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Abstract 

Background:  The accuracy of existing biomarkers for predicting the prognosis of hepatocellular carcinoma (HCC) is 
not satisfactory. It is necessary to explore biomarkers that can accurately predict the prognosis of HCC.

Methods:  In this study, original transcriptome data were downloaded from The Cancer Genome Atlas (TCGA) 
database. Immune-related long noncoding ribonucleic acids (irlncRNAs) were identified by coexpression analysis, 
and differentially expressed irlncRNA (DEirlncRNA) pairs were distinguished by univariate analysis. In addition, the 
least absolute shrinkage and selection operator (LASSO) penalized regression was modified. Next, the cutoff point 
was determined based on the area under the curve (AUC) and Akaike information criterion (AIC) values of the 5-year 
receiver operating characteristic (ROC) curve to establish an optimal model for identifying high-risk and low-risk 
groups of HCC patients. The model was then reassessed in terms of clinicopathological features, survival rate, tumor-
infiltrating immune cells, immunosuppressive markers, and chemotherapy efficacy.

Results:  A total of 1009 pairs of DEirlncRNAs were recognized in this study, 30 of these pairs were included in the Cox 
regression model for subsequent analysis. After regrouping according to the cutoff point, we could more effectively 
identify factors such as aggressive clinicopathological features, poor survival outcomes, specific immune cell infiltra‑
tion status of tumors, high expression level of immunosuppressive biomarkers, and low sensitivity to chemotherapy 
drugs in HCC patients.

Conclusions:  The nonspecific expression level signature involved with irlncRNAs shows promising clinical value in 
predicting the prognosis of HCC patients.
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Background
Hepatocellular carcinoma (HCC) is the fourth most 
common malignant tumor globally, and its incidence is 
increasing annually with poor survival [1, 2]. The primary 
relevant risk factors associated with the development 
of HCC include viral hepatitis, alcoholic liver disease, 
nonalcoholic fatty liver disease, aflatoxin exposure 
[3]. In recent years, chemotherapeutics have achieved 
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encouraging results in treating HCC, especially immune 
checkpoint inhibitors (ICIs) [4]. With the recent suc-
cess of clinical trials of immunotherapy, such as Check-
mate 040, Keynote-224, and IMbrave150, ICIs such as 
nivolumab, pembrolizumab, and atezolizumab plus beva-
cizumab have been approved for the treatment of HCC 
[5–7].

Long noncoding RNAs (lncRNAs) are nonprotein-
coding RNAs with a transcription length of more than 
200 nucleotides [8]. Because lncRNAs are abundant, 
they often participate in human physiological processes 
and are closely related to the development of diseases 
[9–11]. In addition, lncRNAs have the ability to interact 
with molecules such as DNA, RNA, or protein to play 
enhancing or inhibitory roles [12]. Studies have reported 
that lncRNAs may participate in tumorigenesis through 
various molecular mechanisms [13, 14]. Recent work 
has demonstrated that lncRNAs can promote the malig-
nant phenotypes of cancer by changing the genome or 
transcriptome level and varying the immune microen-
vironment [15]. LncRNAs can activate immune cells by 
expressing related genes, which leads to immune cells 
infiltrating tumors [16].

Immune cell infiltration markers in tumors show pro-
spective predictive and prognostic value for tumor 
diagnosis, treatment, and survival evaluation [17–19]. 
Moreover, because lncRNAs have a close relationship 
with tumor immunity, the study of lncRNAs in com-
bination with tumor immunity will help to establish 
these markers. The researches of Hong [20], Wei [21], 
and Qu [20] constructed models to predict the prog-
nosis of HCC, pancreatic cancer, and clear cell renal 
cell carcinoma based on the immune-related lncRNAs 
(irlncRNAs) and risk scores, which have certain accu-
racy in predicting the prognosis of tumor patients. Our 
study built a novel signature constructed by irlncRNAs 
to predict HCC patients’ prognosis. IrlncRNAs, such as 
LINC01138, THUMPD3-AS1, AL365203, TBX2-AS1, 
have been confirmed to be related to the prognosis of 
HCC patients [21–24]. LINC01138 can promote cell 
proliferation, tumor invasion, metastasis and enhance 
protein stability by interacting with arginine methyl-
transferase 5 (PRMT5) [21]. TBX2 hypermethylation 
was associated with increased HCC risk [24]. While 
AC092535, FAM99A, AL355802, etc., have not been 
reported in HCC.

