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Construction of a ceRNA network of hub
genes affecting immune infiltration in
ovarian cancer identified by WGCNA
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Abstract

Background: Ovarian cancer is the leading cause of death among gynecological malignancies. Immunotherapy has
demonstrated potential effects in ovarian cancer. However, few studies on immune-related prognostic signatures in
ovarian cancer have been reported. This study aimed to identify hub genes associated with immune infiltrates to
provide insight into the immune regulatory mechanisms in ovarian cancer.

Methods: Raw data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and
University of California, Santa Cruz (UCSC) Xena websites. Single-sample gene set enrichment analysis (ssGSEA) and
weighted gene co-expression network analysis (WGCNA) were used to identify hub genes. Kaplan-Meier analysis
and differential expression analysis were applied to explore the real hub genes.

Results: Through ssGSEA and WGCNA, 7 hub genes (LY9, CD5, CXCL9, IL2RG, SLAMF1, SLAMF6, and SLAMF7) were
identified. Finally, LY9 and SLAMF1 were recognized as the real hub genes in immune infiltrates of ovarian cancer.
LY9 and SLAMF1 are classified as SLAM family receptors involved in the activation of hematopoietic cells and the
pathogenesis of multiple malignancies. Furthermore, 12 lncRNAs and 43 miRNAs significantly related to the 2 hub
genes were applied to construct a lncRNA-miRNA-mRNA ceRNA network. The lncRNA-miRNA-mRNA ceRNA
network shows upstream regulatory sites of the 2 hub genes.

Conclusions: These findings improve our understanding of the regulatory mechanism of and reveal potential
immune checkpoints for immunotherapy for ovarian cancer.
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Background
Ovarian cancer is the leading cause of death among
gynecological neoplasms [1]. Cytoreductive surgery
followed by platinum-based chemotherapy is the standard
treatment for advanced ovarian cancer. Unfortunately,
most patients experience recurrence and eventually die.
Angiogenesis inhibitors such as bevacizumab and PARP
inhibitors have been recently added to the available

treatment schemes. In recent years, there has been in-
creasing interest related to the role played by immuno-
therapy in ovarian cancer progression control.
Unlike chemotherapy or other targeted therapies,

immunotherapies have the advantage of triggering the
immune response, which clinically exerts specific,
systemic, and durable antitumor effects. However, less
than 15% of patients with advanced/metastatic ovarian
cancer respond to immune checkpoint inhibitors [2, 3].
In other words, this toxic and costly treatment is poten-
tially ineffective in the majority of ovarian cancer patients.
Therefore, biomarkers affecting the immune response are
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needed to guide treatment decisions. Expression of pro-
grammed death ligand 1 (PD-L1) on the surface of T cells
[4], the microsatellite instability (MSI) status [5] or
DNA mismatch repair deficiency (dMMR) [6] and total
tumor mutational burden (TMB) [7, 8] are the main
predictive markers for the response to immunotherapy.
However, because of the complexity of tumor-immune
interactions, efforts to capture this complexity via a
single analyte, such as PD-L1 expression or tumor mu-
tational load, as a surrogate of potential tumor antige-
nicity, yield limited and incomplete information about
the complex and dynamic nature of the tumor-immune
microenvironment [9]. In summary, many efforts have
been made to explore tumor immune signatures; how-
ever, few efforts to regulate tumor immune signatures
have been reported.
With the development of high-throughput sequen-

cing, bioinformatics has played an increasingly im-
portant role in the field of cancer research. Many
studies consider only differences in the expression of
genes between different samples and ignore the
underlying connection of each gene. Weighted gene
co-expression network analysis (WGCNA) [10] is a
systematic biological method used to describe correl-
ation patterns among genes in samples and can
identify clusters (modules) of highly correlated genes
for the investigation of clinical traits. In the present
study, we performed WGCNA on RNA-seq data
derived from The Cancer Genome Atlas (TCGA),
reconstructed a gene (green) module related to im-
mune infiltrates and identified hub genes in this
green module.
To further reveal the regulatory mechanism of im-

