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Abstract

Background: The tumor microenvironment (TME) has significantly correlation with tumor occurrence and
prognosis. Our study aimed to identify the prognostic immune-related genes (IRGs)in the tumor microenvironment
of colorectal cancer (CRC).

Methods: Transcriptome and clinical data of CRC cases were downloaded from TCGA and GEO databases. Stromal
score, immune score, and tumor purity were calculated by the ESTIMATE algorithm. Based on the scores, we divided
CRC patients from the TCGA database into low and high groups, and the differentially expressed genes (DEGs) were
identified. Immune-related genes (IRGs) were selected by venn plots. To explore underlying pathways, protein-protein
interaction (PPI) networks and functional enrichment analysis were used. After utilizing LASSO Cox regression analysis,
we finally established a multi-IRGs signature for predicting the prognosis of CRC patients. A nomogram consists of the
thirteen-IRGs signature and clinical parameters was developed to predict the overall survival (OS). We investigated the
association between prognostic validated IRGs and immune infiltrates by TIMER database.

Results: Gene expression profiles and clinical information of 1635 CRC patients were collected from the TCGA and
GEO databases. Higher stromal score, immune score and lower tumor purity were observed positive correlation with
tumor stage and poor OS. Based on stromal score, immune score and tumor purity, 1517 DEGs, 1296 DEGs, and 1892
DEGs were identified respectively. The 948 IRGs were screened by venn plots. A thirteen-IRGs signature was
constructed for predicting survival of CRC patients. Nomogram with a C-index of 0.769 (95%CI, 0.717–0.821) was
developed to predict survival of CRC patients by integrating clinical parameters and thirteen-IRGs signature. The AUC
for 1-, 3-, and 5-year OS were 0.789, 0.783 and 0.790, respectively. Results from TIMER database revealed that CD1B,
GPX3 and IDO1 were significantly related with immune infiltrates.

Conclusions: In this study, we established a novel thirteen immune-related genes signature that may serve as a
validated prognostic predictor for CRC patients, thus will be conducive to individualized treatment decisions.
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Background
Colorectal cancer (CRC) is ranked as the third most
common cause of cancer-related mortality globally. In
the gastrointestinal tract, the incidence of CRC is one of
the most frequently diagnosed [1]. The heterogeneity of
CRC exists with differences in molecular pathogenesis,
clinical features, and prognosis [2]. A significant number
of early-stage CRC patients successfully undergo aggres-
sive surgical removal of the primary tumors [2]. How-
ever, among stage II/III patients, the association of the
recurrence with metastases has been evident [3]. Stage
IV patients with high risks of metastatic relapses receive
standardized cytotoxic chemotherapy [4]. Generally, the
treatment of CRC involves a combination of one or
more cancer drugs in their regimens, such as 5-
fluorouracil (5-FU), folinic acid, irinotecan and oxalipla-
tin [5]. But in the presence of metastases, new adjuvant
chemotherapy may not produce successful results as it
could lead to cancer progression and the patient’s resist-
ance to the drug [6].
Although several high-risk pathological characteristics,

such as venous invasion or serosal involvement, are now
recognised as important determinants of survival, par-
ticularly in node negative disease [7, 8]. However, it has
become evident that the profiles of other hosts and
tumors could also impact the clinical prognosis. Further-
more, the fundamental characteristics of tumor cells and
mechanisms within the tumor microenvironment
(TME), such as tumor-infiltrating immune cells (TIICs)
[9] and stromal cells linked to the tumor, affect the pro-
gression of CRC and the clinical outcomes [10].
In epithelial cancer cells, the increased presence of

mesenchymal genes leads to the recommendation that
the poor prognosis of CRC patients is associated with
the epithelial-to-mesenchymal transition [11]. However,
the transcriptome of the tissue that contains the tumor
characterizes the expression profiling of mesenchymal
cells that establish the TME and the epithelial cancer
cells [12, 13]. The stroma or TME is comprised of the
structural and functional features of the connective
tissue in homeostasis and pathological angiogenesis in
wound healing and illness. Furthermore, the stroma is
made up of lymph and blood vessels, inflammatory/im-
mune cells, extracellular matrix, and fibroblasts. The
cancer cells alter the dynamic and multifaceted structure
of the stroma, which eventually affects the progression
of malignant cells [14].
The two main classifications of non-tumor mecha-