Generally, the accuracy of a tumor prediction model 
based on the combination of two biomarkers is better 
than that composed of a single gene [25]. To date, few 
models have been used to study the predictive role of 
lncRNAs and tumor immune-related cells in HCC [26, 
27]. This study used a novel modeling algorithm, which 
does not require specific expression-level data, through 

pairing and iteration to establish an irlncRNA signature. 
Subsequently, we evaluated the diagnostic effect, pre-
dictive value, immune cell infiltration into tumors, and 
chemotherapy efficacy of this signature in HCC patients.

Methods
Data collection and expression analysis
The transcriptome data (RNA-seq) used for analysis in 
this study, corresponding to fragments per kilobase mil-
lion (FPKM), was downloaded from the TCGA data-
base (https://​tcga-​data.​nci.​nih.​gov/​tcga/). The GTF files 
used for subsequent analysis, distinguishing mRNA 
and lncRNA, were extracted from the genome database 
Ensembl (http://​asia.​ensem​bl.​org). The ImmPort data-
base (http://​www.​immpo​rt.​org) was accessed to down-
load a list of identified immune-related genes (ir-genes), 
serving a screening role to filter irlncRNAs through coex-
pression methods [28, 29]. The correlation between lncR-
NAs and ir-genes was analyzed. The inclusion criteria of 
the irlncRNAs were an immune gene correlation coef-
ficient > 0.4 and a p-value < 0.001. The limma package of 
R was used to analyze the differential expression among 
irlncRNAs, and a log fold change (FC) > 1 and false dis-
covery rate (FDR) < 0.05 were regarded as thresholds to 
distinguish different irlncRNAs (DEirlncRNAs).

DEirlncRNA pairing
DEirlncRNAs were periodically single paired. When C 
was assumed to be equal to lncRNA A plus lncRNA B, 
a 0 or 1 matrix was constructed. When the lncRNA A 
expression level was higher than that of lncRNA B, C 
was defined as 1; otherwise, C was defined as 0. Then, 
the constructed matrix was further screened. When the 
expression level of lncRNA pairs was assumed to be 0 
or 1, no relationship between pairing and prognosis was 
presumed because there was no specific level of pairing 
to correctly predict the survival outcome of patients [28, 
29]. When the number of lncRNA pairs with an expres-
sion of 0 or 1 accounted for more than 30% of the total 
pairs, it was regarded as an effective match.

Clinicopathological data acquisition
The clinicopathological information of HCC patients was 
collected from the TCGA database. After excluding cases 
with follow-up times less than 30 days and duplicate data, 
adequate data were extracted. Patients with tumor stage 
I (164 cases), stage II (77 cases), stage III (81 cases), and 
stage IV (3 cases) were recruited in this study.

Establishing a risk model for evaluating the riskScore
The single-factor analysis was the first step in model gen-
eration. Then, LASSO regression with 10-fold cross-vali-
dation was carried out, and the p-value was 0.05. LASSO 
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regression was performed for 1000 cycles, and 1000 ran-
dom stimulations were set in each process. The next step 
was to record the frequency of each pair in the LASSO 
regression model, which was repeated 1000 times, and 
the pairs with a frequency greater than 100 times were 
selected for Cox proportional hazard regression analysis 
and model generation. The area under the curve (AUC) 
value was calculated, and the curve was plotted. When 
the maximum AUC value is that of the highest point of 
the curve, the calculation process is terminated, and the 
model is regarded as the best candidate [28, 29]. In this 
study, 1-year, 3-year, and 5-year receiver operating char-
acteristic (ROC) curves of the risk model were drawn. 
The formula of the risk score for all clinical cases is as 
follows.

RiskScore = Σk

i=1
 βiSi

The Akaike information criterion (AIC) value of each 
point of the 5-year ROC curve was used to determine 
the cutoff point to distinguish the high or low risk of risk 
scores.

