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Abstract 

Background:  Bladder cancer (BC) is one of the most common malignancies and has a relatively poor outcome 
worldwide. In this study, we attempted to construct a novel metabolism-related gene (MRG) signature for predicting 
the survival probability of BC patients.

Methods:  First, differentially expressed MRGs between BC and normal samples were identified and used to construct 
a protein-protein interaction (PPI) network and perform mutation analysis. Next, univariate Cox regression analysis 
was utilized to select prognostic genes, and multivariate Cox regression analysis was applied to establish an MRG sig-
nature for predicting the survival probability of BC patients. Moreover, Kaplan-Meier (KM) survival analysis and receiver 
operating characteristic (ROC) analysis were performed to evaluate the predictive capability of the MRG signature. 
Finally, a nomogram based on the MRG signature was established to better predict the survival of BC.

Results:  In the present study, 27 differentially expressed MRGs were identified, most of which presented mutations 
in BC patients, and LRP1 showed the highest mutation rate. Next, an MRG signature, including MAOB, FASN and LRP1, 
was established by using univariate and multivariate Cox regression analysis. Furthermore, survival analysis indicated 
that BC patients in the high-risk group had a dramatically lower survival probability than those in the low-risk group. 
Finally, Cox regression analysis showed that the risk score was an independent prognostic factor, and a nomogram 
integrating age, pathological tumor stage and risk score was established and presented good predictive ability.

Conclusion:  We successfully constructed a novel MRG signature to predict the prognosis of BC patients, which might 
contribute to the clinical treatment of BC.
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Background
Bladder cancer (BC), a malignancy of the urinary 
tract, is the 10th most prevalent tumor worldwide, 
with 549,000 newly diagnosed cases and 200,000 
deaths estimated in 2018 [1]. It was reported that 

urothelial carcinoma accounts for 95% of BC, and most 
BC patients are nonmuscle-invasive, mainly treated 
through local treatment or surveillance [2, 3]. How-
ever, the clinical treatments of the remaining patients 
without metastasis primarily rely on surgical resec-
tion or a combination of local resection, radiation, 
and chemotherapy [3]. Although the main therapy for 
BC patients with unresectable or metastatic disease 
is platinum-based combination chemotherapies, the 
survival remains poor, with a median overall survival 
(OS) of approximately 14 months [4, 5]. On the other 
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hand, even though immune checkpoint blockade has 
emerged as a novel treatment to extend the OS of some 
patients, immune checkpoint blockade regrettably does 
not work in most patients [6]. Therefore, it is essential 
to recognize novel biomarkers to predict the prognosis 
and guide the treatment of BC.

Metabolism plays a crucial role in maintaining all bio-
logical activities and regulating cell growth and prolif-
eration [7, 8], which has attracted the attention of many 
researchers in recent years. Cancer cells have unique 
metabolic characteristics that can satisfy the need for 
proliferation compared to normal cells [9]. A well-known 
example of this is the Warburg effect, a unique repro-
gramming form of glucose metabolism, which can pro-
mote the occurrence and development of tumors [10, 11]. 
On the other hand, the energy demand for meeting the 
survival of cancer cells in the nutrient-deprived tumor 
microenvironment relies on metabolic alterations [12]. 
Recent studies have found that fatty acid metabolism is 
related to the development of BC [13–15]. Moreover, 
increasing evidence has revealed that glucose metabo-
lism is also associated with the occurrence and progres-
sion of tumors [16, 17]. For example, aberrant expression 
of miRNA-21 might participate in regulation of the gly-
colytic phenotype in BC cells [17]. FOXJ1 also has a role 
in the glycolytic phenotype of BC [18]. Furthermore, 
the epigenetic perturbation of SAT1 and ASS1 may be 
involved in the chemotherapy and personalized ther-
apy of BC by regulating its amino acid metabolism [19]. 
Hence, metabolism plays a vital role in the occurrence 
and development of BC, and research focusing on metab-
olism-related genes (MRGs) may contribute to further 
understanding the role of metabolism in BC and identify-
ing novel therapeutic targets.

