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Abstract 

Background:  To identify hub genes from the competing endogenous RNA (ceRNA) network of lung adenocarci-
noma (LUAD) and to explore their potential functions on prognosis of patients from a single-cell perspective.

Methods:  We performed RNA-sequencing of LUAD to construct ceRNA regulatory network, integrating with public 
databases to identify the vital pathways related to patients’ prognosis and to reveal the expression level of hub genes 
under different conditions, the functional enrichment of co-expressed genes and their potential immune-related 
mechanisms.

Results:  ZC3H12D-hsa-miR-4443-ENST00000630242 axis was found to be related with LUAD. Lower ZC3H12D expres-
sion was significantly associated with shorter overall survival (OS) of patients (HR = 2.007, P < 0.05), and its expression 
was higher in early-stage patients, including T1 (P < 0.05) and N0 (P < 0.05). Additionally, ZC3H12D expression was 
higher in immune cells displayed by single-cell RNA-sequencing data, especially in Treg cells of lung cancer and CD8 T 
cells, B cells and CD4 T cells of LUAD.  The functional enrichment analysis showed that the co-expressed genes mainly 
played a role in lymphocyte activation and cytokine-cytokine receptor interaction. In addition, ZC3H12D was associ-
ated with multiple immune cells and immune molecules, including immune checkpoints CTLA4, CD96 and TIGIT.

Conclusion:  ZC3H12D-hsa-miR-4443-ENST00000630242 ceRNA network was identified in LUAD. ZC3H12D could 
affect  prognosis of patients by regulating mRNA, miRNA, lncRNA, immune cells and immune molecules. Therefore, 
it may serve as a vital predictive marker and could be regarded as a potential therapeutic target for LUAD in the future.

Keywords:  Zinc finger CCCH-type containing 12D (ZC3H12D), Competitive endogenous RNA, Single-cell RNA 
sequencing, Lung adenocarcinoma, Immunomics
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Background
Lung adenocarcinoma (LUAD), accounting for approxi-
mately 60% of non-small cell lung cancer (NSCLC), is the 
most common subtype of lung cancer with a high inci-
dence worldwide [1, 2]. With the advancement of tech-
nological innovation, the mechanisms behind LUAD 
are gradually revealed. Growing evidence highlights the 
vital role of the competitive endogenous RNA (ceRNA) 
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regulatory networks in LUAD. For instance, AC079160.1-
miR-539-5p-CENPF axis may participate in hypoxia-
induced tumor cell stemness of LUAD. Low expression 
of AC079160.1 and CENPF and high expression of 
miR-539-5p were correlated with hypoxia and stemness 
index, indicating a better prognosis [3]. Furthermore, 
linc01833-miR-519e-3p-S100A4 axis might be associated 
with LUAD progression, and linc01833 overexpression 
can significantly improve proliferation and invasion abil-
ity of lung cancer cells as well as promote the epithelial-
mesenchymal transformation process [4].

Although the function of ceRNA network concern-
ing LUAD has been uncovered gradually, the role of sin-
gle-cell RNA sequencing (scRNA-seq) in LUAD is still 
waiting to be explored. ScRNA-seq is a novel hot spot 
to demonstrate the underlying mechanisms of LUAD, 
uncovering new differentially expressed genes as well 
as the heterogeneity of immune response-related genes 
[5, 6]. Besides, scRNA-seq was applied to unravel the 
molecular and cellular reprogramming mechanisms 
in metastatic LUAD and the  cell-cycle state of the cir-
culating tumor cells of  cerebrospinal fluid in LUAD 
patients with  leptomeningeal metastases [7, 8]. When it 
comes to immunotherapy, scRNA-seq technology might 
locate the expression of hub  genes in immune cells  of 
LUAD to improve  precision of immunotherapy in the 
future  [9]. Therefore, integrating ceRNA network with 
scRNA-seq data may provide a promising strategy for 
further understanding the underlying mechanisms of 
LUAD, and might collect more valuable knowledge to 
improve individual targeted treatment.

At present, there is no investigation on zinc finger 
CCCH-type containing 12D (ZC3H12D)-hsa-miR-4443-
ENST00000630242 axis, which might play a critical role 
in LUAD. Anti-oncogene ZC3H12D, also called p34, is 
a  member of the zinc finger CCCH-type protein  fam-
ily that is associated with gene expression such as IER3, 
TNF, IL-6, NF-κB and TLR, degrading inflammatory 
transcripts and attenuating macrophage response [10–
12]. Previous studies have demonstrated that ZC3H12D 
could be targeted by miR-128-3p, involving in cell pro-
liferation and migration in osteosarcoma [13]. However, 
the functions of hsa-miR-4443 in different cancers are 
heterogeneous. It could promote the drug resistance  to 
epirubicin  in NSCLC [14]; While its overexpression 
of hsa-miR-4443 acts in a tumor-suppressive manner, 
decreas the invasiveness of hepatocellular carcinoma 
(HCC) [15], glioblastoma (GBM) [16] and colorectal 
cancer (CRC) [17]. Next, long non-coding RNAs (lncR-
NAs) have been demonstrated their roles in ceRNA net-
works as regulators,   participating in the regulation of 
various pathological processes related to cancers. Com-
pared with the mRNA and miRNA, little is known about 

the function of lncRNA FAM30A. Highly expressed 
in B cells, FAM30A is correlated with the regulation of 
immune response and immunoglobulin genes [18, 19]. 
Therefore,  our study aims to reveal the function of the 
ZC3H12D-hsa-miR-4443-ENST00000630242 axis in the 
prognosis of LUAD, especially the role of ZC3H12D con-
cerning immunomics.