mune infiltrate-related hub genes, we constructed a
lncRNA-miRNA-mRNA competing endogenous RNA
(ceRNA) network. The ceRNA hypothesis states that a
pool of long noncoding RNAs (lncRNAs), circular RNAs
(circRNAs) and messenger RNAs (mRNAs) compete
and bind to microRNAs (miRNAs), regulating their
activity [11, 12]. Among the ceRNAs, miRNAs regulate
the expression of their target genes by binding to the
miRNA response elements on the target mRNAs, and
lncRNAs act as molecular sponges to repress the nega-
tive regulation of target mRNAs by miRNAs. An R pack-
age called multiMiR was used to predict miRNAs for
hub genes, and Star7Base [13] was used to predict inter-
actions between lncRNAs and miRNAs. Finally, we iden-
tified 12 lncRNAs, 43 miRNAs and 2 mRNAs to
construct a lncRNA-miRNA-mRNA ceRNA network.
Overall, in our study, we aimed to screen hub genes

associated with immune infiltrates of ovarian cancer
using the WGCNA method, construct a ceRNA network,
and provide insight into the regulatory mechanisms of
immune infiltrates in ovarian cancer.

Methods
TCGA data download
Level 3 HTSeq-Counts data, HTSeq-FPKM (per million
fragments mapped) data and level 1 clinical information
(shown in Table 1), such as age, histological type, sur-
vival and outcome of patients with ovarian cancer, were
downloaded from The Cancer Genome Atlas (TCGA;
http://cancergenome.nih.gov/). We chose “cystic, mucin-
ous and serous neoplasms” in “Disease Type” as our re-
search object. There were 379 samples from 376 ovarian
cancer patients included in the TCGA program. Details
on these samples are listed in Table 1. Because the
TCGA database does not contain information on normal
ovarian tissue, we also downloaded combined TPM
(transcripts per kilobase million) data, including non-
diseased ovarian tissue downloaded from the GTEx
(Genotype-Tissue Expression) project, and ovarian can-
cer tissue from TCGA, and data from the UCSC Xena
website (https://xena.ucsc.edu/), to compare the expres-
sion values of genes.

Calculation of the Immunophenoscore
Data were analyzed in the R programming environment,
version 4.0.2. The names of genes were converted from
the Ensembl ID to the gene symbol through the Annota-
tionDbi and org. Hs.eg.db packages. The immunopheno-
score (normalized enrichment score, NES) of each
TCGA OV sample was calculated through the ssGSEA
(single-sample gene set enrichment analysis) method
using the GSVA package based on the expression of the
representative genes in gene sets, which were down-
loaded from Cell Reports (https://doi.org/10.1016/j.
celrep.2016.12.019) [14]. ssGSEA ranks the genes by
their expression in each sample and computes the en-
richment score by integrating the differences between

Table 1 Clinical information about TCGA-OV

Alive Dead Overall

(N = 147) (N = 232) (N = 379)

Age (years)

Mean (SD) 57.1 (11.6) 61.1 (11.0) 59.5 (11.4)

Median [Min, Max] 57.0 [30.0, 87.0] 60.0 [36.0, 87.0] 59.0 [30.0, 87.0]

Stage

I 0 (0%) 1 (0.4%) 1 (0.3%)

II 18 (12.2%) 5 (2.2%) 23 (6.1%)

III 111 (75.5%) 184 (79.3%) 295 (77.8%)

IV 16 (10.9%) 41 (17.7%) 57 (15.0%)

Missing 2 (1.4%) 1 (0.4%) 3 (0.8%)

Sample

Primary Tumor 144 (98.0%) 230 (99.1%) 374 (98.7%)

Recurrent Tumor 3 (2.0%) 2 (0.9%) 5 (1.3%)
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the empirical cumulative distribution functions of the
gene ranks [15]. The results were visualized with the
ggplot2 R package.