Currently, more and more studies have explored the 
association between MRGs and the prognosis of cancers. 
For instance, Wen et  al. established a model to predict 
the prognosis of gastric cancer patients based on MRGs 
[20]. Moreover, a risk model with good performance in 
the prognostic prediction of hepatocellular carcinoma 
patients was built based on energy metabolism genes 
[21]. Wu et  al. also found that lipid metabolism-related 
genes could be used as predictors for the survival of dif-
fuse gliomas [22]. Hence, the present study aimed to 
establish an MRG signature for predicting the survival 
of BC based on a series of bioinformatics analyses using 
the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases. Moreover, we fur-
ther validated the mRNA expression level of genes in 
the MRG signature through real-time PCR. In brief, the 
establishment of an MRG signature provided a novel and 
independent predictor for BC survival and might be con-
ducive to the clinical treatment of BC patients.

Methods
Data collection and processing
The GSE13507 dataset was downloaded from the GEO 
database, which included 9 healthy controls and 165 
patients with BC, and the GSE31684 dataset, which 
included 93 BC patients with survival information, was 
extracted from the GEO database as an independent 
validation set. Moreover, gene expression, somatic muta-
tions and clinical data of 414 BC samples were obtained 
from the TCGA database, and gene expression data of 
19 normal samples were obtained as controls from the 
TCGA database. Next, we downloaded the gene set (h.all.
v7.2.entrez.gmt) from the GSEA website (https://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp) to screen MRGs by 
enrichment analysis with the ‘clusterProfiler’ R package.

Identification of metabolism‑related DEGs in BC
The ‘DEseq2’ R package was selected to identify the dif-
ferentially expressed genes (DEGs) between normal and 
BC samples in the TCGA and GEO databases [23]. A P 
value < 0.05 was regarded as the cutoff criterion. Moreo-
ver, two volcano plots were plotted using the ‘ggplot2’ R 
package to visualize DEGs in the TCGA and GEO data-
bases [24]. Finally, the metabolism-related DEGs were 
identified by overlapping the MRGs, DEGs in TCGA and 
DEGs in GEO using the ‘VennDiagram’ R package [25].

GO functional annotation and KEGG pathway enrichment 
analysis
Gene Ontology (GO) functional annotation is an impor-
tant method to explore the biological process (BP), 
molecular function (MF), and cellular component (CC) 
of genes. Moreover, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis is a com-
mon way to identify gene-related signaling pathways. 
Therefore, the ‘clusterProfiler’ R package was utilized to 
conduct GO functional annotation and KEGG pathway 
enrichment analysis for the metabolism-related DEGs 
[26], and a P value  < 0.05 was considered to be signifi-
cantly enriched.

PPI network analysis
To further explore the interactions of the metabolism-
related DEGs at the protein level, a protein-protein inter-
action (PPI) network was built through the Search Tool 
for the Retrieval of Interacting Genes (STRING, https://​
string-​db.​org/) website. In addition, Cytoscape was used 
to visualize the PPI network [27].

Landscape of gene mutations
To further investigate the role of metabolism-related 
DEGs in BC, the ‘maftools’ R package was used to ana-
lyze the mutation frequency and mutation type of BC 
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patients from the TCGA database and to draw a waterfall 
plot showing the landscape of gene mutations for metab-
olism-related DEGs [28].