Methods
Patients and clinical samples
Ten paired LUAD and paracancerous tissues were col-
lected between January 1, 2019 and May 31, 2019 at 
Fujian Medical University Second Affiliated Hospital. All 
samples were obtained from LUAD patients who only 
received primary surgical treatment. Patient character-
istics are provided in Table 1. All the Surgically-resected 
samples were immediately snap-frozen by liquid nitro-
gen, and then transferred to a − 80 °C refrigerator for 
RNA extraction. According to the World Health Organi-
zation (WHO) guidelines (2015), we had two well-expe-
rienced pathologists to confirm the clinicopathological 
diagnosis. The study was approved by the bioethical com-
mittees at The Second Affiliated Hospital of Fujian Medi-
cal University, China (2020-206). And, all participating 
patients provided written informed consent.

RNA extraction and sequencing
Using the RNeasy Mini Kit (Qiagen, Germany) to isolate 
the total RNA of LUAD tissues and paracancerous tis-
sues from collected frozen tissues following the standard 
manufacturer’s instructions. Qubit 4.0 (Thermo Fisher 
Scientific, Wilmington, DE, USA) was used to evaluate 
the RNA concentration, and agarose gel electrophoresis 
was applied to assess the RNA quality.

Then, the maximum residual non-coding RNA 
(ncRNA) was retained after the ribosomal RNA was 

Table 1  Clinical information of 10 LUAD patients involved in the 
study

LUAD lung adenocarcinoma

No. Sex Histology Primary site TNM

RT19004 Male LUAD Right upper lung field P-T2N0M0 Ib

RT19007 Female LUAD Right upper lung field P-T2aN0M0 Ib

RT19008 Male LUAD Left upper lung field P-T1cN0M0 Ia

RT19009 Female LUAD Left upper lung field P-T1aN0M0 Ia

RT19011 Female LUAD Right upper lung field P-T1bN0M0 Ia

RT19012 Female LUAD Left lower lung field P-T1cN0M0 Ia

RT19014 Female LUAD Right lower lung field P-T1bN0M0 Ia

RT19015 Male LUAD Right lower lung field P-T1bN0M0 Ia

RT19018 Male LUAD Right upper lung field P-T1bN0M0 Ia

RT19021 Male LUAD Right lower lung field P-T1bN0M0 Ia
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removed from the total RNA. Using the TruSeq RNA 
Sample Prep Kit (Illumina, San Diego, CA, USA) to per-
form the cDNA library construction after fragments of 
rRNA-depleted RNA. Following the standard manufac-
turer’s instructions, the VAHTS total RNA-seq Library 
Prep kit for Illumina (Vazyme NR603, China) was used 
for generating lncRNA/mRNA sequencing libraries. The 
150-bp paired-end reads’ cDNA fragments were gener-
ated for RNA sequencing. Then, establish the miRNA 
library for samples using the NEBNext® Multiplex Small 
RNA Library Prep Set for Illumina® (NEB). With a sin-
gle lane of Illumina HiSeq Xten sequencing platform, 
12 libraries were pooled and sequenced. And establish 
the miRNA library with 50-bp paired-end reads using 
the Illumina’s TruSeq small RNA library preparation kit. 
Using the Illumina HiSeq Xten platform to carry out the 
sequencing for both lncRNA/mRNA and miRNA after 
library construction.

Identifications of differentially expressed mRNAs, miRNAs 
and lncRNAs
Mirdeep2 (v2.0.0.5) was applied to predict new miRNA, 
whose expression was calculated and standardized using 
counts per million (CPM) read [20]. While, LncRNAs 
were annotated by these databases, including CNCI 
(https://​github.​com/​www-​bioin​fo-​org/​CNCI) [21], CPC2 
(http://​cpc2.​cbi.​pku.​edu.​cn/) [22], CPAT (https://​sourc​
eforge.​net/​proje​cts/​rna-​cpat/) [23] and PLEX (https://​
sourc​eforge.​net/​proje​cts/​plek/) [24]. The intersection 
was retained for further analysis.

Screen the differentially expressed mRNAs (DEmR-
NAs), differentially expressed miRNAs (DEmiRNAs) and 
differentially expressed lncRNAs (DElncRNAs) between 
LUAD and normal tissues using the DESeq2Rpackage 
(https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
DESeq2.​html) in the Bioconductor project. The cut-off 
criteria was |Log2(fold change)|(|log2FC|) ≥1 and sta-
tistical P < 0.05. Subsequently, unsupervised hierarchical 
clustering was performed for DE-RNAs https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​pheat​map/​index.​html.

