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Abstract 

Background:  The clinical outcome of Philadelphia chromosome-negative B cell acute lymphoblastic leukemia (Ph-
neg B-ALL) varies considerably from one person to another after clinical treatment due to lack of targeted therapies 
and leukemia’s heterogeneity. Ferroptosis is a recently discovered programmed cell death strongly correlated with 
cancers. Nevertheless, few related studies have reported its significance in acute lymphoblastic leukemia.

Methods:  Herein, we collected clinical data of 80 Ph-neg B-ALL patients diagnosed in our center and performed 
RNA-seq with their initial bone marrow fluid samples. Throughout unsupervised machine learning K-means clustering 
with 24 ferroptosis related genes (FRGs), the clustered patients were parted into three variant risk groups and were 
performed with bioinformatics analysis.

Results:  As a result, we discovered significant heterogeneity of both immune microenvironment and genomic vari-
ance. Furthermore, the immune check point inhibitors response and potential implementation of Sorafenib in Ph-neg 
B-ALL was also analyzed in our cohort. Lastly, one prognostic model based on 8 FRGs was developed to evaluate the 
risk of Ph-neg B-ALL patients.

Conclusion:  Jointly, our study proved the crucial role of ferroptosis in Ph-neg B-ALL and Sorafenib is likely to improve 
the survival of high-risk Ph-neg B-ALL patients.
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Background
B cell acute lymphoblastic leukemia (B-ALL) diagnosis 
and treatment had achieved remarkable improvement 
over the past decades. Thanks to the discovery of tyros-
ine kinase inhibitor (TKI), the survival of Philadelphia 
chromosome-positive B cell acute lymphoblastic leuke-
mia was significantly prolonged [1]. However, more than 

50% of B-ALL patients were negative in Philadelphia 
chromosome screening [2] and the prognosis of Phila-
delphia chromosome-negative B cell acute lymphoblastic 
leukemia (Ph-neg B-ALL) is heterogeneous [3]. Although 
chimeric antigen receptor T cells (CAR-T) therapy spe-
cifically targeting B cell antigens such as CD19 and CD22 
benefited (for some cases) of refractory or relapsed 
B-ALL (R/R B-ALL), exhaustion and relapse of CAR-T 
after CAR-T therapy had limited its long-term efficiency 
[4]. Consequently, the exploration of new mechanisms 
involving Ph-neg B-ALL and therapeutic targets are cru-
cially needed.
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Ferroptosis was identified back in 2012 by Dixon [5], it 
is a form of cell death characterized by an overwhelming, 
iron-dependent accumulation of lethal lipids and reactive 
oxygen species (ROS) [6]. Several studies have confirmed 
that ferroptosis leads to tumor cells death and inhibits 
tumor growth [7–9]. On the other hand, apoptosis as 
another well-known form of cell death has been exten-
sively investigated in the past 30 years while the clinical 
implementation of drugs targeting apoptosis regulators 
in cancers still faces some challenges [10]. Therefore, 
targeting recently identified ferroptosis processes might 
provide an efficient way to suppress tumor growth espe-
cially in tumors resistant to apoptosis inducers.

Although, understanding ferroptosis entirely is far from 
completely clear, researchers have identified several genes 
strongly correlated to ferroptosis progress. However, 
the core role of ferroptosis in Ph-neg B-ALL remained 
unclear. In this study, we aimed to explore the potential 
involvement of ferroptosis in the Ph-neg ALL patients 
with 24 ferroptosis related genes (FRGs) reported in the 
former research [11]. Primarily, we planned to evaluate 
prognostic significance of the FRGs in the Ph-neg ALL 
patients with unsupervised clustering and perform the 
bioinformatics-based analysis to reveal the mechanism of 
ferroptosis-involved genetic and biological heterogene-
ity. Secondly, whether the variant degrees of ferroptosis 
involvement correlated with immune microenvironment 
of leukemia was the other theme of our research for the 
emerging role of immune therapies in the field of cancers. 
Lastly, we expected to find out a certain kind of ferrop-
tosis-inducers to treat high-risk Ph-neg ALL patients 
potentially.

Methods
Patients
A total of 80 patients diagnosed as de novo Ph-neg B-ALL 
were admitted in our center between October 2015 and 
January 2021. The Philadelphia chromosome identifica-
tion was verified by both chromosome R-banding tech-
nique and fluorescence in  situ hybridization (FISH). 
Additionally, we collected the enrolled patients’ initial 
bone marrow fluid samples from the clinical biological 
sample database of our center. Our study was approved 
by the ethics board of the First Affiliated Hospital of 
Soochow University and performed in agreement with 
the Declaration of Helsinki. All patients signed consent 
forms and the median follow-up time was 23.5 months.

Targeted gene mutational analysis
Genomic DNA was extracted from BM (Invitrogen) at 
the diagnosis phase and further processed as described 
in our previous report [12]. Summarily, targeted genomic 
sequencing of 172 leukemia recurrent mutated genes 

(listed in Table S2) was performed using the Ion S5 sys-
tem (Personal Genome Machine, ThermoFisher, Grand 
Island, NY, USA) in 80 Ph-neg B-ALL patients and the 
trusted gene mutations were annotated after the filtra-
tion of synonymous and located variants outside coding 
sequence (CDS).