Survival analysis
Univariate Cox regression analysis was performed to
evaluate the association between the overall survival
time and research objects, including the genes and
immunophenoscores obtained above, using the survival
and survminer R packages. P < 0.05 was considered to
indicate a statistically significant difference. In addition,
the log2(HR), 95% CI and statistical significance of the
infiltrated immune cell types were calculated and illus-
trated using a forest plot through the forest plot
package.
The patients were dichotomized based on the best cut-

off of the immunophenoscore using the surv_cutpoint
function of the survminer R package, which divides the
immunophenoscore into high and low groups according
to the best separation point and then generates a
Kaplan-Meier curve. Log-rank tests were used to
compare overall survival between different groups. The
P values were adjusted for multiple testing based on the
false discovery rate (FDR) according to the Benjamini-
Hochberg method.

Co-expression network construction
WGCNA is a systematic biological method used to build
gene co-expression networks to mine network modules
closely associated with clinical traits [10]. In the present
study, we used the immunophenoscores of the infiltrated
immune cell types in every sample as the target clinical
traits. As read counts follow a negative binomial distri-
bution, the RNAseq data of TCGA OV were normalized
with the voom methodology of the limma R package
[16]. This method estimates the mean variance of the
log counts and generates a precision weight for each ob-
servation. The top 25% (6383) of genes with the highest
median absolute deviation (MAD) used as a robust
measure of variability were selected for WGCNA. Mean-
while, we removed 227 genes that were included in the
gene sets we used.
Next, the average linkage method was performed for

all pairwise genes to construct a co-expression similarity
matrix. The co-expression similarity matrix was then
transformed into the adjacency matrix by choosing the
power of β = 4 as the soft-thresholding parameter to en-
sure an unsigned scale-free network. Then, we created a
topological matrix using the topological overlap measure
(TOM) [17]. To classify genes with similar expression
patterns into gene modules, the dynamic hybrid cut
method according to TOM-based dissimilarity was per-
formed with the following major parameters: minModu-
leSize of 30 and deepSplit of 3. Finally, a cut-line (0.25)

was selected for the module dendrogram, and some
modules were merged according to the dissimilarity of
estimated module eigengenes (MEs), which were defined
as the first principal components of a given module and
represent gene expression patterns in a module [18].

Identification of clinically significant modules and hub
genes
The interesting module was identified by calculating the
relevance between clinical traits and MEs, which were
the first principal components of a given module. Here,
we chose the immunophenoscores of the infiltrated im-
mune cell types as the clinical traits. The module that
highly correlated with the target clinical trait was se-
lected for further analysis.
Hub genes that were defined as highly interconnected

with nodes in a module have been shown to be function-
ally significant. Three approaches were used to identify
hub genes in this study. First, potential hub genes were
defined by module connectivity (Pearson’s correlation of
module membership > 0.8) and clinical characteristic re-
lations (Pearson’s correlation of gene significance > 0.2).
Module membership (MM), which quantifies how close
a gene is to a given module, was referred to as the cor-
relation between the ME and the gene expression profile.
Gene significance (GS) was defined as the log10 trans-
formation of the p value of each gene in the linear re-
gression between gene expression and the clinical traits.
Second, intramodule connectivity represents the rela-
tionship between genes within a specific module. The
top 30 modules of interest with a certain intramodular
connectivity value were identified as candidate hub
genes. Genes with a connectivity degree ≥5 (the connect-
ivity weight threshold was set to 0.25) in the co-
expression network were defined as hub genes, and the
modules of interest were constructed using Cytoscape
3.8.0 [19]. The genes with high MM, GS, intramodular
connectivity and connectivity degree were considered
hub genes in the module of interest.

Pathway enrichment analysis
To further explore the biological significance of the hub
genes, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis was conducted on
the hub genes based on the clusterProfiler package. An
enriched pathway with a p-value ≤0.05 was considered
to be statistically significant.

Validation of hub genes
To further explore the prognostic value of hub genes in
ovarian cancer, a survival analysis of hub genes was
conducted using univariate Cox regression and Kaplan-
Meier plotter, as mentioned above. To determine the ex-
pression values of hub genes in normal ovarian tissues
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and ovarian cancer tissues, we downloaded data from
the UCSC Xena website, in which TPM values of TCGA
and GTEx data were extracted, log2(x + 0.001) trans-
formed, and combined. The hub genes with different
expression levels and influence on survival were consid-
ered the “real” hub genes.