Analysis of the DElncRNAs enrichment pathway
Using the gene ontology (GO, http://​www.​bioco​nduct​or.​
org/​packa​ges/​relea​se/​bioc/​html/​topGO.​html) function 
analysis to screen enrichment of targeted genes to anno-
tate the biological functions regulated by DElncRNAs, 
including molecular function (MF), biological processe 
(BP), and cellular component (CC). In addition, using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://​www.​genome.​jp/​keggb​in/​show_​organ​ism?​menu_​
type=​pathw​ay_​maps&​org=​hsa) analysis to determine 
the vital signaling pathways associated with DElncR-
NAs. Both GO and KEGG enrichment analysis set gene 

count ≥2 and P value < 0.05 as the threshold for statisti-
cal significance.

Predication of miRNA regulation relationship
The miRWalk 2.0 (http://​zmf.​umm.​uni-​heide​lberg.​de/​
pps/​zmf/​mirwa​lk2/) was applied to perform the predic-
tion of miRNA-gene analysis of DEmiRNA [25]. Addi-
tionally, using the miRWalk, miRanda, miRDB, miRMap 
and  TargetScan databases to predict the potential 
DEmiRNA-DEmRNA regulatory relationships. Subse-
quently, the StarBase (http://​starb​ase.​sysu.​edu.​cn/) data-
base was used to predict the potential miRNA-lncRNA 
regulatory relationships by DEmiRNAs [26]. Then, 
based on shared DEmiRNAs with which DEmRNAs 
and DElncRNAs interact, the DEmRNA-DEmiRNA and 
DEmiRNA-DElncRNA regulatory relationships were suc-
cessfully constructed, and were visualized by Cytoscape 
software.

Construction of lncRNA‑miRNA‑mRNA ceRNA network
Based on the hypothesis of miRNA sponge, we focused 
on the positive correlation expression of DElncRNAs-
DEmRNAs, and obtained the co-expressed relationships 
between DEmRNAs and DElncRNAs simultaneously 
regulated by DEmiRNAs. Subsequently, based on shared 
miRNAs, we constructed the competing endogenous 
RNA (ceRNA) network. Furthermore, we applied a 
hypergeometric cumulative distribution function test 
to predict the possible ceRNA pairs, and only the pairs 
with correlation coefficient>0.5 and P value <0.05 were 
selected. The Sankey diagram was built based on the R 
software package ‘ggalluval’ (https://​github.​com/​coryb​
runson/​ggall​uvial).

Public data source
Raw counts of RNA-sequencing data and correspond-
ing clinical information were obtained from The Cancer 
Genome Atlas (TCGA) dataset (https://​portal.​gdc.​can-
cer.​gov/) in January 2020, and the method of acquisition 
and application for data were complied with the guide-
lines and policies. LUAD-related RNA-sequencing data 
and corresponding clinical information were obtained 
from the TCGA database as following criteria: 1) histo-
logically diagnosed as LUAD; 2) data with clinical infor-
mation. Finally, a total of 510 paired LUAD tissues was 
included for further analysis.

MiRNAs data was downloaded from KM-plotter 
(https://​kmplot.​com/​analy​sis/) [27], and LncRNAs 
data was obtained from TCGA database. The single-
cell sequencing data of normal lung tissue from 8 mice 
came from Tabula Muris (https://​tabula-​muris.​ds.​
czbio​hub.​org/) [28] https://​www.​synap​se.​org/. While, 
the single-cell sequencing data of NSCLC, including 
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LUAD, resulted from the GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) and European Molecular Biol-
ogy Laboratory (EMBL, https://​www.​ebi.​ac.​uk/). The 
databases were included only if they contained single 
cell RNA sequencing of NSCLC. Finally, we founded 6 
valuable datasets. The ScRNA-seq data of EMTAB6149 
was prepared from 5 dissected lung tumors [29], while 
GSE117570 contained scRNA-seq data of tumor-infil-
trating immune cells from 4 untreated NSCLC patients 
[30]. Besides, GSE127465 contained scRNA-seq data 
of red blood cell (RBC)-depleted cells from NSCLC 
tumor and from blood of 7 patients, as well as CD45-
positive cells from  lungs from two healthy mice and 
two tumor-bearing mice [31]. GSE127471 data were 
collected from cryopreserved peripheral blood mon-
onuclear cells of NSCLC and GSE131907 contained 
data of 208,506 cells derived from 44 patients with 
LUAD, taken from normal lung tissues, LUAD tissues, 
normal lymph nodes, invaded lymph nodes, pleural 
effusion, and brain metastases [32, 33]. Additionally, 
GSE139555 contained data of pretreatment samples 
from 14 NSCLC patients, which covered normal tis-
sues, primary tumors and peripheral blood [34]. The 
present study meets the criteria of data usage and pub-
lishing of the National Cancer Institute of National 
Institutes of Health.