nisms are the stromal and immune cells in the TME.
These play a significant role when diagnosing, making a
prognosis for, and assessing tumors. In the recent dec-
ade, researchers have created several algorithms to fore-
cast the purity of tumors in different types of cancer.
These algorithms are grounded on the precise gene

signature of immune cells and/or stromal cells [15, 16].
An example is the Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data
(ESTIMATE), which is an algorithm designed by
Yoshihara K et al. [17]. This algorithm calculates both
stromal score and immune score to forecast the
presence of infiltrating non-tumor cells by analyzing the
signatures of specific genes.
After the founding of the ESTIMATE logarithm, re-

search studies have applied it to prove the efficacy of
big-data algorithms on evaluating prostate cancer [18],
glioblastoma [19], and cutaneous melanoma [20]. Never-
theless, researchers also need to extensively study the
value of the ESTIMATE when evaluating stromal and/or
immune scores of CRC. In this literature, we have pio-
neered the extraction of the list that itemizes how the
TME-associated genes forecast poor prognosis amongst
CRC patients. We completed this by using the data of
CRC cohorts from Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA).

Methods
Gene expression data sets
Our study utilized publicly available data sets. We col-
lected gene expression profiles and identified the equiva-
lent material on the prognosis, as well as the tumor and
normal tissues of CRC patients. We obtained the data
from the TCGA (https://tcga-data.nci.nih.gov/tcga/) and
the GEO (https://www.ncbi.nlm.nih.gov/geo/) web sites,
which were uploaded up to 31 March 2019. Moreover,
we excluded duplications and datasets that have sample
sizes of less than 50 (N < 50). Then, we organized the
clinical data and expression profiles of each sample
manually. Our inclusion criteria indicate that we include
diagnosed CRC patients who have available clinicopatho-
logical and survival information. Therefore, six datasets
were included in our study (GSE12945, GSE39582,
GSE41258, GSE72970, GSE103479 and TCGA) [21–26].
Stromal scores, immune scores and tumor purity were
calculated by the ESTIMATE algorithm [17]. For the
succeeding genomic analysis, we used the TCGA dataset.
To authenticate the prognosis of genetic information
recognized by the TCGA analysis, we selected the largest
CRC dataset GSE39582 as the validation cohort from
the GEO database. This study complied with the TCGA
and GEO approved publication guidelines. Also, we
sourced the data from both databases. Thus, this
research did not require the approval of the ethics
committee.

Identification of immune-related genes (IRGs)
Based on the ESTIMATE results, we classified the
sample groups of the stromal scores, immune scores and
tumor purity into high and low to choose the
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intersection genes. This study analyzed the data using
the R package limma [27]. The cutoff values were estab-
lished at FDR < 0.05 and Fold change > 2 to filter the dif-
ferentially expressed genes. Finally, we obtained intersect
genes among stromal scores, immune scores and tumor
purity as immune-related genes (IRGs).

Functional enrichment of IRGs
To complete the functional enrichment analysis of the
IRGs and classify the GO categories according to the
molecular functions (MF), the biological processes (BP),
or the cellular components (CC), we used a R package
called “clusterprofiler” [28]. Additionally, we utilized it
to make a pathway enrichment analysis while referring
to the pathways of Kyoto Encyclopedia of Genes and
Genomes (KEGG). Finally, the cut-off value was set at a
false discovery rate (FDR) < 0.05.

Protein-protein interaction (PPI) network
The STRING database [29] produced the PPI network
that the Cytoscape software rebuilt [30]. For further
examination, this study only included individual net-
works with 10 or more nodes and excluded those with
less than 10. The connectivity degree of each network
node was calculated, and then, we searched for the clus-
ters according to their typology to trace densely con-
nected regions using the Molecular COmplex DEtection
(MCODE).

Establishment of the IRGs signature for CRC
To investigate the link between IRGs and the prognosis
of CRC patients, we applied the univariate Cox regres-
sion analysis. In this analysis, the statistical significance
was established at p < 0.05. We selected a panel of genes
according to these outcomes through the LASSO Cox
regression analysis that used the R package “glmnet”.
Then, we set up a multigene signature to forecast the
prognosis of these patients. By conducting cross-
validations 1000 times and adopting the best penalty
parameter λ value’s one standard error, we established
the most simplified (smallest perimeter) model of im-
mune gene expression signatures. For each patient, the
sum of the corresponding coefficients and products of
each gene expression level determined the risk score
formula. To verify the efficiency of the signature
constructed by the TCGA cohort, we validated the re-
sults in the GEO cohort (GSE39582).