CeRNA regulatory network
The lncRNA-miRNA-mRNA ceRNA network was con-
structed based on the ceRNA hypothesis that lncRNAs
regulate the activity of mRNAs by sequestering and
binding miRNAs, thereby acting as miRNA sponges.
One R package called multiMiR was used to predict
interactions between the mRNAs of hub genes and
miRNAs. The multiMiR database [20] contains human
and mouse data from 14 external databases that are
categorized into three components: the three validated
miRNA–target databases (miRecords [21], miRTarBase
[22] and TarBase [23]), the eight predicted miRNA–tar-
get databases and the three disease−/drug-related
miRNA databases. Only experimentally validated miR-
NAs were collected to construct the ceRNA network.
StarBase [13] (http://starbase.sysu.edu.cn/) was used to
predict interactions between lncRNAs and miRNAs. We
chose lncRNAs whose ensemble IDs were included in
the GENCODE database, those with a pancancerNum >
10 (pan-cancer types in which miRNA targets show
anticorrelation relationships) and those with a clipExp-
Num > 0 (the number of CLIP-seq experiments) to
construct the ceRNA network in Cytoscape 3.8.0 [19].

Results
Calculation of the Immunophenoscore and survival
analysis
The immunophenoscores of 379 TCGA-OV samples
were calculated through the GSVA package and used as
clinical traits for the survival analysis and WGCNA.
Because there were 374 primary tumor samples and 5
recurrent tumor samples, we extracted the immunophe-
noscores of the 374 patients with primary tumor for sur-
vival analysis and used all of them for WGCNA. The
immunophenoscores of 28 infiltrated immune cell types
from 374 primary ovarian cancer samples are shown in
the boxplot in Fig. 1A.
To determine the predictive value of immune cell infil-

tration, we performed univariate Cox regression analysis.
We found that three infiltrated immune cell types,
namely, activated B cells (HR: 0.1500; P = 0.047), CD56
bright natural killer cells (HR: 0.0082; P = 0.036) and
memory B cells (HR: 34.00; P = 0.024), were significantly
correlated with OS (underlined with the red dotted line
in the forest plot in Fig. 1B). Activated B cells and CD56
bright natural killer cells could be seen as protective fac-
tors; however, the HR (hazard ratio) of memory B cells

was greater than 1, which means that this cell type is a
poor prognostic factor. Figure 1C shows the Kaplan-
Meier survival curves based on the best cutoff of the
immunophenoscore in these three infiltrated immune
cell types.

Weighted co-expression network construction
The 379 samples with clinical information (immunophe-
noscores of 28 infiltrated immune cell types) were clus-
tered using the average linkage method and Pearson’s
correlation method. The expression values of 6156 genes
were used to construct the co-expression gene networks,
and a sample dendrogram and trait heatmap were
constructed (Fig. 2A). In this study, a power of β = 4 was
selected to ensure a scale-free network (Fig. 2B, C)
(scale-free R2 = 0.97, slope = − 1.97).
After merging some modules through a cut-line (0.25)

(Fig. 3A), a total of 14 modules were identified by the
dynamic tree cut method. The clustering dendrograms
of genes are shown in Fig. 3B. A heat map for the
module-trait relationship is shown in Fig. 3C.
Notably, the green module had the highest association

with immune infiltration in the heat map of the module-
trait relationship, and this module was selected as the clin-
ically significant module for further analysis. However,
only activated B cells among the three significant immune
infiltration cell types had a strong correlation (0.75) with
the green module. Therefore, 45 genes with high connect-
ivity with activated B cells in the module, referred to as
genes_MM, were selected based on the cutoff criteria
(|MM| > 0.8 and |GS| > 0.2) (Fig. 4A). Meanwhile, we
chose the top 30 genes with the highest intramodular con-
nectivity, referred to as genes_inmodule. In addition, 23
genes were identified through Cytoscape (Fig. 4C) to have
a connectivity degree ≥5 and a connectivity weight > 0.25
in the co-expression network; these genes were referred to
as genes_TOM. Finally, 18 hub genes were identified as
having high MM, GS, intramodular connectivity and con-
nectivity degrees (Fig. 4B).