Whole transcription sequencing (RNA‑seq) and data 
processing
To explore the potential mechanism related to the prog-
nosis of Ph-neg B-ALL, we extracted total RNA with Tri-
zol reagent and ensured the qualification of each RNA 
sample. Furthermore, total transcriptome RNA sequenc-
ing (RNA-seq) was performed with qualified extracted 
RNA samples. Concisely, we first established the library 
of each sample according to the protocol recommended 
by NEBNext® Ultra™ RNA library Prep Kit for Illumina®. 
Subsequently, we quantified the libraries by both Qubit 
3.0 and Agilent 2100, and then ensured the effective con-
centration of each library more than 10 nM through fluo-
rescent quantitative PCR (qPCR). Lastly, these libraries 
were sequenced on the HiSeq sequencing platform after 
clustering by Hiseq PE Cluster Kit v4-cBot-HS.

To generate the gene expression data for the upcoming 
analysis, we filtered the raw sequencing data to remove 
joint sequences and bad-qualified results in the first step. 
Then the filtered data were annotated in the HISAT2 
software with the reference file downloaded from 
ENSEMBL database (http://​www.​ensem​bl.​org/​index.​
html). Finally, reads count for each gene in the above 
samples was counted by HTSeq v0.6.0 and fragments per 
kilobase million mapped reads (FPKM) was then calcu-
lated to represent the expression level of genes in each 
sample. The formula is shown as: FPKM =

10
6
∗F

NL/102
 . (F is 

the number of fragments in a certain sample that is 
assigned a certain gene, N is the total number of mapped 
reads in the certain sample and L is the length of the cer-
tain gene.)

Oncomine analysis
In the purpose of evaluate the ferroptosis role in B-ALL, 
we visited the Oncomine database (https://​www.​oncom​
ine.​org/​resou​rce) and performed the FRGs’RNA-level 
meta-analysis to the comparisons between the B-ALL 
samples and the normal controls in multiple B-ALL data-
sets [13–15]. The significance of FRGs variance was com-
puted in the form of -log10 (P-value).

K‑means clustering
K-means clustering is one of the most popular algorithms 
of unsupervised machine learning, processed with the 
Scikit-learn package V0.24.2 in Python V3.8, the FPKM 
values of 24 FRGs in 80 Ph-neg B-ALL samples were 
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standardized in the range of [0,1] before clustering to 
eliminate the influence of dimension and variation range. 
Thereafter, the dimension was reduced from 24 to 2 after 
the principal component analysis (PCA). Furthermore, 
the most significant K value was determined with the 
‘elbow’ method. Eventually, a total of 80 samples were 
parted into variant groups according to the K-means 
clustering results. To assess the clustering models, we uti-
lized the adjusted rand index (ARI), the adjusted mutual 
index (AMI), the V-measure score, the Fowlkes–Mallows 
index (FMI), the Silhouette Coefficient and the Calinski-
Harabaz index.

Immune characteristics of the sample clusters
To investigate the variance of the immune infiltration in 
between the clusters, the RNA-seq data were processed 
with the CIBERSORTx algorithm [16]. A number 22 
variant immune cells infiltration levels were calculated, 
and the results adequate with P-value < 0.05 were then 
adopted for further analysis. K means clustering was also 
used in the abovementioned way to divide 80 qualified 
samples into five components according to the immune 
infiltration results to demonstrate the feature differences 
among the three groups with variant degrees of risk.. Five 
was chosen as the k-value to perform the clustering to 
ignore the immune cells with extremely low infiltration 
and to appear the making-up difference of the samples 
with diverse immune infiltration in the variant groups 
apparently. We further utilized the ESTIMATE algorithm 
to estimate the purity of the tumor, and the R package 
“estimate” for storm and the immune cells ratio, we then 
utilized ESTIMATE score to evaluate immune statement 
of leukemia’s micro-environment [17]. The cytolytic score 
generated from the average log10 value of five granzymes 
and perforin-1 (PRF1) gene expressions and the inflam-
matory score calculated in former reports [18, 19] were 
assembled to reveal the cytotoxic immune cell activity. 
The response to PD-1 blockage therapy was estimated 
according to a previous reported formula [20].

Gene enrichment analysis
Different expression genes (DEGs) amongst the sam-
ple clusters were calculated with R package “edgeR”. The 
Gene oncology and KEGG pathway enrichment were 
annotated with R packages “clusterProfiler” and “enrich-
plot” based on FDR < 0.05 and |logFC| > 2 DEGs. The 
adjusted enriched terms at a P value< 0.05 were accepted. 
The Immune enrichment was calculated with package 
“ClueGO” using the Cytoscape software [21]. To explore 
the different involvement degree of ferroptosis, three 
modules of ferroptosis regulated genes (drivers, suppres-
sors and markers) were downloaded from the FerrDb 

database [22] to merge with FDR < 0.05 and |logFC| > 1 
DEGs.

Sorafenib sensitivity evaluation
The validated Sorafenib related genes established by for-
mer researches were downloaded from the Comparative 
Toxicogenomics Database (CTD) [23]. Six genes (FLT3 
positively while the 5 genes left negatively correlated to 
the susceptibility to Sorafenib) were picked and the sum 
of the six genes log10 (FPKM) was defined as Sorafenib 
sensitivity score to evaluate the susceptibility to Sorafenib 
among variant sample clusters. To validate the efficiency 
of this score system, we utilized both gene expression 
data of 1457 common cell lines provided from the Broad 
Institute Cancer Cell Line Encyclopedia (CCLE) (https://​
porta​ls.​broad​insti​tute.​org/​ccle) and half maximal inhibi-
tory concentration (IC50) data of Sorafenib in multiple 
cell lines from the Genomics of Drug Sensitivity in Can-
cer (GDSC) [24].