Survival prognosis and clinical factors
The Kaplan–Meier survival analysis was used to com-
pare the survival difference between the above two 
groups using ‘survival’ (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​survi​val/​index.​html) and ‘survminer’ 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​survm​iner/​
index.​html) R packages. When processing mRNA 
or lncRNA expression data, we splited  patients by 
median. However, due to zero miRNA expression data 
in some LUAD samples, we decided to use auto select 
best cutoff to group patients better.  TimeROC analy-
sis was performed to compare the predictive accuracy 
of each gene and risk score. For Kaplan–Meier curves, 
p-values and hazard ratio (HR) with 95% confidence 
interval (CI) were generated by log-rank tests. Uni-
variate and multivariate cox regression analysis were 
performed to identify the proper terms to build the 

nomogram. The forest plot was used to display P val-
ues, HR and 95% CI of each variable using ‘forestplot’ 
R package  (https://​CRAN.R-​proje​ct.​org/​packa​ge=​
fores​tplot). Nomograms were developed  to predict 
LUAD patients’ overall survival (OS) at 1, 3, 5 years, 
respectively, based on the results of multivariate Cox 
proportional hazards analysis. The nomograms quan-
tified the risk so that we could evaluate the prognosis 
of  LUAD patients  by the points associated with each 
risk factor through ‘rms’ R package (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​rms/​index.​html) [35]. Both 
the above analysis methods and R packages were 
implemented by R foundation for statistical computing 
(2020) version 4.0.3 and ggplot2 (v3.3.2). P value< 0.05 
was considered statistically  significant.

Gene expression atlas based on single‑cell 
RNA sequencing data
We chose the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm [36, 37] or Uniform 
Manifold Approximation and Projection for Dimension 
Reduction (UMAP) [38] to reduce the dimensional-
ity of the quality-controlled scRNA-seq data of nor-
mal lung cell from mouse [39]. Moreover, scRNA-seq 
data from lung cell atlas of human [40] and lung can-
cer brain metastases [41] of human were re-analyzed 
through the UCSC cell browser (https://​cells.​ucsc.​edu/) 
[42]. To understand the expression of ZC3H12D in dif-
ferent cell types across selected datasets, we applied 
TISCH (http://​tisch.​comp-​genom​ics.​org/) to obtain the 
ZC3H12D average expression data from multiple data-
bases [43]. Furthermore, we explored the expression 
of ZC3H12D in LUAD and other well-characterized 
NSCLC at single-cell level and identified the distribu-
tion of expression of ZC3H12D in different crucial cell-
types across datasets. The expression of ZC3H12D was 
collapsed by mean value. The gene expression level dis-
played using UMAP and violin plots was quantified by 
the normalized values.

Screening of co‑expressed genes and enrichment analysis
We applied Spearman’s correlation analysis to 
identify genes that were related to the expression 
level of ZC3H12D. Those genes with correlation 

(See figure on next page.)
Fig. 1  The lncRNA-miRNA-mRNA ceRNA networks is constructed. a Survival analysis of ZC3H12D. ZC3H12D was identified to be significant 
associated with OS. b TimeROC analysis of ZC3H12D in LUAD. A higher AUC value indicated a better predictive power for ZC3H12D. c The ceRNA 
network constructed by ZC3H12D and the associated miRNAs and lncRNAs. d Survival curve of hsa-miR-4443. High expression of hsa-miR-4443 was 
not conducive to the prognosis of patients with LUAD. e Survival curve of ENST00000630242 (FAM30A). High expression of ENST00000630242 was 
beneficial to the prognosis of patients with LUAD
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Fig. 1  (See legend on previous page.)
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Fig. 2  The Cox regression models. ZC3H12D was beneficial to the overall survival of patients in both a univariate and b multivariate Cox 
regression models. c Nomogram to predict the 1-y, 3-y and 5-y overall survival of LUAD patients. A nomogram was built based on multivariate Cox 
proportional hazards analysis to predict the X-year overall survival, calculating the risk by the points associated with each factor. A higher score 
indicated a higher risk of death. Calibration curve for the OS nomogram model of ZC3H12D. d A red line represented the 1-y observed nomograms,  
an orange line represented the 3-y observed nomograms, a blue line represented the 5-y observed nomograms and a gray diagonal line represents 
the ideal nomogram. The nomogram predicting 1-year OS was relatively more accurate than the nomogram predicting 3-year OS or 5-year OS of 
LUAD patients
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coefficient>0.5, P  < 0.01 and FDR < 0.01 were con-
sidered as co-expressed genes for GO functional 
enrichment analysis and KEGG pathway enrichment 
analysis. The top 10 categories by GO analysis and 
top 10 pathways enriched by KEGG analysis were dis-
played, respectively. The volcano plot and heat map 
were drawn by LinkedOmics (http://​www.​linke​dom-
ics.​org/​login.​php) [44] and Metascape (http://​metas​
cape.​org/) [45], and the bubble diagram was drawn 
by ‘ggplot2’ R package (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​ggplo​t2/​index.​html).  The sangerbox 
tool also  provided  assistance with image adjustments 
during drawing, a free online data analysis platform 
(http://​www.​sange​rbox.​com/​tool).