Construction and validation of the prognostic MRG 
signature
To establish and validate the prognostic MRG signature, 
383 BC patients (31 patients were removed for subse-
quent analysis because of a lack of survival information) 
were randomly divided into a training set and a testing 
set based on a ratio of 7:3. First, univariate Cox regression 
analysis was performed using the ‘survival’ R package to 
screen the prognosis-related MRGs from the metabolism-
related DEGs in the training set, with the a cutoff value 
of P  < 0.05. Then, prognosis-related MRGs were submit-
ted to multivariate Cox regression analysis to construct 
an optimal prognostic MRG signature in the training set 
by the ‘survival’ R package. Forest plots were generated 
to show the results of univariate and multivariate Cox 
regression analysis by using the ‘forestplot’ R package. 
Subsequently, an MRG signature was constructed based 
on the expression levels and Cox coefficients of the MRGs 
obtained by multivariate Cox regression analysis. Namely, 
the formula of the risk score for the MRG signature 
was defined as follows: Risk score = (expgene 1  × Coegene 

1) + (expgene 2  × Coegene 2) + … + (expgene n  × Coegene n). 
Thus, BC patients in the training set, testing set and vali-
dation set were stratified into the high-risk and low-risk 
groups based on the median risk score value of the MRG 
signature. Moreover, the Kaplan-Meier (KM) survival 
curves were drawn by the ‘survminer’ R package to reveal 
the OS for patients in the high-risk and low-risk groups, 
and the log-rank test was used to analyze significant dif-
ferences in OS. Receiver operating characteristic (ROC) 
curves were plotted to assess the prediction accuracy of 
the MRG signature and the area under the curve (AUC) 
for 1-year, 3-year and 5-year OS was calculated through 
the ‘survivalROC’ R package [29].

Association between the MRG signature 
and clinicopathological features
The association between the MRG signature and clinico-
pathological features, including gender, age, pathological 
tumor stage, pathological T stage, pathological M stage, 
pathological N stage, was calculated by t test in the train-
ing set, and P  < 0.05 was considered statistically signifi-
cant. In addition, a cluster heatmap was drawn to show 
the distribution trends of gender, age, pathological tumor 
stage, pathological T stage, pathological M stage, and 
pathological N stage between the low-risk and high-risk 
groups in the training set.

Construction of predictive nomogram
The MRG signature and clinicopathological features were 
used to identify independent prognostic factors with uni-
variate and multivariate Cox regression analyses in the 
training set, and the results of univariate and multivari-
ate Cox regression analyses are by forest plots. Next, a 
nomogram was constructed by independent prognostic 
factors through the ‘rms’ R package [30]. Moreover, cali-
bration plot was plotted to assess the predictive ability of 
the nomogram.

Quantitative real time PCR validation
To further analyze the roles of genes in the MRG signa-
ture, we first examined the expression levels of genes in 
the MRG signature in the TCGA and GEO databases. 
Next, we collected 10 cancer tissues and 10 pericarcino-
matous tissues from BC patients in The Second Affiliated 
Hospital of Kunming Medical University. Informed con-
sent was obtained from all participating individuals. The 
study was approved by the Ethics Committee at The Sec-
ond Affiliated Hospital of Kunming Medical University.

Total RNA from the 20 samples was extracted by TRI-
zol-A+ Reagent (TIANGEN) based on the manufactur-
er’s guidance. Then, the RNAs were reverse-transcribed 
into complementary DNA (cDNA) using the FastQuant 
RT Kit (TIANGEN) according to the manufacturer’s 
procedure. Real-time PCR was performed by upeReal 
PerMix Plus (SYBRGreen) (TIANGEN) and the Applied 
Biosystems 7500 Real-time PCR System (Applied Bio-
systems, Inc., Carlsbad, CA, United States). Through 
the 2-ΔΔCt method, the relative expression of genes was 
calculated. GAPDH was used as an internal references. 
Primer sequences and annealing temperatures are sum-
marized in Table S1.

Statistical analysis
All statistical analyses in this study were performed 
using R software. The differences between different 
groups were compared by the t test and log-rank test. A P 
value < 0.05 was considered statistically significant.