TIMER database analysis
To methodically analyses the immune infiltrates in
different cancers, TIMER is a wide-ranging resource
(https://cistrome.shinyapps.io/timer/) [31]. This algo-
rithm uses a statistical deconvolution method, which
was recently made available to infer the TIICs based on

the gene expression profiles [15]. Moreover, TIMER
covers 32 types of cancer and contains 10,897 samples
from TCGA to approximate the abundance of immune-
infiltrating. Our analysis encompassed the identification
of prognostic immune-related genes (IRGs) in CRC and
its correlation with the abundance of immune-
infiltrating. These infiltrates include macrophages,
neutrophils, B cells, CD8+ T cells, CD4+ T cells and
dendritic cells (DC) through gene modules. On the left-
most panel, the graph illustrates the gene expression
profiles against tumor purity [32].

Statistical analysis
Results were showed as mean ± standard deviation (SD).
To contrast the immune score, stromal score and tumor
purity in different groups, we used the Kruskal-Wallis
test of variance. The cutoff value of high and lower
groups of immune score, stromal score and tumor purity
were calculated by X-tile [33]. We calculated the OS
using the Kaplan-Meier method, and the statistical
significance was determined by the log-rank test. The
specificity and sensitivity of survival prediction according
to the determined risk score were obtained by time-
dependent receiver operating characteristic (ROC)
curves, with AUC values quantified with the survival-
ROC package. This paper also executed the univariate
and multivariate analyses of OS to distinguish the prog-
nostic determinants of CRC patients from the TCGA
and GSE39582 datasets. Furthermore, using the R pack-
age “rms”, we established a nomogram according to the
TCGA CRC cohort and incorporated different prognos-
tic factors. Moreover, we analyzed its performance
through the C-index, calibration plots and decision
curve analysis (DCA). Additionally, this study utilized
the R software version 3.6.0 to conduct all of the statis-
tical analyses (http://www.rproject.org/). Finally, we set
the statistical significance at a two-sided P < 0.05.

Results
Association of stromal scores, immune scores and tumor
purity with CRC prognosis
Stromal scores, immune scores and tumor purity were
significantly associated with CRC clinical stages and
prognosis. Using a variety of technologies, we obtained
the genomic profiles. The stromal and immune scores,
as well as the tumor purity, were generated through the
uniform algorithm. The results did not reveal any obvi-
ous cohort-bias clustering. Hence, we merged the groups
from TCGA and GEO and further investigated whether
there were stromal scores, immune scores and tumor
purity statistically correlated with CRC clinical stages
and prognosis. In the present study, we downloaded the
gene expression profiles and clinical data of 1635 CRC
patients from the TCGA and GEO databases. Patients
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were 66.06 ± 12.95 years old, with 882 males (53.9%) and
753 (46.1%) females.
For CRC, TNM stages are valuable prognostic indicators.

We included them in the analysis. The stromal scores
ranged from − 2232.54 to 2193.09, immune scores were
distributed between − 899.57 and 3202.84, and tumor purity
ranged from 0.28 to 0.98, respectively (Data were calculated
by ESTIMATE algorithm). Figure 1 illustrates that across
different stages, the distribution of stromal scores differed
(p= 4.79e-10) while the distribution of immune scores had
no variation (p= 0.58). Figure 1 show that tumor purity (p=
1.40e-04) were inversely associated with different stages.
To study the possible correlation of the prognosis with

stromal score, as well as immune score and tumor purity,
we classified the CRC patients into high and lower groups.
For this purpose, we created the X-tile and Kaplan-Meier
survival curves. The results suggest that the stromal scores
were positive correlation with the OS (p = 0.036) is statisti-
cally significant. Also, the immune scores are positively as-
sociated with OS, but it was not statistically significant
(p = 0.38). Conversely, tumor purity was significantly nega-
tive association with OS (p = 0.024) (Fig. 1).