The immune cell infiltration level and immune molecules 
expression
To obtain reliable immune infiltration estimations, we uti-
lized the ‘immunedeconv’(https://​www.​rdocu​menta​tion.​
org/​packa​ges/​immun​edeco​nv/​versi​ons/2.​0.0) R package 
that integrated six state-of-the-art algorithms [46], includ-
ing  Estimating the Proportion of Immune and Cancer 
cells (EPIC) [47] and Tumor Immune Estimation Resource 
(TIMER, http://​timer.​cistr​ome.​org/) [48]. Besides, immu-
nostimulators and immunoinhibitors were selected and the 
expression levels (transcripts per kilobase of exonmodel 
per million mapped reads) of these genes were extracted. 
The two-gene, and the multi-gene correlation map was dis-
played using ‘ggstatsplot’ (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​ggsta​tsplot/​index.​html) and ‘pheatmap’ R pack-
age (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​pheat​map/​
index.​html), respectively. Additionally, we used Spearman’s 
correlation analysis to describe the correlations among 
gene expression levels. And P < 0.05 was considered statis-
tically significant.

Results
Construction of ceRNA regulatory network in LUAD
Pearson correlation coefficient and significant p value 
between mRNAs and lncRNAs expression were cal-
culated for differentially expressed miRNAs and their 
differentially expressed target mRNAs and lncRNAs, 
and for all known miRNAs and their differentially 
expressed target mRNAs and lncRNAs. In the present 

study, a total of 1955 differentially expressed mRNAs, 
165 differentially expressed miRNAs and 1107 differ-
entially expressed lncRNAs were identified by the RNA 
sequencing profiles of 10 stage I LUAD patients. The top 
50 miRNAs and their target genes were ranked accord-
ing to the respective network degree of both mRNAs 
as well as lncRNAs for display. Totally, 49 mRNAs, 99 
miRNAs and 50 lncRNA were obtained to construct 
ceRNA regulatory networks (Supplement 1a). To iden-
tify a powerful pathway from this complicated ceRNA 
regulatory network, we focused on the function of 
lncRNA-miRNA-mRNA axises that could predict OS 
of LUAD. Verified by the Kaplan–Meier survival analy-
sis, five mRNAs including ZC3H12D were identified to 
be significant associated with OS, including ZC3H12D, 
GNAO1, KSR2, SBK1 and SLIT3 (Fig.  1a-b and Sup-
plement 2). Compared with TCGA normal data, LUAD 
samples had significantly higher expression of SBK1 and 
ZC3H12D, while lower SLIT3 expression was observed 
in LUAD. However, there was no significant difference 
in the expression of GNAO1 and KSR2 between tumor 
and paracancerous tissue samples. Meanwhile, both 
SBK1 and SLIT3 were found to play a vital role in  lung 
cancer  by miRNA or lncRNA [49–51]. Thereinto, we 
focused on ZC3H12D to construct a ceRNA regula-
tory network, and screened for potentially functional 
miRNAs and lncRNAs (Fig.  1c). Then, high expression 
of hsa-miR-4443 was not conducive to the prognosis 
of patients with LUAD (Fig. 1d), but high expression of 
ENST00000630242 was beneficial to the prognosis of 
patients with LUAD (Fig. 1e). Furthermore, ZC3H12D-
hsa-miR-4443-ENST00000630242 axis was established, 
which might play a crucial role in the prognosis of 
LUAD patients.

Establishment of cox prognostic model
To explore the predictive role of ZC3H12D in LUAD 
patients, we constructed Cox regression models. Fortu-
nately, ZC3H12D was beneficial to the overall survival of 
patients in both univariate and multivariate Cox regres-
sion models. (Fig. 2a and b). Based on the identifications 
from the multivariate cox proportional hazards analysis, 
a prediction nomogram was developed to calculate the 
risk by the points associated with the three risk factors 

(See figure on next page.)
Fig. 3  The relationship between ZC3H12D expression and clinical factors associated with prognosis. In group  C1, the expression of ZC3H12D was 
higher than the median, while in group C2 it was lower than the median. a The chi-square test for the distribution of tumor size. b The chi-square 
test for the distribution of metastasis to lymph nodes. The correspondent bar chart exhibited the proportion of ZC3H12D high expression in c) T1 
and d) N0 was significantly higher than that of ZC3H12D low expression. e Box plots of ZC3H12D expression between N0  group and the lymph 
node metastasis group. In N0 group, the ZC3H12D expression was significantly higher than another group. f Box plots showed that the ZC3H12D 
expression was relatively higher in T1 phase than that in the T2, T3 and T4. * p < 0.05
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(ZC3H12D, N stage, T stage). The total score ranged 
from 0 to 160, and was calculated by summing all the 
scores in each variable. According to the score calcu-
lated, we could roughly predict one-year survival rate, 
three-year survival rate and five-year survival rate of 
patients. A higher score indicated a higher risk of death 
(Fig.  2c). For the purpose of internal validation, the 
calibration plot showed that the nomogram predicting 
1-year OS was relatively more accurate than the nomo-
gram predicting 3-year OS and 5-year OS of LUAD 
patients (Fig. 2d).