Development and validation of a prognostic model based 
on 8 FRGs
To utilize the prognosis value of FRGs, we first employed 
a Cox regression analysis to calculate both hazard ratios 
(HRs) and P values. FRGs that has a P value < 0.1 was 
adopted for further analysis. Thereafter, the least abso-
lute shrinkage and the selection operator (LASSO) Cox 
regression model were employed to narrow down the 
candidate genes and to develop the survival prediction 
model. As a final step, a total 8 FRGs along with their 
coefficients were retained, and the penalty parameter (λ) 
was limited by the minimum criteria. 70% of the samples 
were randomly selected to build the prediction model, 
while the 30% left was utilized as the validation cohort. 
The areas under curves (AUCs) of 1 year and 3 years sur-
vival were calculated with the R package ‘time ROC’. The 
Calibration curve was drawn to assess the efficiency of 
prediction. Subsequently, both the development and the 
validation cohorts survival were estimated by the Kaplan-
Meier method and the difference significance in sur-
vival between high and low risk groups was evaluated by 
means of a stratified log-rank test.

Statistical analysis
All statistical analyses were completed using R software 
(v4.0.2), Graph Pad Prism 8.0 (GraphPad Inc., San Diego, 
CA, USA) and Python software (v3.8). We then admin-
istered a two-way Student T test to perform a numerical 
comparison and a Chi-square test to analyze the cat-
egorical data to compare the clinical and the molecular 
parameters between groups. Univariate Cox regression 
was conducted to determine factors with an independ-
ent prognostic value. Multivariate Cox regression model 

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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was established as mentioned above. P value of < 0.05 
was considered to be statistically significant and was pre-
sented as *P < 0.05, **P < 0.01, or ***P < 0.001.

Results
Expression characteristics of FRGs in ALL
After performing the meta-analysis of the FRG-express-
ing difference between the B-ALL datasets and the 
datasets of normal controls in the Oncomine database, 
significant difference was noticed in 17 out of 24 FRGs 
(P < 0.05) indicating that the ferroptosis mechanism 
might play a potential role in the B-ALL development 
(Fig.  1A). In a more thorough way, the activity of the 
transferrin receptor (TFRC) and the permidine/spermine 
N1-acetyltransferase1 (SAT1) where the functions related 
the proferroptosis were significantly inhibited (Fig.  1B, 
C). Meanwhile, the cyclin-dependent kinase inhibitor1 
(CDKN1A) and the farnesyl-diphosphatefarnesyltrans-
ferase 1 (FDFT1) expression were significantly enhanced 
which might promote an antiferroptotic effect (Fig.  1D, 
E).

Variant risk clusters based on 24‑FRGs expression
Powered by K-means clustering, 80 Ph-neg B-ALL 
samples were divided into three variant risk clus-
ters (Fig.  2A). Combined with our clinical follow-up 
data, three clusters had significant survival difference 

(P = 0.036) (Fig.  2B). The model evaluation through k 
varying from 2 to 10, k = 3 was noted as best k value 
in 3 out of 6 methods while the remaining methods 
indicated that k = 2 was acceptable as well (Fig. 2C-H). 
Consequently, 25 samples were clustered as the ‘High-
risk’ group and 39 samples were included into the ‘Mid-
dle-risk’ group. The remaining 16 samples were defined 
as the ‘Low-risk’ group according to overall survival 
status.

Clinical and genetic characteristics of Ph‑neg B‑ALL 
patients
The included samples were clustered into a ‘High-risk’ 
group (n = 25), a ‘Middle-risk’ group (n = 39) and a 
‘Low-risk’ group (n = 16) based on the K-means cluster-
ing results. The median age in all patients was 26 years 
old (range 9–56). After performing a systematic anal-
ysis of the clinical data, three groups had significant 
differences in their molecular alterations (P = 0.0269) 
while no apparent differences in the complete blood 
count (CBC), the bone marrow blasts ratio, the immu-
nophenotyping and the chromosome karyotypes was 
noticed. Meanwhile, the treatment including CAR-T 
therapy and hematopoietic stem cell transplantation 
(HSCT) also had no major difference. Information in 
details was provided in Table S1.

Fig. 1  The meta-analysis of 24 FRGs expression in B-ALL compared to normal people in Oncomine database. A The -log10 of the P values after 
meta-analyses were shown. The results of over-expression genes remained the raw values while the results of rest under-expression genes 
were taken negative values of the raw data. The bars were shaded with variant colors to represent the expression difference of FRGs (Red: 
over-expression; Blue: under-expression; Black: no significant difference). B, C The top down-expressed genes TFRC and SAT1 results were shown. D, 
E The top over-expressed genes CDKN1A and FDFT1 results were captured
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Gene correlated to ferroptosis tended to mutate 
in the ‘high‑risk’ group
In order to decipher the genomic varietal spectrum of 
Ph-neg B-ALLs, all patients in our study underwent 
Next Generation Sequencing (NGS) with a panel of 
172 recurrent gene targets in hematologic malignan-
cies. These variants were detected in 66 out of the 80 
patients (82.5%) and the median number of variants per 
patient was 2 (range, 0–11). A total of 15 out of these 
80 (18.8%) patients carried one, and 51 (28.8%) patients 
harbored two (n = 23), three (n = 7) or at least four 
(n = 21) variants. The most frequently mutated genes 
were NRAS (n = 20, 25.0%), KRAS (n = 12, 15.0%), 

SETD2 (n = 10, 12.5%), FLT3 (n = 8, 10.0%), PTEN11 
(n = 8, 10.0%), and TP53 (n = 8, 10.0%).