Identification of DEGs
To uncover the correlation of gene expression profiles
with stromal scores, immune scores and tumor purity,

we analyzed RNAseq data of all 611 CRC cases obtained
from the TCGA database. Figure 2, the volcano plots
highlight unique gene expression profiles of cases that
we classified under high/low stromal scores, immune
scores, and tumor purity groups. We based our com-
parative analyses on three factors: first, stromal scores
through the upregulation of 1507 genes and downregula-
tion of 10 genes in the high stromal score group; second,
immune scores through the upregulation of 1235 genes
and downregulation of 61 genes in the high and low
groups; and third, tumor purity group through the up-
regulation of 1824 genes and downregulation of 68 genes
in the low score group. Furthermore, Fig. 2 illustrates
the IRGs were the upregulated or downregulated inter-
section genes in the low tumor purity group and high
stromal or immune groups (944 upregulated genes and
4 downregulated genes).

Functional analysis of IRGs
Using the STRING tool that included 2834 edges and
471 nodes, we generated PPI networks to study the in-
teractions among the identified immune-related genes
(Fig. 3A). For further analysis, we chose three modules
with at least 20 nodes. As shown in module A (Fig. 3B),
the network had formations of 903 edges and 43 nodes.
Each gene in this model was associated with 42 other

Fig. 1 Immune score, stromal score and tumor purity are associated with tumor stages and patients’ OS. A, Distribution of stromal scores of
tumor stages. B, Distribution of immune scores of tumor stages. C, Distribution of tumor purity of tumor stages. D, Comparison of overall survival
between high and low stromal scores groups. E, Comparison of overall survival between high and low immune scores groups. F, Comparison of
overall survival between high and low tumor purity groups
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genes, indicating that this module might be the core
sub-network of PPI. In module B (Fig. 3C), there were
395 edges and 43 nodes that had numerous genes in the
middle that were critical to immune response. These in-
cluded OLR1, ITGB2, SLC2A3, ITGAM, and ATP8B4.
In module C (Fig. 3D), there were 198 edges and 29
nodes where the higher degree values of connectivity in
FBN1, COL3A1, and COL1A2 proved their existence as
the core genes in the module.
The clustering of these enriched functional-related

genes is associated with the immune response, which is
in line with the PPI network analysis. Furthermore, we
identified statistically significant GO terms, such as the
total of 1325 for biological processes, 83 for molecular
function, and 77 for the cellular component (FDR <
0.05). GO terms (Table S1) included regulation of
leukocyte activation, leukocyte migration and T cell acti-
vation (Fig. 4A), extracellular matrix and side of mem-
brane (Fig. 4B), and receptor regulator activity (Fig. 4C).
Additionally, the KEGG analysis (Fig. 4D) generated
pathways that were all linked with the immune response.

Construction and validation of the IRGs-based signature
In the context of this study’s TCGA CRC patients, it
utilized the univariate Cox models to investigate the
association between the expression levels of their
IRGs and their OS, 171 IRGs were found to have
significant relationship with OS. Then, based on
those 171 IRGs, we utilized the LASSO Cox regres-
sion model to build a prognostic signature in the
TCGA dataset (Fig. 5A and B). Finally, a prognostic
signature including thirteen IRGs was constructed.
Using the coefficients derived from the LASSO Cox
regression model, we constructed a formula to calcu-
late risk score for each patient. This score is based
on their personalized expression levels of the thir-
teen IRGs. The formula is as follows: risk score =
(0.1217 × expression of A2ML1) + (0.03442 × expres-
sion of CALB2) + (− 0.6693 × expression of CD1B) +
(0.04806 × expression of COL22A1) + (0.4471 × expression
of FCRL2) + (0.00069 × expression of GPX3) + (0.05368 ×
expression of HAND1) + (0.0023 × expression of IDO1) +
(0.006 × expression of LAMP5) + (0.07625 × expression of

Fig. 2 Comparison of gene expression profiles with stromal score, immune score and tumor purity. A, Volcano plots of the DEGs based on
stromal score. B, Volcano plots of the DEGs based on immune scores. C, Volcano plots of the DEGs based on tumor purity. D, Venn diagrams
shown the number of upregulated DEGs in stromal score, immune score and tumor purity groups. E, Venn diagrams shown the number of
downregulated DEGs in stromal score, immune score and tumor purity groups
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Fig. 3 PPI network of immune-related genes obtained from the STRING database. A, PPI network of IRGs. B-D, The PPI networks of top
3 modules