Risk model validation
Kaplan-Meier analysis was used to show the difference 
in survival rate between the high-risk group and the low-
risk group. Then, the survival curve was plotted, and R 
was used to visualize the risk score of each case in the 
model. The R packages glmnet, survival, survivalROC, 
pbapply, surfminer, and pheatmap were utilized in these 
analyses. A chi-square test was conducted to investigate 
the relationship between the clinicopathological fea-
tures and the model to validate the clinical application 
usefulness of the generated model [28, 29]. Then, the 
band chart was visualized and marked as follows: < 0.05 
was marked *, < 0.01 was marked **, and < 0.001 was 
marked ***. Wilcoxon signed-rank test was performed 
to analyze the differences in riskScores between vari-
ous clinicopathological feature groups. The results were 
demonstrated with box plots. Univariate and multivari-
ate Cox regression analyses were of the risk score and 
clinicopathological features were performed to verify the 
possibility of an independent predictor of clinical prog-
nosis for this model. The results are displayed in a forest 
plot. R packages, including ggupbr, survival, and pHeat-
map, were used in these procedures.

Study on tumor‑infiltrating immune cells
The currently accepted methods for examining the 
immune cell infiltration status between samples from the 
LIHC of TCGA dataset were used to analyze the rela-
tionship between risk and immune cell features. These 
methods included XCELL, TIMER, QUANTISEQ, MCP-
COUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT. 

The infiltrating immune cell content analysis was fol-
lowed by a comparison between the high-risk and low-
risk groups was based on Wilcoxon signed-rank test. 
The results are shown in a box diagram. The relationship 
between infiltrating immune cells and riskScores was 
determined by Spearman correlation analysis. A lollipop 
chart was drawn to show the correlation coefficient of the 
results [28, 29]. P < 0.05 was considered to be a significant 
threshold. The Ggplot2 package in R was used to perform 
the procedure.

The noteworthy relationship between the model 
and the clinical therapeutics
The IC50 of commonly used chemotherapy drugs in the 
LIHC dataset of the TCGA was calculated to assess the 
clinical application value of the model in the treatment 
of HCC. Chemotherapeutic medications such as bleomy-
cin, doxorubicin, erlotinib, gemcitabine, methotrexate, 
mitomycin, paclitaxel, rapamycin, cisplatin, and sorafenib 
are commonly used in the treatment of various types of 
malignant tumors, as recommended by the AJCC rec-
ommendations [28, 29]. Wilcoxon signed-rank test was 
performed to assess IC50 between the two groups. The 
ggplot2 and pRRophetic packages in R were used to show 
the results.

Expression analysis of immunosuppressive molecules 
related to ICIs
The relationship between the model and the gene expres-
sion level associated with ICIs was examined and visual-
ized with a ggstatsplot and violin plot.

Results
Differential expression analysis of irlncRNAs
We downloaded transcriptome data of HCC from the 
TCGA database, including 50 nontumor tissues and 374 
tumor tissues. The gene transfer format (GTF) files from 
Ensemble were used to annotate the accessed data. In 
total, 740 irlncRNAs were identified, of which 490 were 
classified as DEirlncRNAs. Among the DEirlncRNAs, 16 
were downregulated, and 474 were upregulated (Fig. 1A, 
B, Tables S1, S2).

DEirlncRNA pair screening and risk model construction
A total of 10,344 valid DEirlncRNA pairs from the 490 
DEirlncRNAs were identified by iteration loop and 
0 or 1 matrix. A total of 1009 DEirlncRNA pairs were 
screened by a single factor test and modified LASSO 
analysis, of which 30 pairs were involved in the Cox 
model, as determined by the stepwise method. The 
results are shown in Fig. 1C, D, and E. Then, the AUC 
for each of the 1009 receiver operating characteris-
tic (ROC) curves was calculated, and the curve was 
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Fig. 1  Establishment of a risk assessment model based on DEirlncRNA pairs. Differentially expressed immune-related lncRNAs (DEirlncRNAs). A heat 
map (A) and volcano plot (B) are displayed. Establishment of the LASSO regression (C). Thirty DEirlncRNA pairs are shown in a forest plot (D and E)
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plotted. In addition, we found that the maximum AUC 
value was obtained when the highest point was equal 
to 0.941, and then the optimal DEirlncRNA pair was 
determined (Fig. 2A). Our study also used Akaike infor-
mation criterion (AIC) values to determine the maxi-
mum inflection point as the cutoff point of the 5-year 
ROC curve (Fig.  2B). ROC curves at 1, 3, and 5 years 
were drawn to verify the optimality, which indicated 

that all AUC values exceeded 0.91 (Fig.  2C). Moreo-
ver, AUC values between the 5-year ROC curve and 
some common clinical parameters were also compared. 
(Fig. 2D). Furthermore, data of 343 patients with HCC 
were collected from the TCGA database, and the risk 
scores of all these patients were calculated. Then, the 
cutoff point was utilized to redifferentiate the high-risk 
group and low-risk group for verification.