Results
Identification of metabolism‑related DEGs in BC
We performed functional annotation of the h.all.
v7.2.entrez.gmt gene set and obtained 516 MRGs 
(Table S2). Moreover, under the cutoff of P < 0.05, 1166 
DEGs, including 288 upregulated genes and 878 down-
regulated genes, were identified between normal and 
BC samples in the GEO database (Fig.  1A, Table  S3), 
and 3110 DEGs, including 1306 upregulated genes and 
1804 downregulated genes were identified between BC 
patients and normal samples collected from the TCGA 
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database (Fig.  1B, Table  S4). Finally, 27 metabolism-
related DEGs were identified, including 19 downregu-
lated and 8 upregulated genes, by overlapping the genes 
among MRGs, DEGs in GSE13507 and DEGs in the 
TCGA database (Fig. 1C, Table S5).

GO functional annotation and KEGG pathway enrichment 
analysis of metabolism‑related DEGs
To better understand the biological function of 27 
metabolism-related DEGs, we conducted GO function 

and KEGG enrichment analyses were conducted. The 
results of BP for GO analysis showed that 8 upregulated 
metabolism-related DEGs were primarily associated with 
biosynthesis and metabolism, for example, nucleoside 
phosphate biosynthetic process, nucleoside monophos-
phate biosynthetic process, pyrimidine-containing com-
pound biosynthetic process, nucleoside monophosphate 
metabolic process, and pyrimidine-containing com-
pound metabolic process (Fig. 2A). For CC analysis, the 8 
upregulated metabolism-related DEGs were significantly 

Fig. 1  Identification of Metabolism-related DEGs. A B The volcano plots of DEGs in normal samples compared to BC samples in GSE13507 and 
TCGA database (B). C The venn diagram of MRGs, DEGs in GSE13507 and DEGs in TCGA database
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involved in the mitochondrial matrix, mitochondrial 
inner membrane, and nucleoid (Fig. 2B). In addition, for 
MF, the 8 upregulated metabolism-related DEGs were 
not significantly enriched. In particular, KEGG analy-
sis showed that the 8 upregulated metabolism-related 
DEGs were mainly enriched in metabolism-related path-
ways, such as pyrimidine metabolism, drug metabolism, 
nitrogen metabolism, and glyoxylate and dicarboxylate 
metabolism (Fig. 2C). Similarly, the results of BP for GO 
analysis showed that the 19 downregulated metabolism-
related DEGs were mainly related to biosynthesis and 
metabolism, such as carboxylic acid biosynthetic process, 
organic acid biosynthetic process, arachidonic acid meta-
bolic process and long-chain fatty acid metabolic process 
(Fig.  2D). For CC and MF analysis, the 19 downregu-
lated metabolism-related DEGs were not significantly 
enriched. Moreover, KEGG analysis showed that the 19 
downregulated metabolism-related DEGs were mainly 
enriched in metabolism-related pathways, such as arachi-
donic acid metabolism, tryptophan metabolism, arginine 
and proline metabolism, beta-alanine metabolism, and 
tyrosine metabolism (Fig. 2E). Thus, these results further 
suggested that 27 metabolism-related DEGs were mainly 
related to metabolism-related biological processes and 
signaling pathways.

PPI network
To further observe the interactions among 27 metabo-
lism-related DEGs, we constructed an up-PPI network 
and a down-PPI network. As shown in Fig. 3A, upregu-
lated TK1, TYMS, UCK2 and SHMT2 directly inter-
acted with each other. Moreover, downregulated PTGDS, 
TTGIS, PLA2G4A, CYP27A1, MGLL and EPHX2 
directly or indirectly interacted with each other, and 
ALDH2, AOX1, AOC3, MAOB, and INMT directly or 
indirectly interacted with each other (Fig. 3B).