Parted in three clusters, the ‘High-risk’ group con-
tained 45 variant mutated genes; there were 35 and 20 
different mutated genes in the ‘Middle-risk’ and the 
‘Low-risk’ groups separately. Considering the coordina-
tion of gene mutations classified in these groups, there 
was also apparent heterogeneity. We defined the con-
nection between two mutations in the same sample 
as one ‘edge’. As a result, the ‘High-risk’ group occu-
pied 147 edges, while the ‘Middle-risk’ group and the 
‘Low-risk’ groups included 67 and 26 edges separately 

Fig. 2  80 Ph-neg B-ALL patients were clustered into three groups by K-means clustering based on FRGs. A 80 dots representing enrolled Ph-neg 
B-ALL patients after PCA dimension reduction were located on two-dimensioned plane and circled into three groups according to the labels of 
the Kmeans clustering result. B The Kaplan-Meier analysis performed to three clusters was shown and there was significant difference among three 
clusters (P = 0.036). C-H Six common evaluation methods were adopted to demonstrate K = 3 was an ideal K value
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(Fig. 3A). Considering the differences in the group size, 
we standardized the results into 5.88 (High-risk), 1.72 
(Middle-risk), and 1.63 (Low-risk) edges per muta-
tion and demonstrated that more coordinated muta-
tions existed in the ‘High-risk’ group than the other 
groups. After the horizon comparison of mutations 
in three groups, the classifications of mutations in the 
descending order were the single ‘High-risk’ group, the 
single ‘Middle-risk’ group, the ‘High-risk’ & ‘Middle-
risk’ group, the ‘High-risk’ & ‘Middle-risk’ & ‘Low-risk’ 
group, the single ‘Low-risk’ group, the ‘Middle-risk’ & 

‘Low-risk’ group and the ‘High-risk’ & ‘Low-risk’ group 
(Fig. 3B).

Due to the machine-learning clustering based on FRGs, 
the interfered genes correlated to ferroptosis were likely 
to be varying in the genomics among different groups. 
In order to validate our hypothesis, we acquired ferrop-
tosis-correlated genes from the FerrDb. According to the 
Ferrdb classification, the genes were annotated as driv-
ers, suppressors and markers. In details, the ferroptosis 
drivers are genes that promote ferroptosis. The ferrop-
tosis suppressors are genes that prevent ferroptosis and 

Fig. 3  Genetic characteristics of 80 Ph-neg B-ALL patients and ferroptosis involvement analysis. A Coordinated mutation network. Their 
coordinated mutation relationships in three clusters (red: High-risk, blue: Middle-risk, green: Low-risk) and the mutated frequency of each gene (in 
the form of both node size and dark degree) were revealed. B The heterogeneity of mutations in three clusters was shown in the set-up picture 
after statistics. C The spectrum of gene mutations in 80 Ph-neg B-ALL patients clustered into three groups. Referred to FerrDb, NRAS, KRAS, FLT3 
and CDKN2A were annotated as ferroptosis driver genes (Fe-driver) while TP53 was annotated as a ferroptosis suppressor gene (Fe-suppressor). The 
rest mutated genes lacked of evidence correlated to ferroptosis were annotated as the genes negatively related to ferroptosis (Fe-negative). D To 
compare the ferroptosis related gene mutation among three groups, the accumulated mutation counts were divided by sample counts in variant 
groups separately. The number of Fe-drivers was significantly different between ‘High-risk’ group and ‘Low-risk’ group (P = 0.043)



Page 7 of 16Hong et al. BMC Cancer         (2021) 21:1331 	

the ferroptosis markers are genes that indicate the occur-
rence of ferroptosis. After merging our mutation data 
with the genes from the FerrDb, NRAS, KRAS, FLT3 and 
the CDKN2A, they were defined as the ferroptosis driv-
ers (Fe-driver) while TP53 was defined as the ferropto-
sis suppressor (Fe-suppressor). The remaining mutation 
genes were named as Fe-negative genes since there was 
no sufficient evidence to connect them with ferropto-
sis. Upon gathering the mutation data, we surprisingly 
found that Fe-drivers and Fe-suppressors were the high 
recurrent gene mutations in our gene mutation detec-
tion panel (Fig.  3C). Further analysis indicated that the 
Fe-diver gene mutations existed in the ‘High-risk’ group 
were much more significant compared to those in the 
‘Low-risk’ group after the scandalization with the sample 
counts (P = 0.043) (Fig. 3D).

Infiltrated immune cells difference among subgroups
Subsequently, we further explored the immune cell infil-
tration statement amongst the subgroups. Equipped with 
the CIBERSORTx method, 22 common immune cells 
were analyzed in 80 variant samples and excluded two 
samples where P value failed to meet the acquisition of 
‘< 0.05’ (Fig. 4A). In details, the B cells naïve plasma cells, 
the T cells CD4 memory activated, the macrophage M0, 
the macrophage M2 and the neutrophils were signifi-
cantly dissimilar between the ‘High-risk’ and the ‘Low-
risk’ groups (Fig.  4B). Meanwhile, after comparing the 
‘Middle-risk’ and ‘Low-risk’ group, we found that B cells 
naïve, Plasma cells, T cells CD8, T cells CD4 memory 
resting enriched in ‘Middle-risk’ group and monocytes, 
macrophages M0, mast cells resting and neutrophils were 
enriched in the ‘Low-risk’ group (Fig. 4C). Furthermore, 
B cell naïve, T cells CD4 memory resting, T cells CD4 
memory resting, T cell CD4 memory activated and mac-
rophages M2 had significantly variant enrichment lev-
els between the ‘High-risk’ and the ‘Middle-risk’ groups 
(Fig. 4D).