Pathway enrichment analysis
According to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis, our results demonstrated that
these hub genes are mainly involved in the following path-
ways: cytokine−cytokine receptor interaction, viral protein
interaction with cytokine and cytokine receptor, T cell re-
ceptor signaling pathway and primary immunodeficiency
(Fig. 5A). These results indicate that the hub genes in the
clinically significant module are mainly involved in the
regulation of the immune system.

Validation of hub genes
There were 7 genes among the 18 hub genes with statis-
tical significance when conducting the survival analysis,
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Fig. 1 A Boxplot of 28 immune cell immunophenoscores in 379 TCGA-OV samples. B Forest plot of the hazard ratios of each infiltrated immune
cell type for OS. Three significant infiltrated immune cell types are underlined with a red dashed line. C Kaplan-Meier curves for OS times. Survival
analysis according to 3 infiltrated immune cell types. Red lines represent high immunophenoscores of the real hub genes, and blue lines
represent low immunophenoscores
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Fig. 2 A Sample tree and trait heatmap. The clinical trait information includes the immunophenoscores of 28 infiltrated immune cell types in each sample.
The larger the immunophenoscore is, the darker the color. B Analysis of the scale-free fit index for various soft-thresholding powers (β) and the mean
connectivity for the soft-thresholding powers. C Histogram of connectivity distribution when β= 4 and determining the scale-free topology when β= 4
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as shown in the forest plot (Fig. 5B) (CD5, CXCL9,
IL2RG, SLAMF6 and SLAMF7). All of them had P
values < 0.05; however, their HRs were close to 1,
which meant that these genes had little effect on
overall survival (Fig. 5B). LY9 (HR = 0.71) and
SLAMF1 (HR = 0.76) were selected as the real hub
genes. Moreover, based on TCGA and GTEx data,
the expression levels of these 2 real hub genes were

significantly higher in tumor tissues than in normal
tissues (Fig. 5C).

A lncRNA-miRNA-mRNA ceRNA network is constructed
During the following step, we found that 43 experi-
mentally validated miRNAs had relationships with
the 2 hub genes. The network also included 12
lncRNAs that were obtained from StarBase [13] and
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Fig. 3 A Clustering of module eigengenes. A cut-line (0.25) was selected for the module dendrogram, and some modules were merged according to
the dissimilarity of estimated module eigengenes. B A cluster dendrogram that presents 14 gene co-expression modules was built based on the
dissimilarity of the topological overlap. The gray module indicates no co-expression between the genes. C Correlated heatmap of the adjacency of
modules in the WGCNA. In the correlated heatmap plot, light blue represents low adjacency, while red represents high adjacency
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Fig. 4 A Scatter plot of module eigengenes in the green module related to histologic grade. B Venn diagram. Selection of hub genes via
WGCNA with 3 methods. C Visualization of the weighted gene correlation network in the green module. Red represents the real hub genes,
green represents other hub genes identified through WGCNA, and light blue represents nodes in genes_TOM
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Fig. 5 A Bubble diagram of the KEGG pathways analysis. B Forest plot of the hazard ratios of each hub gene for OS. Seven significant real hub genes
are underlined with red dashed lines. C Kaplan-Meier curves for OS times. Survival analysis according to 2 real hub genes. Red lines represent high
expression of the real hub genes, and blue lines represent low expression. D The expression of 2 real hub genes between TCGA and GTEx samples is
shown in a boxplot. Red plots represent gene expression in TCGA samples, and blue plots represent gene expression in GTEx samples
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connected with these miRNAs. Finally, a lncRNA-
miRNA-mRNA ceRNA network was constructed in
Cytoscape 3.8.0 and is shown in Fig. 6.

