high risk of bias. This not
only limits the strength of our results, but also strongly
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suggests the need for better reporting, using as guidance
the GRIPS Statement [66] or its updates, such as Poly-
genic Risk Score Reporting Standards (PRS-RS) [67], and
higher quality research in the field of prediction models,
which applies to CRC, and other chronic conditions —
e.g. cardiovascular diseases [68]. Notably, all these factors
affecting heterogeneity might have had an impact also on
other estimates we reported in the analysis. Indeed, dis-
criminatory accuracy of prediction models is expected
to improve with the addition of newly discovered SNPs,
[60] partially in contrast with our results. However,
recently Khera et al. constructed 30 PRSs using millions
of SNPs for five common diseases, obtaining PRSs with
lower AUC values than those based on genome-wide sig-
nificant SNPs only [69, 70]. This underlines the striking
importance of an appropriate choice of SNPs to include
in the models [58]. In addition, it should be noted that
some SNPs used for risk prediction models by studies
included in our analysis might have not been confirmed
as risk loci by subsequent larger GWASs.

Furthermore, while recent research efforts in the field
of PRS modelling are going towards the inclusion of
thousand or even million SNPs into prediction mod-
els through the use of sophisticated methods, [70] such
as LDpred2, lassosum, PRS-CS, and others, [71-73] the
highest number of SNPs in the models included in our
analyses was less than one hundred, thus limiting the
applicability of our findings.

To further implement and advance knowledge in the
field, in near the future, the adequate application of
existing guidelines to improve the quality of prediction
model studies, especially regarding study design and/or
standardization of methodology to conduct these types
of study, will be essential [20]. We showed that the addi-
tion of genetic factors into a prediction model with only
traditional risk factors improves its performance, even
if slightly. However, it is arguable if such improvement
could really have an impact on populations’ health. In
particular, in the field of disease prediction, great atten-
tion should be paid not only to the prediction perfor-
mance, but also to clinical utility of the models [60]. As
for CRC, disease prediction might play a key role in the
personalization of screening programs, which could start
earlier for individuals proven to be at higher risk com-
pared with the average population. Hence, the use of a
prediction model, especially if also incorporating genetic
factors, might greatly impact starting age of screening
[35, 74]. In addition, knowing own personal risk of cancer
could also be a useful trigger for individuals to improve
their adherence to screening programs, which is known
to be far from the target levels [75].

The addition of genetic information may offer greater
benefit when the models are used for risk prediction
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among specific subgroups of the population [8, 58]. This
might imply that, in the future, this kinds of screen-
ing interventions could be an implemented multi-step
process: the first regards the stratification of individuals
according to their level of risk, followed by personaliza-
tion of the interventions to carry out [58].

Eventually, as recently reported by Naber et al. [76],
if a prediction model having an AUC of at least 0.65 is
adopted, stratified screening for CRC becomes cost-
effective compared with the current uniform screening
[77]. This further underlines the importance to carry out
further research in this field to improve performances of
developed prediction models.

Conclusions

The integration of genetic information into traditional
prediction risk models improves the discrimination accu-
racy respect to CRC. However, we could not find any
association or correlation respect to the number of SNPs
added to the model and an AUC improvement. High het-
erogeneity in the choice of baseline model, method of
incorporating genetic information, and studied popula-
tion suggest that standardization in the conduction of this
kind of studies be needed. Further steps in research are
surely needed in order to improve knowledge, increase
comprehension and target people who would benefit
more from this intervention. It is also crucial to consider
how to apply the studied models into clinical and real-life
settings, in fact, the implementation of prediction mod-
els into practice will require a better comprehension of
potential economic benefits and organizational effects,
as well as patient safety, ethical, social, and legal implica-
tions, which will make the impact of polygenic prediction
models on Health Systems clearer.
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