To demonstrate the correlation between the ferrop-
tosis and the immune cells infiltration, the relationship 
between the 24 FRGs expressions and the infiltration 
degree of 21 variant types of immune cells expect resting 
dendritic cells undetected in all samples was calculated 
with the Pearson correlation coefficient (Fig.  4E). The 
results showed that the expression of SAT1 enabled the 
ferroptosis enhancement regulated by TP53 was found 

positive to the infiltration of neutrophils (R = 0.816) while 
negative to the infiltration of naïve B cells (R = -0.584) 
and plasma cells (R = -0.519).

In order to further describe the heterogeneity of the 
immune cell infiltration in general among the three 
groups, we clustered the 80 samples into five subtypes 
based on the infiltrative levels of the 22 variant types 
of immune cells in each sample (C1 to C5). Apparently, 
there was significant difference (P < 0.000) between 
‘High-risk’ group and ‘Low-risk’ group. The difference 
between the ‘Middle-risk’ and the ‘Low-risk’ group was 
also significant (P = 0.001). C2 was mainly enriched in 
the ‘High-risk’ and the ‘Middle-risk’ groups while C3 
was enriched in the ‘Low-risk’ group. More information 
on the heterogeneity of the immune infiltration amongst 
groups was shown in Fig. 4F.

Immune characteristics and response to immune 
checkpoint inhibitors (ICIs) among subgroups
With immune therapy cropping up in cancer therapy, 
the investigation aiming at tumor micro environment 
revealed expected values. After analyzing DEGs with 
‘ClueGo’ package in Cytoscape software v3.8, the differ-
ences between the ‘High-risk’ and the ‘Low-risk’ groups 
mainly enriched in neutrophil activation, neutrophil 
migration, positive regulation of neutrophil degranu-
lation, negative regulation of leukocyte chemotaxis 
and macrophage activation immune signal pathways 
(Fig.  5A). On the other hand, the comparison between 
the ‘Middle-risk’ and the ‘Low-risk’ groups, neutrophil 
degranulation, complement receptor activity, neutrophil-
mediated killing of symbiont cell and macrophage acti-
vation immune signal pathways were mainly enriched 
(Fig. 5B).

‘ESTIMATE’ R package was an ideal tool to describe 
the immune statement of cancers based on gene tran-
scription data. After processing the gene expression data 
of 80 samples with ‘ESTIMATE’ algorithm, the stromal 
score, the immune score and the tumor purity were cal-
culated. The ‘Low-risk’ group ranked significantly higher 
in stromal score, immune score and lower tumor purity 
compared to the ‘High-risk’ and the ‘Middle-risk’ groups 
(Fig.  5C-E). These results suggested that the ‘High-risk’ 
and the ‘Middle-risk’ groups had relatively fewer immune 
cells in tumor micro-environment (TME) which ben-
efited for the living of leukemia.

(See figure on next page.)
Fig. 4  The Immune infiltration variance among the three clusters and their correlation with ferroptosis. A The infiltration statements of 22 variant 
types of immune cells of each sample were calculated with CIBERSORTx algorithm. B-D The significant differences of immune cells infiltration 
between any two groups from three variant risk clusters were shown in the violin pictures. E The relationship between the immune infiltration and 
FRGs was calculated with Pearson correlation coefficient. F After clustering 22 infiltrated immune cells in 5 clusters (C1 to C5), we found both the 
difference (−log10 (P.val) =3.84) between ‘High-risk’ group and ‘Low-risk’ group and the difference (−log10 (P.val) =1.12) between ‘Middle-risk’ 
group and ‘Low-risk’ group were significant
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Fig. 4  (See legend on previous page.)
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Furthermore, the function of T cells attacking against 
leukemia with cytolytic score and inflammatory score 
was estimated. There were significant differences in cyto-
lytic scores and inflammatory scores between ‘High-risk’ 
and ‘Low-risk’ groups (Fig. 5F, G) suggesting the malfunc-
tion of T cells in TME as one explanation of the relatively 
poor prognosis of the ‘High-risk’ groups. Oppositely, the 
HLA expression was often reduced in cancers for escap-
ing the immune surveillance. In our study, the HLA 
expression (including HLA-A, B, C) was relatively lower 
in the ‘High-risk’ and the ‘Middle-risk’ group compared 
to the ‘Low-risk’ group (Fig. 5H).

Immune checkpoint inhibitors (ICIs) have been recog-
nized as a promoting therapy in solid tumors. However, 
the role of ICIs in leukemia is still doubtful. Referred 

to the IFN-γ signature and expanded immune signa-
ture, there were no significant difference of the clinical 
response to PD-1 blockage among three groups (Fig. 5I, 
J).