Fig. 2  Establishment of a risk assessment model on the basis of DEirlncRNA pairs. The curve of each AUC value generated by the ROCs of 1009 
DEirlncRNA pair models was drawn, and the highest point of AUC was determined. The maximum inflection point was the cutoff point acquired 
from the AIC. A and B The 1-year, 3-year, and 5-year ROC curves of the optimal model showed that all AUC values exceeded 0.91 (C). Compared with 
other common clinical features, the 5-year ROC curves showed a superior risk score (D)
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Application of the risk assessment model to a clinical 
evaluation
Fifty-nine cases and 284 cases were divided into the high-
risk and low-risk groups according to the cutoff point. 
Figure 3A and B display the risk scores and survival rate 
of each case. These data indicate that patients’ clinical 
outcomes in the high-risk group were inferior to those 
in the low-risk group. The survival of the high-risk group 
was poorer than that of the low-risk group, as deter-
mined by Kaplan-Meier analysis (p < 0.001) (Fig.  3C). 
Next, a chi-square test was performed to explore the 
relationship between the risk of HCC and clinicopatho-
logical features. The stripping diagram (Fig. 4A) and the 
scatter plots examined through Wilcoxon signed-rank 
tests indicated that T classification, tumor stage, tumor 
grade, Child-Pugh grade, eastern cancer oncology group 
(ECOG) score, vascular invasion, and survival status 
(Fig.  4B-H) were significantly associated with risk. Sub-
sequently, univariate Cox regression analysis indicated 
that there were significant differences in tumor stage 
(p < 0.001, HR = 1.627, 95% CI [1.218 – 2.173]), vascular 
invasion (p = 0.007, HR = 1.737, 95% CI [1.161 – 2.599]), 
ECOG (p < 0.001, HR = 1.945, 95% CI [1.346 – 2.811]), 
and risk score (p < 0.001, HR = 1.028, 95% CI [1.017 

– 1.039]), while tumor stage (p = 0.018, HR = 1.488, 95% 
CI [1.072 – 2.067]), ECOG (p < 0.001, HR = 1.905, 95% 
CI [1.299 – 2.792]) and risk score (p < 0.001, HR = 1.024, 
95% CI [1.015–1.034]) were determined to be independ-
ent prognostic predictors by multivariate Cox regression 
(Fig. 4I).

Relationship between tumor‑infiltrating immune cells, 
immune molecules and the risk model
Since lncRNAs were initially associated with the ir-
gene, we explored whether this model correlates with 
the tumor immune microenvironment. Our study found 
that there was a positive correlation between the high-
risk group and tumor-infiltrating immune cells, such 
as B cells, neutrophils, and macrophages, but a nega-
tive correlation with CD8+ T cells, CD4+ T cells, and 
monocytes. Spearman correlation analysis was carried 
out in detail, and the results are shown in a lollipop dia-
gram (Fig. 5A). Since ICIs currently play significant roles 
in the treatment of HCC, we explored the correlation 
between the risk model and ICI-related biomarkers. The 
results showed that high risk scores were associated with 
the expression of CD276 (p < 0.001), GSDME (p < 0.001), 
HAVCR2 (p < 0.01), and TNFRSF18 (p < 0.05) (Fig. 5B-E). 

Fig. 3  Prognostic power of the risk assessment model. Risk score (A) and survival outcome (B) of each case. Kaplan-Meier survival curve of the 
high-risk group and low-risk group (C)

(See figure on next page.)
Fig. 4  Application of the risk assessment model to a clinical evaluation. A strip diagram (A) and scatter plot show that T classification (B), tumor 
stage (C), tumor grade (D), Child-Pugh grade (E), ECOG (F), vascular invasion (G), and survival status (H) were significantly correlated with risk score. 
Univariate and multivariate Cox regression analyses were performed to analyze the clinicopathological features, and the results are shown in a forest 
map (I)
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Fig. 4  (See legend on previous page.)
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There was no significant difference between the high-risk 
scores and ir-genes, such as CTLA4, PDCD1, and LAG3 
(all p > 0.05, Fig. 5F-H).