Relationship between vital clinical factors and ZC3H12D 
expression level
As identified from the prognostic model, ZC3H12D, N 
stage and T stage could predict OS of LUAD patients. 
To explore the relationship between ZC3H12D expres-
sion and clinical factors associated with prognosis, we 
analyzed the significance P values by chi-square test. 
The results showed that T and N stages displayed sig-
nificant differences between in group C1 and in group 
C2. In group C1, the expression of ZC3H12D was sig-
nificantly higher than the median, while in group C2 was 
significantly lower than the median (Fig. 3a and b). From 
the correspondent bar chart, it exhibited that the pro-
portion of ZC3H12D high expression in T1 and N0 was 
significantly higher than that of ZC3H12D low expres-
sion (Fig.  3c and d). To further verify the results, we 
combined N1, N2 and N3 group into one group, which 
was compared with N0 group to observe the difference 
of expression between the two groups. In N0 group, 
the ZC3H12D expression was significantly higher than 
another group (Wilcoxon rank sum test, P  = 8.3e-05) 
(Fig. 3e). In addition, eliminating unknown samples, we 
took T2, T3 and T4 as a whole. Compared with T1, we 
found that there was a statistical significance between 
them and ZC3H1 2D expression was relatively higher in 
T1 phase (Fig. 3f ).

ScRNA sequencing reveals ZC3H12D expression in normal 
lung tissue and LUAD
Different from conventional bulk RNA-sequencing, we 
applied scRNA-seq database to explore the expression 
level of ZC3H12D in normal lung tissue and LUAD. We 

found that ZC3H12D was mainly expressed in immune 
cells, which can be found in both human and mouse 
lung specimens (Fig. 4a-c). In parallel, we explored data 
from single-cell RNA sequencing of non-small cell lung 
cancer in public databases. Using scRNA-seq data from 
the GEO database, we found that ZC3H12D expression 
transformed by log (TPM/10 + 1) displayed heterogene-
ity in different clusters of cells in different NSCLC data-
sets (Fig. 4d). ZC3H12D was more abundantly expressed 
in CD4 T cells using GSE127465 and in Treg cells using 
GSE99254. Then, to eliminate the effect of lung squa-
mous cell carcinoma we used another scRNA-seq data-
set from GSE131907 to unravel the expression level in 
LUAD, indicating that it was relatively higher expressed 
at CD8 Tex(0.11), CD8 T cells(0.08), B cells(0.08) and 
CD4 T cells(0.07) over other cells(≤0.05) (Fig.  4e-h). 
Also, it was expressed in some plasma cells, DC cells, 
monocytes or macrophages, while ZC3H12D was not 
abundantly expressed in fibroblasts, mast and endothe-
lial cells. However, when lung cancer metastasized to 
the brain, the expression levels of various types of cells 
changed. The ZC3H12D expression in monocytes was 
significantly increased, even higher than that in CD4 and 
CD8 T cells sometimes (Fig. 4i). And, the heterogeneity 
among individuals was also very significant. In another 
patient with leptomeningeal metastasis of lung cancer, 
the ZC3H12D expression was relatively higher in CD8 T 
cells and CD4 T cells (Fig. 4j).

Screening for important co‑expressed genes
Base on Spearman correlation test, we identified 19,987 
genes from the TCGA LUAD data. A total of 12,201 
genes were positively correlated with ZC3H12D expres-
sion, while 7786 genes were negatively correlated with 
ZC3H12D expression, which displayed in the volcanic 
map (Fig. 5a). The top 10 positively correlated significant 
genes and the top 10 negatively correlated significant 
genes were screened and plotted, respectively (Fig.  5b 
and c).

GO functional enrichment analysis and KEGG pathway 
enrichment analysis
After further filtration of 12,201 positive related 
genes, 345 genes were obtained using correlation 

Fig. 4  Expression of ZC3H12D in single cell RNA landscapes. a The ZC3H12D was found in human lung specimens. b The t-SNE analysis of 
ZC3H12D expression level in mouse lung specimens. c Violin diagram of gene expression in different types of cells in mouse lung tissues. d 
Heatmap of ZC3H12D expression displayed heterogeneity in different clusters of cells in different NSCLC datasets. Expression of ZC3H12D in e 
GSE127465, f GSE99254 and g GSE131907 after umap processing. h Violin diagram of gene expression in different immune cells in different NSCLC 
datasets. i The ZC3H12D expression in monocytes was significantly increased in one patient with leptomeningeal metastasis from lung cancer. j 
Expression of ZC3H12D in single-cell RNA sequencing atlas from another patient with leptomeningeal metastasis of lung cancer in the same study

(See figure on next page.)
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coefficient > 0.5, p-value < 0.01 and FDR < 0.01 as criteria 
for screening Gene ontology (GO) classification func-
tional enrichment and Kyoto encyclopedia of genes and 
genomes (KEGG) classification pathway enrichment of 
345 genes were performed. The results demonstrated that 
these genes were mainly enriched in the immune func-
tion of lymphocyte activation,  immune response, B cell 
activation  and alpha-beta T cell activation (Fig. 5d and 
Supplement 3). Meanwhile, co-expressed genes also par-
ticipated in many pathways, such as cytokine-cytokine 
receptor interaction, cell adhesion molecules and Th17 
cell differentiation (Fig. 5e).