Landscape of genetic variation for metabolism‑related 
DEGs
To further investigate the roles of 27 metabolism-related 
DEGs in the BC, we further analyzed the landscape of 
somatic mutations for 27 metabolism-related DEGs 
using somatic mutation data of 414 BC samples from the 
TCGA database. Notably, among 27 metabolism-related 
DEGs, most genes experienced mutations in BC patients, 
and the LRP1 showed the highest mutation frequency 
(Fig.  3C). Notably, missense was the primary mutation 
type (Fig.  3C and D). Moreover, the top 10 mutated 
genes were LRP1, FASN, DPYD, AOX1, PDGFC, 
NT5E, GPX3, CYP27A1, GFPT2, and CKB (Fig. 3D). In 

Fig. 2  The results of GO Functional Annotation and KEGG Pathway Enrichment Analysis. A The enriched biological processes by metabolism-related 
DEGs. B The enriched cellular components by metabolism-related DEGs. C The enriched molecular functions by metabolism-related DEGs. D The 
enriched KEGG pathways by metabolism-related DEGs
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addition, survival differences were compared between 
mutated and nonmutated samples of each gene. Interest-
ingly, we found that GPX3 and SHMT2 mutations were 
related to BC prognosis (P value < 0.05, Table S6). These 
results further revealed that metabolism-related genes 
might play key roles in BC.

Construction and validation of the prognostic MRG 
signature
The 383 BC patients were randomly divided into a train-
ing set and validation set at a cutoff of 7:3. First, uni-
variate Cox regression analysis identified 5 prognostic 
MRGs, including PTGIS, MAOB, FASN, LRP1 and 
SHMT2 (P value < 0.05, Fig. 4A), in the training set. Next, 
3 genes, MAOB, FASN and LRP1, were reserved to estab-
lish a prognostic MRG signature based on the multivari-
ate Cox regression analysis in the training set (Fig.  4B). 

MAOB, monoamine oxidase B, an enzyme located on 
the outer membranes of mitochondria, is responsi-
ble for catalyzing monoamine oxidation. FASN, fatty 
acid synthase, is mainly involved in fatty acid synthe-
sis. LRP1, LDL Receptor Related Protein 1, is associated 
with several cellular processes, including intracellular 
signaling, lipid homeostasis, and clearance of apop-
totic cells. Notably, all 3 genes were risk factors for BC 
survival with HR > 1 (Fig.  4B), indicating that higher 
expression of MAOB, FASN and LRP1 was related to 
poorer prognosis. Thus, we further plotted the KM sur-
vival curves of MAOB, FASN and LRP1 in the train-
ing, testing and validation sets and found that patients 
in the high expression group showed a worse progno-
sis than patients in the low expression group (Fig.  S1). 
Next, the formula used to calculate the risk score was 
as follows: Risk score = (0.088 × MAOB expression 

Fig. 3  PPI network genetic variation for metabolism-related DEGs. A The PPI network of 27 metabolism-related DEGs. B The bar diagrams showed 
the interactions of each gene and other genes. C The mutation frequency of 23 metabolism-related DEGs in 414 BC samples from the TCGA 
database
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level) + (0.286 × FASN expression level) + (0.214 × LRP1 
expression level). The patients in the training set were 
stratified into a high-risk group and a low-risk group 
based on the median risk score value. As shown in 
Fig.  5A, patients in the high risk group showed sig-
nificantly poorer OS than those in the low-risk group. 

Consistently, the patients in the high-risk group appeared 
to have a higher mortality than patients in the low-risk 
group (Fig. 5D). Moreover, the ROC curve suggested that 
the MRG signature could accurately predict the 1-year, 
3-year and 5-year OS, and the AUC values for predicting 
the 1-year, 3-year and 5-year OS were 0.622, 0.666, and 