Correlation analysis of the risk model and chemotherapy 
drugs
In addition to checkpoint blocking therapy, we explored 
the association between the risk and efficacy of chemo-
therapy drugs commonly used for HCC. We found that 
the high-risk score was accompanied by a higher half 
inhibitory concentration (IC50) of chemotherapy drugs 
for erlotinib (p < 0.001), methotrexate (p = 0.0024), 
and rapamycin (p = 0.0043) and a lower IC50 for bleo-
mycin (p < 0.001), doxorubicin (p = 0.0023), gemcit-
abine (p < 0.001), mitomycin (p < 0.001), and paclitaxel 
(p = 0.011), suggesting that this model can serve as a 
potential predictor for the sensitivity of chemotherapies 
(Fig. 6A-J).

Discussion
It is necessary to improve the accuracy of prognostic 
markers for HCC patients. LncRNAs are closely related 
to normal physiological activities and the development 
of diseases [10, 30]. Furthermore, studies have demon-
strated that lncRNAs play vital roles in tumor develop-
ment and antitumor processes [31–33]. Recent studies 
have focused on investigating the potential relationship 
between coding genes and noncoding RNAs to predict 
patient prognosis with cancers [20, 34]. Unfortunately, 
the majority of these signatures were generated with the 
specific expression levels of transcripts. In our research, 
we ignored the specific expression levels of lncRNAs and 
utilized ir-gene pairing to generate a practical model with 
a combination of lncRNAs.

First, we downloaded the original information of 
lncRNAs from the TCGA database, and then a differ-
ential coexpression analysis was performed to catalog 
the DEirlncRNAs. The lncRNA pairs were verified by 
an improved cyclic single pair method along with 0 or 1 
matrix. Second, univariate analysis and modified LASSO 
penalty regression were performed to determine DEirl-
ncRNA pairs, procedures including cross-validation, 
multiple repetitions, and random stimulation. Then, 
we gained the optimum model by examining each AUC 
value of the ROC curve, and the optimum cutoff point 
was determined according to the AIC value of each point 
on the AUC to distinguish the high-risk and low-risk 

groups in the HCC dataset. Finally, the model was evalu-
ated according to various parameters, such as survival 
rate, clinicopathological features, tumor-infiltrating 
immune cells, checkpoint-associated molecules, and 
chemotherapeutics.

The origin of lncRNAs may have the following four 
sources, mutation of a protein-coding gene, chromo-
somal rearrangement, duplications, and transposon 
insertion [35, 36]. Current research reveals that the phe-
notypic characteristics of lncRNAs regulation of cancer 
mainly include: cell proliferation, growth inhibition, cell 
migration, cell immortalization, angiogenesis, and cell 
viability [37]. The relationship between lncRNAs and 
tumors has received increasing attention [37–39]. Deng 
et  al. established a model to predict HCC patient sur-
vival [40]. The method utilized in this study does require 
data on the specific expression level of each lncRNA; 
only pairs with high or low expression levels need to be 
detected. Therefore, the model is practical and straight-
forward in distinguishing high-risk or low-risk clinical 
cases. The lncRNAs included in this model are related 
to ir-genes; Therefore, these lncRNAs may regulate 
the immune microenvironment and the activation of 
immune cells.

Our research reveals that some of the DEirlncRNAs 
included in the modeling play vital roles in the malig-
nant phenotype of many cancers, such as MYLK−AS1 
[41, 42], THUMPD3 − AS1 [22], and DSCR8 [43], espe-
cially in the development of HCC. MYLK−AS1 promotes 
angiogenesis and HCC progression by targeting the miR-
424-5p/E2F7 axis and activating the VEGFR-2 signaling 
pathway [42]. THUMPD3 − AS1 was associated with 
the cell cycle and can be used as a prognostic marker in 
hepatitis B virus-related HCC patients [22]. Wang et  al. 
revealed that DSCR8 promotes the progression of HCC 
by activating the Wnt/b-catenin signaling pathway [44]. 
The established model can identify new biomarkers for 
further tumor-related studies.