Discussion
Ovarian cancer is one of the most lethal malignant gyne-
cologic tumors worldwide [1] and is usually diagnosed at
an advanced stage. Nearly all patients suffering from
ovarian cancer inevitably undergo multistep develop-
ment, such as occurrence, progression, regression, recur-
rence and chemotherapy resistance. Platinum-based
chemotherapy remains the mainstay of treatment for
ovarian cancer. In patients with recurrence, the
platinum-free interval (PFI) is the most important factor
for PFS and OS. The longer the platinum-free interval is,
the higher the response rate (RR) and the longer the
duration of response to treatment after first-line therapy
[24]. There is an unmet need to prolong the PFI by
maintenance therapy. PARP inhibitors are emerging as a
promising maintenance treatment for high-grade serous
ovarian cancers (HGSOCs) with germline or somatic
BRCA1/2 mutations. The median progression-free sur-
vival time was approximately 36 months longer in the
olaparib group than in the placebo group in the SOLO1
clinical trial [25]. Unfortunately, only approximately 20–
30% of HGSOCs have BRCA1/2 mutations [26, 27]. The
FDA approved bevacizumab, a humanized anti-vascular
endothelial growth factor monoclonal antibody, in com-
bination with chemotherapy for frontline and mainten-
ance therapy for women with newly diagnosed ovarian
cancer. However, the costly treatment and the use of

bevacizumab during and up to 10months after carbopla-
tin and paclitaxel chemotherapy prolong the median
progression-free survival by only 4 months in patients
with advanced epithelial ovarian cancer [28]. Thus, new
treatment strategies for ovarian cancer are urgently
needed. Currently, immunotherapies such as anti-PD-1/
PD-L1 antibodies are attracting attention worldwide.
However, the response rate to anti-PD-1 antibodies is
only 20–30% in various cancer types, and the response
rate in ovarian cancer is lower than that in other malig-
nancies (11.5–15%) [29]. Moreover, immune checkpoint
inhibitors have serious adverse effects [30], such as
diarrhea, rash, alopecia, pneumonitis, and hepatic or
gastrointestinal adverse events. We urgently need new
immune checkpoint inhibitors or to understand regula-
tory mechanisms targeted to ovarian cancer to improve
the response rate and reduce adverse effects.
In this study, we calculated the immunophenoscores

of 28 infiltrated immune cell types in cystic, mucinous
and serous neoplasm ovarian cancer samples from the
TCGA. Through univariate Cox regression analysis, we
found that activated B cells, CD56 bright natural killer
cells and memory B cells significantly influenced the sur-
vival prognosis of patients with ovarian cancer. Through
WGCNA, we found that immune infiltration obviously
had the highest association with the green module; how-
ever, only activated B cells among the three significantly
infiltrating immune cell types had a strong correlation
with the green module (0.75). Therefore, we selected ac-
tivated B cells for further analysis. B and T lymphocyte
attenuators (BTLAs) were reported to be identified

Fig. 6 A lncRNA-miRNA-mRNA ceRNA network of immune infiltration in ovarian cancer was constructed with 12 lncRNAs, 43 miRNAs and 2 mRNAs
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mostly on B lymphocytes rather than on T lymphocytes
and natural killer cells, and the combination of
chemotherapy and the anti-BTLA antibody reduced the
peritoneal tumor volume and extended survival in
tumor-bearing mice [31]. Anne Montfort, Oliver Pearce
and Eleni Maniati reported that B cells mainly infiltrated
lymphoid structures in the stroma of high-grade serous
ovarian cancer metastases and that there was a strong B-
cell memory response directed at a restricted repertoire
of antigens and the production of tumor-specific IgGs
by plasma cells [32].
To further explore the genes related to the regulation