Significant differences in gene enrichment analysis
In an attempt to explore the mechanism of ferropto-
sis influencing the prognosis of Ph-neg B-ALL patients, 
we merged the DEGs between any two groups with the 
ferroptosis correlated genes from FerrDb (Fig.  6A). As 
expected, the most notable result was that the ferropto-
sis correlated genes tended to enrich in the comparison 
between the ‘High-risk’, the ‘Middle-risk’, and the ‘Low-
risk’ groups (Fig. 6B). Furthermore, the ferroptosis driver 
genes were the dominant genes in enriched ferroptosis 

Fig. 5  Leukemia’s microenvironment analysis and the response to immune checkpoint inhibitors (ICIs). A The immune enrichment analysis of 
differential expression genes (DEGs) from the comparison result between ‘High-risk’ group and ‘Low-risk’ group. B The immune enrichment analysis 
result of DEGs between ‘Middle-risk’ and ‘Low-risk’ group. C-E The variances of the leukemia microenvironment were reflexed in stromal score, 
immune score and tumor purity powered by ‘ESTIMATE’ algorithm. F, G The specific killing effect of cytotoxic T lymphocytes was evaluated with 
cytolytic score and inflammatory score. H The HLA expression level differences among three groups were shown. I, J There was no significant 
difference of the scores of IFN-γ signature or expanded immune signature among three groups which indicated the patients from variant groups 
had the similar responses to PD-1 blockers
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Fig. 6  Ferroptosis and GO/KEGG pathway enrichment of DEGs. A The different expression genes (DEGs) (|logFC| > 1, FDR < 0.05) resulted from the 
comparison among three variant risk clusters through the R package edgeR were merged with ferroptosis regulated genes from FerrDb to do 
the ferroptosis enrichment. B, C Compared to the DEGs between the ‘Middle-risk’ (M-r) and the ‘Low-risk’ groups (L-r), there were more ferroptosis 
regulated genes enriching in the DEGs between the ‘High-risk’ (H-r) or ‘Middle-risk’ (M-r) and the ‘Low-risk’ groups. Meanwhile, in three types of 
ferroptosis regulated genes, ferroptosis driver genes were dominant in the results of L-r vs. H-r while ferroptosis marker genes were the main 
component after the comparison between L-r and M-r. D, E The GO and KEGG pathway enrichment of DEGs (|logFC| > 2, FDR < 0.05) between 
‘High-risk’ group and ‘Low-risk’ group. F, G The GO and KEGG pathway enrichment of DEGs (|logFC| > 2, FDR < 0.05) between ‘Middle-risk’ group and 
‘Low-risk’ group
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correlated genes when compared with ‘High-risk’ and 
‘Low-risk’ groups. Meanwhile, as a result of the compari-
son between the ‘Middle-risk’ and the ‘Low-risk’ groups, 
ferroptosis marker genes were the most dominant. The 
equal number of ferroptosis correlated genes in the DEGs 
between ‘High-risk’ and ‘Middle-risk’ groups (Fig. 6C).

Gene oncology (GO) and KEGG pathway enrichment 
of DEGs were performed between the ‘High-risk’, ‘Mid-
dle-risk’, and ‘Low-risk’ groups. In the enrichment results 
between ‘High-risk’ and ‘Low-risk’ groups, biological 
process (BP) term ‘neutrophil activation’, cellular compo-
nents (CC) term ‘tertiary granule’, and molecular function 
(MF) ‘immune receptor activity’ were the most trusted 
GO term (Fig. 6D). Meanwhile, ‘Hematopoietic cell line-
age’ was the most trusted KEGG pathway term (Fig. 6E). 
correspondingly, the biological process (BP) ‘neutrophil 
degranulation’, cellular components (CC) ‘specific gran-
ule’, molecular function (MF) ‘carbohydrate binding’ and 
KEGG pathway ‘Staphylococcus aureus infection’ terms 
were the most significantly enriched terms in the results 
when comparing the ‘Middle-risk’ and the ‘Low-risk’ 
groups (Fig. 6F, G).

Identification of the potential implementation of Sorafenib 
in ‘high‑risk’ Ph‑neg B‑ALL
Since Sorafenib is proved as a drug that is able to induce 
ferroptosis in cancers and also being implemented in the 
treatment of AML, we further explored the potential 
implement of Sorafenib in ALL.

Firstly, we compared the Sorafenib related genes 
acquired from the CTD database between ‘High-risk’ 
and ‘Low-risk’ groups. The comparison of the Sorafenib 
related genes between ‘Middle-risk’ and ‘Low-risk’ 
groups was done in the same way. After the comparisons, 
the genes which expressed highly in both the ‘High-risk’ 
and the ‘Middle-risk’ groups were recognized as the up-
regulated genes. Meanwhile, the genes expressed highly 
in the ‘Low-risk’ group in the both comparisons were 
defined as the down-regulated genes. The rest Sorafenib 
related genes were classified as the not-significant genes. 
As a result, we totally acquired 31 up-regulated genes 
(red, P < 0.05), 56 down-regulated genes (green, P < 0.05) 
and 45 not-significant genes (blue, P ≥ 0.05). High-confi-
dent interaction score (> 0.9) Protein-Protein Interaction 
analysis (PPI) of these Sorafenib correlated genes were 
performed referred to STRING database (http://​string-​
db.​org/) (Fig. 7A).

Afterwards, we selected six genes involved in the sus-
ceptibility of Sorafenib. They were FLT3 positively corre-
lated to the sensitivity of Sorafenib and MAPK1, MAPK3, 
GADD45G, MCL1, PINK1 and negatively related to the 
sensitivity of Sorafenib. Their expression differences 
between three groups were shown in Fig. 7B-G. In order 

to speculate the sensitivity of Sorafenib by combin-
ing these factors, we calculated the Sorafenib sensitivity 
score using the equation: log10 (FLT3)-log10 (MAPK1)-
log10 (MAPK3)-log10 (GADD45G)-log10 (MCL1)-log10 
(PINK1). Intriguingly, compared to ‘Low-risk’ group, 
‘High-risk’ and ‘Middle-risk’ groups were ranked as 
higher scores which indicated Ph-neg B-ALL patients in 
‘High-risk’ or ‘Middle-risk’ groups may be susceptible to 
the treatment with Sorafenib (Fig. 7H).