To achieve better accuracy and effectiveness of risk 
prediction, this study used the improved method of the 
LASSO penalty model [45]. In addition, we determined 
the maximum value for an optimal model by calculating 
each AUC value and then compared it with other clinico-
pathological characteristics, further improving the mod-
eling process. The AIC value was used to obtain the ideal 
cutoff point for model fitting; the median value was not 
used to discriminate risk. After using this new method 

Fig. 5  Estimation of tumor-infiltrating cells and immunosuppressive molecules with the risk assessment model. A Correlation between the 
high-risk group and tumor-infiltrating immune cells. High-risk scores were associated with the expression of CD276 (B), GSDME (C), HAVCR2 (D), 
and TNFRSF18 (E). There was no significant difference between the high-risk scores and the expression of immune-related genes, such as CTLA4 (F), 
PDCD1 (G), and LAG3 (H)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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to differentiate high-risk and low-risk groups, survival 
outcomes and univariate and multivariate analyses of 
clinicopathological features were reevaluated. Moreover, 
the sensitivity of chemotherapy drugs commonly used 
to treat HCC treatment was analyzed. The relationship 
between high-risk and low-risk groups and immune cell 
infiltration into tumors and the relationship between 
high-risk and low-risk groups and immune checkpoint-
related genes were also studied, and the results indicated 
that this modeling algorithm has a good clinical applica-
tion prospects.

The immune checkpoint blockade reaction is closely 
related to tumor-infiltrating immune cells [46]. Our 
research used seven commonly recognized methods to 
identify infiltrating immune cell to investigate the rela-
tionship between risk scores and tumor-infiltrating 
immune cells, including XCELL [47, 48], TIMER [49, 
50], QUANTISEQ [51, 52], MCPCOUNTER [53], EPIC 
[54], CIBERSORT-ABS, and CIBERSORT [55, 56]. Due 
to the defects and complexity of these algorithms, they 
are rarely compared with each other. Through integration 
analysis, our findings show that DEirlncRNA pairs have 
a positive correlation with tumor-infiltrating immune 
cells such as B cells, neutrophils, and macrophages but 
are negatively correlated with CD8+ T cells, CD4+ T 
cells, and monocytes. Wang et al. demonstrated that the 
immune score can predict the efficacy of immunotherapy 
and chemotherapy [57]. IrlncRNA SATB2-AS1 can affect 
the tumor immune cell microenvironment and inhibit 
colorectal cancer metastasis [41]. LncRNA-EGFR can 
stimulate T regulatory cell differentiation and promote 

immune evasion in HCC [42]. Our model suggests that 
high risk is related to sensitivity to chemotherapy drugs 
such as methotrexate, rapamycin, bleomycin, doxoru-
bicin, gemcitabine, mitomycin, and paclitaxel but not 
sensitivity to sorafenib. We believe that immunotherapy 
is more effective than traditional chemotherapy, mainly 
because immunotherapy can activate immune cell func-
tions and promote tumor resistance by triggering active 
immunity. Tumor mutations can cause a large number 
of neoantigens to be released, which can be recognized 
by T cells and cause many immune cells to infiltrate into 
tumors [58–60].

We acknowledge that our study has some limitations. 
First, the research data were based on public databases. 
Some data were incomplete, such as some clinicopatho-
logical features and the sensitivity of drugs commonly 
used in the treatment of HCC; for instance, lenvatinib 
and oxaliplatin have not been analyzed. Second, the 
constructed model needs external verification because 
the expression level of each sample differs, which may 
lead to an unreliable final model. Third, this study did 
not analyze the expression level of these lncRNAs in 
immune cells. However, this research uses various 
methods to verify the new modeling algorithm and 
optimizes and analyzes it. Despite the lack of external 
data validation, from the analysis results, our model was 
acceptable. However, this study will be more convinc-
ing when external validation is performed. Therefore, 
our team will recollect clinicopathological data for sub-
sequent studies and enlarge the sample size for further 
verification.

Fig. 6  Relationship between risk scores and the IC50 of chemotherapeutics
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Conclusions
Our research shows that an innovative signature 
established by irlncRNAs that does not require data 
on the expression levels of lncRNAs to predict HCC 
patient prognosis and may contribute to identifi-
cation of patients who can benefit from antitumor 
immunotherapy.
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