of immune infiltration, we conducted WGCNA using
the immunophenoscores of 28 infiltrated immune cell
types as the target clinical traits. The green module was
found to have the highest association with immune infil-
tration. Finally, 7 genes were screened from the module.
However, the HRs of CD5, CXCL9, IL2RG, SLAMF6
and SLAMF7 were very close to 1. We selected LY9 and
SLAMF1 as the real hub genes. LY9 (SLAMF3) and
SLAMF1 are members of the signaling lymphocyte
activation molecule family (SLAMF), which is a collec-
tion of nine surface receptors expressed mainly on
hematopoietic cells. SLAMF receptors are expressed on
B cells in the healthy and disease states and play a piv-
otal role in the control of malignant cell survival, inter-
action with cells in their tumor microenvironment, and
retention in the supporting niches [33]. As shown in Fig.
5D, based on TCGA and GTEx data, the mRNA expres-
sion levels of LY9 and SLAMF1 were significantly higher
in tumor tissues than in normal ovarian tissues. More-
over, as shown in Fig. 5C, the expression of LY9 and
SLAMF1 was significantly associated with the overall
survival of ovarian cancer patients. Thus, the expression
of LY9 and SLAMF1 was higher in ovarian cancer tis-
sues than in normal ovarian tissues, and the high expres-
sion of these 2 genes was relevant to the prognosis of
ovarian cancer. Because they are mainly expressed on
hematopoietic cells, they are a major research topic in
the field of leukemia. The SLAMF1 receptor was re-
ported to be an important modulator of the BCR (B cell
receptor) signaling axis and may improve immune con-
trol in chronic lymphocytic leukemia by interfering with
NK cells [34]. SLAMF1-deficient cells are resistant to
drugs that activate autophagy, and these results indicate
that SLAMF1 expression potentially affects drug re-
sponses in chronic lymphocytic leukemia [35]. LY9 over-
expression in cancerous cells could represent a potential
therapeutic strategy to improve the drug sensitivity of
resistant cells [36]. These results indicate that LY9 and
SLAMF1 might be potential therapeutic targets of ovar-
ian cancer.
Accumulating evidence has indicated that ceRNAs are

involved in the occurrence and development of cancer.

Here, we identified 12 lncRNAs, 43 miRNAs and 2
mRNAs to construct a lncRNA-miRNA-mRNA ceRNA
network. MiRNAs are the center of the ceRNA network,
and all of these miRNAs were experimentally validated.
Hsa-miR-15b-5p was reported to have a significantly
higher expression level in ovarian cancer tissue than in
normal tissue [37]. LINC00511 is highly expressed in
breast cancer and correlated with a poor prognosis [38].
Junjie Zhang also predicted that LINC00511 bound to
hsa-miR-195-5p in a ceRNA network of hepatocellular
carcinoma [39]. LINC00511 plays an oncogenic function
by interacting with EZH2 and repressing P21 expression
in ovarian cancer cells [40]. The lncRNA NEAT1 regu-
lates the proliferation and apoptosis of ovarian cancer
cells, providing a potential therapeutic approach for
ovarian cancer [41]. LINC00662 is highly expressed in
ovarian cancer tissues, and the increased expression of
LINC00662 is associated with short overall survival [42].
LINC01133 was reported to repress ovarian cancer cell
proliferation, invasion, migration, and tumorigenic abil-
ity [43]. MEG3 regulates the PTEN gene in ovarian can-
cer cells to prohibit cell proliferation, promote apoptosis
and block cell cycle progression [44]. Although our
study lacked in vivo and in vitro validation, the results of
our study provide possible prognostic markers for im-
munotherapy for ovarian cancer.

Conclusions
Immune infiltrating activated B cells are associated with
the survival prognosis of ovarian cancer patients. More-
over, LY9 and SLAMF1 were identified as the real hub
genes associated with the overall survival of ovarian can-
cer patients by affecting the infiltration of activated B
cells. LY9 and SLAMF1 might be potential therapeutic
targets of ovarian cancer. The lncRNA-miRNA-mRNA
ceRNA network demonstrates the molecular regulatory
mechanism of the 2 hub genes. These findings improve
our understanding of the regulatory mechanism of and
provide potential therapeutic targets for immunotherapy
for ovarian cancer.
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