In the aim of verifying the efficiency of our established 
Sorafenib sensitivity score, we downloaded six gene 
expression data of the ALL cell lines NALM-6, SUP-B15 
and 697 from CCLE database (Fig.  7I) and then calcu-
lated the Sorafenib sensitivity score of the three lines. 
Correlated the real sensitivity in IC50 of these cell lines 
on GDSC database, we surprisingly found that with the 
increasing of Sorafenib Sensitivity Score, the IC50 of 
these cell lines decreased. These data proved that our 
score system was an effective tool to assess the suscepti-
bility of Sorafenib and Sorafenib may help to reverse the 
poor prognosis of Ph-neg B-ALL patients in ‘High-risk’ 
and ‘Middle-risk’ groups.

FRGs‑based model in help of survival evaluation of Ph‑neg 
B‑ALL
As our previous analysis had demonstrated that the 
24 FRGs enabled to cluster the Ph-neg B-ALL samples 
into variant-risk groups, univariate Cox regression was 
further employed to screen the FRGs influencing sur-
vival (Fig.  8A). The 8 genes (ALOX15, ATP5G3, CARS, 
CDKN1A, LPCAT3, SAT1, SLC1A5 and TFRC) that 
met the criteria of P < 0.1 were retained for modeling. 
The correlation between the 8 genes and the parame-
ters of the former K-means clustering were displayed in 
the form of heat map (Fig.  8B). Through employing the 
LASSO Cox regression analysis, an 8-gene signature was 
constructed referred to the optimum λ value (Fig. 8C, D). 
Time-dependent receiver operating characteristic (ROC) 
was adopted as a classical method to evaluate the sensi-
tivity and the specificity of the prognostic models. After 
calculating, the AUC was 0.716 for 1 year and 0.924 for 
3 year in the development cohort (Fig. 8E). On the other 
hand, the calibration curve was utilized to evaluate a 
3-year prediction efficiency of our established 8-gene 
multivariate Cox regression model (Fig. 8F). In the end, 
our model enabled to distinguish samples of favorable 
and poor prognosis in both development and validation 
groups after Kaplan-Meier analysis (Fig. 8G, H).

Discussion
In this study, we retrospectively collected clinical 
data of 80 Ph-neg B-ALLs treated in our center and 
the results revealed that the combination of 24 FRGs 

http://string-db.org/
http://string-db.org/
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expressions enabled to cluster these patients into 
three groups using the unsupervised machine learn-
ing algorithm Kmeans clustering. Moreover, there was 
a significant correlation between the immune micro-
environment and FRG-based clustering. In addition, 
the variant frequency of the ferroptosis regulated gene 
mutations among these groups and the gene functional 
enrichment mechanism were explored to explain these 
differences. Based on our findings on the ferroptosis 
related heterogeneity among the groups, we specu-
lated and validated that Sorafenib might be an effective 
drug to improve the poor prognosis of high-risk Ph-neg 
B-ALLs.

Ferroptosis is a recently discovered programming death 
in the characteristics of cell membrane damage due to 
the GPX4 loss of activity and the intracellular accumula-
tion of lipid reactive oxygen [25]. Accumulated evidence 
showed that the ferroptosis widely participates in tumo-
rigenesis and plays a promoting role in tumor therapy 
[26, 27]. However, there is a lack of studies highlight-
ing ferroptosis in B cell acute lymphoblastic leukemia. 
Moreover, the outcome of Ph-neg B-ALL after treatment 
was broadly variant due to lack of targeted therapy like 
imatinib in Philadelphia positive ALL. Here, we employed 
NGS technology to explore the heterogeneity in both 
genetic and transcriptional levels of Ph-neg B-ALLs with 

Fig. 7  Sorafenib was identified as a ferroptosis inducer expected to treat high-risk Ph-neg B-ALL patients. A The protein-protein interaction network 
composed of the genes correlated Sorafenib. (Red: significantly up-regulated genes in ‘High-risk’ group or ‘Middle-risk’ group; green: significantly 
down-regulated genes in ‘High-risk’ group or ‘Middle-risk’ group; blue: the genes with no significance among three groups) B-G The expression 
of six genes correlated with the susceptibility of Sorafenib among three clusters. H The Sorafenib sensitivity scores of the samples in three groups 
calculated with the expression of six Sorafenib sensitivity related genes. I Sorafenib sensitivity related gene expression of three representative B-ALL 
cell lines recorded in CCLE database were shown in the form of log10(RPKM). J Combined the gene expression of the three cell lines, each cell 
line was ranked with a sorafenib sensitivity score (blue). Analyzed with the sensitivity of three cell lines to Sorafenib (red, evaluated with IC50), we 
validated the higher the sorafenib sensitivity score was, the more sensitive to Sorafenib B-ALL was
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24 FRGs. Not only did we identify the expression of FRGs 
in ALL were widely different from the normal people, but 
we also established that the combination of FRGs expres-
sion had the ability to recognize variant risk groups of Ph-
neg B-ALL powered by Kmeans clustering. These results 
were the clinical reflection of evidences that the progres-
sion of leukemia is highly reliant on iron which maintains 
the rapid growth rate of leukemia cells [28–30].