Fig. 4  Identification of prognostic metabolism-related DEGs. A Univariate Cox regression analysis identified 5 prognostic metabolism-related DEGs. 
B Multivariate Cox regression analysis reserved 3 prognostic metabolism-related DEGs for establishing the prognostic MRG signature
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0.700, respectively (Fig. 5G). Furthermore, based on the 
formula mentioned above, the patients in the testing set 
and validation set were stratified into a high-risk group 
and a low-risk group according to the median risk score 
value, respectively. Consistent with the results of the 
training set, the patients in the high-risk group also pre-
sented significantly worse OS than those in the low-risk 

group in testing set and validation set (Fig. 5B, C, E and 
F). Similarly, ROC curves of the testing set and valida-
tion set also showed better accuracy for predicting the 
1-, 3- and 5-year survival of BC patients (Fig. 5H and I), 
and the AUC values in the testing set were 0.637 at 1 year, 
0.680 at 3 years and 0.631 at 5 years (Fig. 5H). Meanwhile, 
those in the validation set were 0.620, 0.630 and 0.753, 

Fig. 5  Assessing the efficiencies of the prognostic MRG signature in the training set and validation set. A B C The Kaplan-Meier survival curves of 
the training set (A), the testing set (B) and the validation set (C). D E F The distribution of risk scores and the survival status of patients in the training 
set (D), the testing set (E) and the validation set (F), and each dot represents a BC patient. G H I ROC curves of the training set (G), the testing set (H) 
and the validation set (I) showed the performance for predicting the 1-year, 3-year and 5-year OS
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respectively (Fig.  5I). Therefore, these results indicated 
that the MRG signature presented good performance for 
predicting the OS of BC patients.

Correlation between the MRG signature 
and clinicopathological characteristics
To explore the role of the MRG signature in the progres-
sion of BC, the association between the MRG signature 
and clinicopathological characteristics was investigated 
in the training set. As shown in Table  1, the patients 
in the high-risk group were inclined to include more 
patients older than 60. Moreover, the patients in the 
high-risk group appeared to contain more high-grade BC 
(including pathological tumor stage 3 and 4) (Table  1). 
Thus, the gene signature may be associated with the pro-
gression of BC, and the expression levels of risk genes 
might be influenced by the age of patients.

Construction of a nomogram for predicting the OS of BC
To better use the gene signature, a nomogram combin-
ing the gene signature and clinical features was estab-
lished to predict the OS of BC patients. First, univariate 
and multivariate Cox regression analyses were per-
formed to screen independent prognostic factors in the 
training set. The results of univariate Cox regression 
analysis suggested that age, gender, pathological tumor 
stage, pathological T stage, pathological M stage, path-
ological N stage and risk score were responsible for the 
OS of BC (P value  < 0.05, Fig.  6A). Next, multivariate 
Cox regression analysis indicated that age, pathological 
tumor stage, and risk score could be used to establish 
a nomogram via the quantitative scoring method (P 
value  < 0.05, Fig.  6B and C). Furthermore, the calibra-
tion curve suggested that the nomogram showed good 
agreement between the predicted OS and observed OS 
(Fig.  6D). Thus, the nomogram had good accuracy for 
predicting the 1-year, 3-year and 5-year survival rates 
of BC patients.

Quantitative real time PCR validation
To further investigate the expression levels of MAOB, 
LRP1 and FASN, we performed quantitative real-time 
PCR validation. Notably, the expression levels of both 
MAOB and LRP1 were downregulated in tumor sam-
ples compared with normal samples in the TCGA and 
GEO databases (Fig.  7A and B), but the expression of 
FASN was upregulated. Consistent with the TCGA and 
GEO results, we also found that the expression levels of 
MAOB and LRP1 were downregulated in cancer tissues 
compared with paracarcinoma tissues, and the expres-
sion of FASN was upregulated (Fig. 7C). Thus, MAOB, 
LRP1 and FASN might be good biomarkers for BC.