Correlation between gene expression and immune cell 
infiltration
In the face of so much evidence showing the poten-
tial relationship between ZC3H12D and immunity, we 
decided to explore the correlation between expression of 
ZC3H12D and various immune cell infiltration levels in 
LUAD. Divided by the median, G1 group represents high 
expression of ZC3H12D, while G2 group represents low 
expression of ZC3H12D. Based on the experimental peri-
toneal cancer index (EPCI) algorithm, six major immune 
cells showed a trend: the scores of the G1 group with high 
expression were higher than the scores of the G2 group 
with low gene expression, interestingly, in the undefined 
cells, the scores of the G1 group with high gene expres-
sion were relatively lower than those of the G2 group 
with low gene expression (Fig. 6a).

Correlation between ZC3H12D and important immune 
molecules
Five hundred and  ten LUAD samples were used for 
co-expression between ZC3H12D and other genes. 
Among the co-expressed genes screened, ZC3H12D 
expression was linked to many immune-related genes. 
To further explore its regulatory effect, we analyzed 
the correlation between the expression of ZC3H12D 
and the common immunostimulators. Ultimately, 
we identified 10 immunostimulators (CD27, CD28, 
CD40LG, CD48, CXCR4, ICOS, KLRK1, LTA, 
TNFRSF13B, TNFRSF13C) with statistical sig-
nificance (Fig.  6b). Interestingly, we also found 
that the expression of ZC3H12D was related to 

immunoinhibitors. 10 statistically significant 
immunoinhibitors (BTLA, CD274, CD96, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, 
SIGLEC15) were also screened, including several 
immune-checkpoint–relevant transcripts, such as 
CTLA4, CD96, TIGIT. However, the correlation 
between the immune checkpoint SIGLEC15 and 
ZC3H12D expression was relatively weak (Fig. 6c).

Discussion
Screened from the ceRNA regulatory network of LUAD, 
ZC3H12D-hsa-miR-4443-ENST00000630242 path-
way was found, which was closely related to the survival 
of patients. High expression of hsa-miR-4443 was not 
conducive to the prognosis of patients with LUAD, but 
high expression of ENST00000630242 was beneficial 
to the prognosis of patients with LUAD. Besides, high 
ZC3H12D expression was linked to various clinical char-
acteristics and better prognosis. Enriched in immune 
cells, ZC3H12D was associated with various immune cell 
infiltration levels and immune molecules. The functional 
enrichment analysis also showed that the co-expressed 
genes mainly played a role in lymphocyte activation and 
cytokine-cytokine receptor interaction.

ZC3H12D is also called MCPIP4, C6orf95, and 
dJ281H8.1. It is a tumor suppressor gene, which plays 
a critical role in many cancers, including tongue can-
cer [52], osteosarcoma [13] and lung cancer. As for lung 
cancer, most of previous studies focused on the effect 
of genetic polymorphisms of ZC3H12D, and little was 
known about its potential regulatory mechanisms on 
lung cancer [53]. Previous studies have demonstrated 
that ZC3H12D was associated with memory T lympho-
cytes and macrophages, participating in the regulation of 
inflammation [54, 55]. Therefore, we hypothesized that 
this gene might have an effect on LUAD through immune 
regulatory mechanism. In our study, we found that many 
immune-related genes were positively correlated with the 
expression of ZC3H12D, such as ZNF831, SLAMF1 and 
IL-16. Both ZNF831 and ZC3H12D were linked to Zinc 
Finger Family, and it has been reported that ZNF831 
was specifically significant in the high immunity sub-
type of triple-negative breast cancer, which was charac-
terized by anti-tumor immune activities, better immune 

(See figure on next page.)
Fig. 5  Spearman correlation test. a The volcano map showed that a total of 12,201 genes were positively correlated with ZC3H12D expression, 
while 7786 genes were negatively correlated with ZC3H12D expression. b The top 10 positively correlated significant genes and c the top 10 
negatively correlated significant genes were screened. d  Bubble map uncovered that genes were mainly enriched in the immune function of 
lymphocyte activation, immune response, B cell activation and alpha-beta T cell activation. e Another bubble chart uncovered the co-expressed 
genes also participated in many pathways, such as cytokine-cytokine receptor interaction, cell adhesion molecules and Th17 cell differentiation
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cell infiltration and greater probability of OS [56]. And 
SLAMF1 could both inhibit proliferation and impair 
responses to B cell receptor ligation in IGHV mutated 
chronic lymphocytic leukemia, which was similar to the 
anti-tumor effect of ZC3H12D [57]. In the previous liter-
ature, ZC3H12D could regulate IL-6, which was a mem-
ber of the interleukin family, and we further found that 
IL-16, another member of the interleukin family, was also 
closely related to ZC3H12D [12, 58]. As a pro-inflam-
matory cytokine, IL-16 was associated with high grade 
immune related adverse events in advanced NSCLC 
treated with immune checkpoint inhibitors [59].