Emerging immune check checkpoint inhibitors 
(ICIs) based therapy raised our attention to investi-
gate the leukemia’s immune microenvironment. How-
ever, the manner which the ferroptosis mechanism 
involves in leukemia immune microenvironment still in 
need for more research, our results have indicated the 

microenvironment aberrance accompanied by ferrop-
tosis difference. Compared to the ‘Middle-risk’ and the 
‘Low-risk’ groups; there was more B cells naïve infiltra-
tion related with higher burden of leukemia in ‘High-
risk’ groups. Moreover, CD4+ memory activated T 
cells significantly decreased in the ‘High-risk’ groups; 
it may attenuate the ferroptosis of leukemia induced by 
cytotoxic T cells according to previous reports [31]. In 
addition, the polarization of macrophages to an M2 phe-
notype was significantly outstanding in the ‘High-risk’ 
group. This phenomenon may involve in ferroptosis and 
leaded to stimulate leukemia growth ultimately [32]. Fur-
thermore, since there was little known about the role of 
ICIs in ALL, our research indicated that there was no 

Fig. 8  The development and validation of survival predicted model based on 8 FRGs. A Univariate Cox regression analysis of 24 FRGs. B Correlation 
betweenPCA1/2 and 8-survival correlated FRGs. C LASSO regression of the 8 survival-correlated FRGs. D Cross-validations for tuning the parameter 
selection in the LASSO regression. E, F Both ROC curves and the calibration demonstrated the predictive efficiency of the model. G, H Kaplan–Meier 
curves for the overall survival of variant risk patients from the development cohort and the validation cohort
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potentially higher benefits from PD-1 blockage ther-
apy in the ‘High-risk’ or ‘Middle-risk’ groups compared 
to the ‘Low-risk’ group. These results raised the idea of 
the implementation of ferroptosis inducers in the ‘High-
risk’ and the ‘Middle-risk’ groups which involved low 
immune cell infiltration. For one thing, leukemia micro-
environment with low immune cell infiltration facilitates 
the leukemia to escape the surveillance of the immune 
system [33]. On the other hand, the inflammatory envi-
ronment induced by ferroptosis inducers plays the 
chemotaxis effect to immune cells and changes the ‘cold’ 
leukemia to the ‘hot’ leukemia which is vulnerable to the 
chemo-therapy.

One of the reasons why ferroptosis closely participated 
in Ph-neg B-ALL is it has relatively high frequency of 
RAS and TP53 gene mutations which was involved in 
ferroptosis [34–36]. Based on these findings, the muta-
tion of ferroptosis driver genes were significantly con-
centrated in the ‘High-risk’ group which may induce the 
ferroptosis resistance to leukemia. To demonstrate our 
hypothesis, we chose Sorafenib as the promoting curable 
drug for its ferroptosis inducing effect [37] and success-
ful implementation in FLT3-ITD positive AML [38]. In 
past studies, Sorafenib was found to induce ferroptosis 
mainly by inhibiting the activity of system xc- and not 
necessarily on the inhibition of its kinase targets [37, 39, 
40]. However, there were few reported clinical trials of 
Sorafenib in Ph-neg B-ALL patients. In our investigation, 
it was surprising to point that patients from the ‘High-
risk’ and the ‘Middle-risk’ groups based on gene expres-
sion were predicted to be more sensitive to Sorafenib 
possibly owing to variant degrees of ferroptosis involve-
ment in Ph-neg B-ALL. Based on these interesting find-
ings, we will further to initiate a clinical trial to verify the 
curable effect of Sorafenib combined with chemotherapy 
in high-risk Ph-neg B-ALLs.

Comparable to other models correlated with ferropto-
sis in other types of cancers [11, 41], we systematically 
investigated the ferroptosis involvement in our samples 
and proved that the ferroptosis plays an important but 
still an undiscovered role in Ph-neg B-ALL. Although 
the prognosis of Philadelphia positive B-ALL patients 
became favorable thanks to the invention of imatinib, a 
considerable number of Philadelphia negative B-ALL 
patients showed less sensitivity to the common therapy 
especially in adult patients. Moreover, lack of prognosis 
evaluation system impeded the clinical Individualized 
treatment. Herein, based on 8 FRGs after sorting, we cre-
ated an efficient Cox regression model to estimate the 
prognosis of Ph-neg B-ALL patients.

According to these findings and based on the data 
collected from the patients treated in our hospital and 
checked by at least two persons separately, our results 

deducted from the DNA variance and RNA level quan-
tifications for FRGs should be validated in a larger and 
perspective cohort in the future. Moreover, ferroptosis is 
a newly discovered and complex biological process which 
needs to be further investigated. In addition, due to the 
rapid improvement in B-ALL treatment, especially after 
the coming of CAR-T therapy, we faced limited cases to 
analyze the importance of ferroptosis in Ph-neg B-ALL 
patients and the exploration of ferroptosis seemed to be 
meaningful in the new age since some patients enrolled 
in our study had received CAR-T therapy. Consequently, 
our study based on the current knowledge and data min-
ing might need further updates and more validations in 
researches to come.

Conclusion
In summary, after the exploration the potential role of 
ferroptosis in Ph-neg B-ALL with the clinical data and 
the RNA-seq results of 80 Ph-neg B-ALL treated in our 
center. Not only did we demonstrated the combination 
of expression of FRGs enabled to cluster Ph-neg B-ALL 
patients into variant risk groups, but also analyzed their 
correlation with leukemia’s immune microenvironment 
and gene mutation characteristics. Based on these find-
ings, we further raised the potential implementation of 
Sorafenib in high-risk Ph-neg ALL patients. Moreover, a 
Cox regression model based on 8 FRGs was established 
to help evaluate the prognosis of Ph-neg B-ALL patients. 
Overall, our research put forward a new view to under-
stand the pathogenesis of Ph-neg ALL and evaluate the 
involved patients.
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