Discussion
BC is a common malignancy of the urinary tract world-
wide and has an approximately three times higher mor-
bidity in men than in women [31, 32]. Although most 
patients (> 70%) have nonmuscle-invasive BC at the ini-
tial diagnosis, the high recurrence rate greatly reduces 
the prognosis of patients and 10–15% of them will even-
tually progress to the muscle-invasive stage [33–35]. Cur-
rently, with the development of surgery, chemotherapy 
and immunological therapy, the clinical management of 
BC has undergone major improvement [36, 37]. Nev-
ertheless, the prognosis of BC patients remains poor, 
and the efficacy of immunological therapy still needs 
improvement because it only benefits a small proportion 
of patients [6, 38]. Therefore, screening novel biomark-
ers to predict the prognosis of BC and treatment remains 
urgent and challenging. Increasing evidence has revealed 
that metabolic imbalance can influence the growth, pro-
liferation, angiogenesis, and invasion of cancer cells 

Table 1  Clinicopathological characteristics of patients in high- 
and low-risk group in the training set

Characteristics Number Risk score P-value

Low High

Total cases 219 109 110

Gender

  female 44 18 26 0.2520

  male 175 91 84

Age

   > =60 174 80 94 0.0412
   < 60 45 29 16

Pathological tumor stage

  1 2 1 1 0.0165
  2 60 40 20

  3 79 37 42

  4 78 31 47

T stage

  T1 2 1 1 0.0629

  T2 69 43 26

  T3 117 49 68

  T4 31 16 15

M stage

  M1 105 46 59 0.2300

  M2 108 60 48

  M3 6 3 3

N stage

  Nx 15 6 9 0.1090

  N0 129 74 55

  N1 30 12 18

  N2 41 16 25

  N3 4 1 3
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[39–41]. Although recent research has revealed that all 
types of metabolic pathways, including glucose, lipids, 
amino acids, nucleotides and other pathways, may act as 
potential prognostic markers of BC [42], few studies have 
focused on the regulation of metabolism at the molecu-
lar level. Hence, the present study aimed to systematically 
investigate the role of MRGs in the occurrence and pro-
gression of BC and screen biomarkers for predicting the 
OS of BC.

In the present study, we first identified 27 differen-
tially expressed MRGs by overlapping the MRGs, DEGs 
in TCGA, and DEGs in GEO (Fig.  1C). Next, we inves-
tigated the biological functions of these 27 differentially 
expressed MRGs and found that they were mainly associ-
ated with metabolism (Fig.  2). Thus, we speculated that 
these genes might play key roles in BC by activating or 
inhibiting metabolism-related pathways, and ultimately 
affecting the substances and energy which are neces-
sary for tumor cells growth and reproduction of tumor 
cells. Moreover, we further explored their interactions 
and genetic changes and found that several genes could 
interact with each other (Fig. 3A and B), and most genes 

experienced mutations in BC patients (Fig.  3C and D). 
Moreover, an MRG signature with good performance, 
including MAOB, FASN and LRP1, was established to 
predict the OS of BC patients. Notably, the gene signa-
ture was associated with age and tumor stage (Table 1). 
Finally, we constructed a nomogram to better use the 
gene signature and further validated the expression lev-
els of MAOB, FASN and LRP1. Interestingly, the results 
of quantitative real-time PCR were consistent with the 
results of TCGA and GEO. Namely, the expression lev-
els of MAOB and LRP1 were downregulated in cancer 
tissues compared with paracarcinoma tissues, and the 
expression of FASN was upregulated (Fig. 7).

MAOB, encoding an enzyme that can generate hydro-
gen peroxide by oxidative reaction, is mainly associated 
with neurotransmitter metabolism-related biological 
processes [43]. In the present study, we found that higher 
expression of MAOB was associated with worse survival 
in BC patients (Fig. 4B and Fig. S1). Consistent with our 
results, it has been found that decreasing the mRNA 
expression level of MAOB can extend the survival time of 
glioblastoma [44, 45]. In addition, MAOB can be used as 