In addition to the correlation of co-expressed genes, 
it is more convincing to analyze the function and path-
way of positively related gene sets in LUAD samples. In 
our study, a lot of genes participated in the functions and 
pathways associated with immunity. The function enrich-
ment results showed that many co-expressed genes were 
involved in lymphocyte activation and immune response, 
which were consistent with the results of previous stud-
ies [60, 61]. In addition to the immune-related pathways, 
we also found that the co-expressed genes of ZC3H12D 
expression were enriched in well-known cancer-related 
pathways, such as NF-kB signaling pathway, which 
needed to validate its function in cancer in the further.

Besides, the scRNA-seq technology provided us an 
innovative method to reveal the gene expression level in 
immune cells under different conditions [62, 63]. Based 
on the ScRNA-seq in our study, it showed that ZC3H12D 
was not homogeneous among different clusters in tumor, 
but it selectively highly expressed in immune cells. Com-
pared with the samples of normal lung tissues, LUAD tis-
sues, non-small cell lung cancer and brain metastasis of 
lung cancer, we found that the expression of ZC3H12D in 
different immune cell types, including conventional CD4 
T cells, regulatory T cells, monocytes or macrophages, 
would change under different conditions, which reflected 
the plasticity of ZC3H12D to a certain extent. Also, when 
it was highly expressed, the EPIC scores of the main 
immune cells were correspondingly higher. Meanwhile, 
the high expression of ZC3H12D was also more common 
in T1 and N0, and was related to some immune mol-
ecules, so we speculated that it may play an anti-cancer 
effect by regulating immunity in the early stage of LUAD. 

Future studies are required to compare the immune 
changes caused by ZC3H12D between early-stage and 
advanced-stage, so as to further reveal the function of 
ZC3H12D on the dynamic heterogeneity of LUAD.

Apart from immune mechanism, ceRNA regulatory 
network may also involve in the prognosis of LUAD. In 
the present study, lncRNA ENST00000630242, acting 
as a ceRNA, could “sponge” hsa-miR-4443 to regulate 
the expression of target ZC3H12D. Overexpression of 
ZC3H12D was beneficial to prolong the survival time of 
LUAD patients, while hsa-miR-4443 was not conducive 
to the prognosis of patients, which were conformity with 
the pertinent literature [14, 64]. Although there were few 
studies on ENST00000630242, the data showed that it 
was beneficial to the prognosis of patients with LUAD. 
Therefore, ZC3H12D-hsa-miR-4443-ENST00000630242 
axis could be served as a novel potential target for LUAD 
treatment.

The major limitation of this study is that we have 
not confirmed the ENST00000630242-hsa-miR-4443-
ZC3H12D axis by experiments, though the correlations 
have been primarily uncovered through RNA-seq from 
clinical samples. Although the function of ZC3H12D 
was revealed in the present study, the mechanisms of 
ENST00000630242 and hsa-miR-4443 in LUAD are still 
unclear. Therefore, further study is needed to explore the 
role of ENST00000630242 and hsa-miR-4443 in LUAD. 
Additionally, due to the small number of samples per-
formed by RNA-seq, it might induce bias, so we used 
the public database to validate our study. In the future, 
we will also make an effort to enlarge samples to reduce 
selection bias.

Conclusion
In summary, we found that ENST00000630242-hsa-
miR-4443- ZC3H12D axis might be involved in the OS 
of LUAD patients. lncRNA ENST00000630242 could 
“sponge” hsa-miR-4443 to regulate the expression of 
ZC3H12D. ZC3H12D or ENST00000630242 could be 
beneficial to improve the prognosis of LUAD patients, 
while hsa-miR-4443 was not conducive to the overall sur-
vival time of patients. ZC3H12D, the core part of this path-
way, was combined with some clinical factors to establish 
a cox model together. Furthermore, ZC3H12D expression 

Fig. 6  Relationship between ZC3H12D gene expression and immunity. a The immune cell score heat map showed the relationship between 
ZC3H12D gene expression and immune cells. b Immunostimulators related gene expression heat map, uncovering the 10 immunostimulators 
(CD27, CD28, CD40LG, CD48, CXCR4, ICOS, KLRK1, LTA, TNFRSF13B, TNFRSF13C) with statistical significance. c The heatmap of the correlation 
between 10 immunoinhibitors (BTLA, CD274, CD96, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, SIGLEC15) and ZC3H12D expression. *p < 0.05, 
**p < 0.01, ***p < 0.001

(See figure on next page.)
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at single level was unraveled in both normal lung tissues 
and lung tumors. Also, we found ZC3H12D expression 
was associated with some clinical features, important 
functions and pathways. Meanwhile, we explored the cor-
relation between ZC3H12D and immune mechanisms to 
understand LUAD better. Therefore, it may serve as a vital 
predictive marker and could be  regarded as a potential 
therapeutic target for LUAD in the future.
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