Fig. 6  Construction of a nomogram for better predicting the 1-year, 3-year and 5-year OS of patients in the training set. A B Univariate (A) and 
multivariate (B) Cox regression analyses identified independent prognostic factors in training set. C Nomogram based on the age, pathological 
tumor stage and risk score was established in the training set. D The calibration curve showed the predictive efficiency of nomogram in the training 
set
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Fig. 7  The expression levels of MAOB, FASN and LRP1. A TCGA database. B GSE13507. C Clinical samples
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a novel biomarker to predict the prognosis of colorectal 
carcinoma [46] and can affect the progression of esopha-
geal cancer [47]. MAOB can also be used as a novel tar-
get for the treatment of prostate cancer [48] and presents 
differential expression in oral tumors [49]. In conclusion, 
MAOB may be regarded as a biomarker of BC. However, 
there are no reports about the role of MAOB in BC. Thus, 
more studies are needed to clarify the role of MAOB in 
the occurrence and development of BC.

FASN, a key biosynthetic enzyme involved in lipogen-
esis and the production of longchain fatty acids from 
acetylcoenzyme A and malonyl-CoA, plays a key role in 
energy metabolism [50]. It has been regarded as a poten-
tial target for the treatment of prostate cancer, thyroid 
cancer and multiple myeloma [51–53]. Moreover, the 
expression of FASN is involved in the progression of BC 
[54]. In particular, FASN has been suggested to be upreg-
ulated in BC and to be associated with the histologic 
grade and recurrence of BC [54, 55], which was con-
sistent with our findings. Moreover, inhibition of FASN 
expression can suppress the migration capacity of blad-
der transitional cell carcinoma by activating AKT [56]. 
Thus, our study further highlights the role of FASN in the 
occurrence and development of BC.

LRP1, a ubiquitously expressed cell surface receptor, 
can regulate the lipoprotein metabolism and protease 
homeostasis [57]. Consistently, LRP1 has been related to 
the poor prognosis of clear-cell renal cell carcinoma [58]. 
In addition, LRP1 mutation plays a key role in the occur-
rence of gastric cancer [59]. It has been demonstrated 
that the tPA-LRP1 pathway is a key switch for regulat-
ing the progression of melanoma by affecting the cel-
lular composition and proteolytic makeup of the tumor 
niche [60]. More importantly, the expression of LRP1 is 
involved in the outcome of lung adenocarcinoma [61]. 
Therefore, LRP1 may be a therapeutic target of BC.

Interestingly, we found that the expression levels of 
both MAOB and LRP1 were downregulated in BC com-
pared with normal samples, while low expression was 
associated with prolonged OS (Fig. 7 and Fig. S1). Con-
versely, FASN was upregulated in BC compared with 
normal samples, while high expression of FASN was 
involved in poor OS (Fig. 7 and Fig. S1). Consistent with 
our research, previous study have revealed that CXCL11 
expression is significantly upregulated in colon adeno-
carcinoma, and upregulation of CXCL11 expression is 
associated with a better prognosis [62]. Moreover, it was 
speculated that the paradox between the significance of 
expression and prognosis for CXCL11 might be due to 
the regulatory complexity (62). Here, we speculate that 
MAOB and LRP1 may not affect the occurrence of BC, 
but may be associated with the development of BC. In 
brief, BC occurrence may decrease the expression levels 

of MAOB and LRP1. Inversely, FASN may be related to 
the occurrence of BC. However, more research is needed.

Conclusion
In conclusion, based on data from the TCGA and GEO 
databases, we developed a novel MRG signature to pre-
dict the survival of BC. Furthermore, a nomogram inte-
grating the gene signature, age and tumor stage was 
constructed to preferably predict the survival of BC 
patients. Moreover, quantitative real-time PCR suggested 
that the expression levels of MAOB and LRP1 were 
downregulated in cancer tissues compared with paracar-
cinoma tissues, and the expression of FASN was upreg-
ulated. Therefore, these findings revealed that MAOB, 
LRP1 and FASN may play key roles in BC by regulating 
metabolism. However, more research is needed to illus-
trate their roles in BC.
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