Fig. 4 GO enrichment and KEGG pathway functional enrichment analyses of the IRGs. A, The biological process (BP) of GO classification. B, The
cell component (CC) of GO classification. C, The molecular function (MF) of GO classification. D, KEGG pathway functional classification
and annotation
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MAP2) + (0.02431 × expression of MMRN1) + (0.1085 ×
expression of NKAIN4) + (0.3541 × expression of VAX2).
Patients were classified into low- and high-risk groups
according to a cutoff risk score of 1.096 (Fig. 5C and D).
Figure 5E demonstrates that the high-risk group had
substantially lower levels of OS than in the low-risk
at p < 0.0001. For 1-, 3-, and 5-year OS, the area
under the ROC curve (AUC) was 0.713, 0.724, and 0.689,
respectively (Fig. 5F). The GSE39582 cohort verified the
prognostic model (N = 531). Patients were classified into
low- and high-risk groups according to an ideal cutoff risk
score of 0.973 (Fig. 5G and H). Figure 5I illustrates that the
high-risk group had substantially lower levels of OS than in
the low-risk at p = 5.97e-04. For 1-, 3-, and 5-year OS, the
AUC was 0.725, 0.643, and 0.606, respectively (Fig. 5J).

Independent prognostic role of the thirteen-IRGs signature
The univariate and multivariate Cox regression analyses
were executed in both GEO and TCGA datasets through

the adjustment of clinicopathological features like the T
stage, N stage, M stage, and tumor stage, as well as the
age and gender. This process aimed to assess if the
signature-based risk score of the thirteen-IRGs was an
independent prognosis factor for OS, which the results
confirmed as true (Fig. 6A, B, D and E). We verified the
clinical significance of the thirteen-IRGs signature using
the Chi-square test to ascertain the signature’s associ-
ation with the clinical parameters. In the TCGA cohort,
significant correlations were found between the higher-
risk score and tumor stage (p < 0.001), M stage (p < 0.01),
N stage (p < 0.001), and T stage (p < 0.001) (Fig. 6C). How-
ever, no significant difference was found in gender and
age. Comparable outcomes were observed in the valid-
ation cohort of GSE39582 (Fig. 6F).
To further analyze the hierarchical efficacy of the

thirteen-IRGs signature, stage I, II and stage III, IV colo-
rectal cancer patients in the TCGA data set were divided
into high-risk and low-risk groups according to the risk

Fig. 5 Construction and validation of the thirteen-IRGs signature. A, LASSO coefficient profiles of the IRGs associated with the overall survival of
CRC. B, Partial likelihood deviance for the LASSO coefficient profiles. C, The risk score distribution on the basis of the thirteen-IRGs signature in
TCGA cohort. D, The survival status of 611 patients with CRC in high- and low-risk groups. E, Kaplan–Meier curves for overall survival prediction
by the thirteen-IRGs signature in TCGA cohort. F, Time-dependent ROC curves for overall survival prediction by the thirteen-IRGs signature in
TCGA cohort. G, The risk score distribution on the basis of the thirteen-IRGs signature in GSE39582 cohort. H, The survival status of 531 patients
with CRC in high- and low-risk groups. I, Kaplan–Meier curves for overall survival prediction by the thirteen-IRGs signature in GSE3958 cohort. J,
Time-dependent ROC curves for overall survival prediction by the thirteen-IRGs signature in GSE3958 cohort
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score of the signature, and it was found that the survival
time of patients in the high-risk group was significantly
shorter than that in the low-risk group (Fig. S1A and B).
We then downloaded the MSI status data from the
TCIA database (https://tcia.at/home). MSI-H patients
had significantly higher risk scores than MSS patients in
the TCGA dataset (Fig. S1C and D). Moreover, we dis-
covered that the high-risk group was more likely to re-
spond to immunotherapy than the low-risk group,
because the expression of PD-1 and PD-L1 was signifi-
cantly higher in the high-risk group than in the low-risk
group (Fig. S1E and F). We also calculated TMB scores
based on the TGCA somatic mutation data. The TMB
in the low-risk group and high-risk group had no signifi-
cant difference (Fig. S1G).

Establishment and assessment of the nomogram based
on the thirteen-IRGs signature
A nomogram was established in terms of the smallest
Akaike Information Criterion (AIC) value occurred from
the multivariate Cox regression (AIC = 1132.81), which
includes age, T stage, N stage, M stage and the thirteen-
IRGs signature (Fig. 7A). The calibration plot demon-
strated that the evaluating capability of the nomogram
was best in forecasting 3-year OS (Fig. 7B). The C-index
of the nomogram was 0.770 (95% CI = 0.718–0.823). As
Fig. 7C displays, the nomogram illustrated a greater net
benefit that had a wider range of threshold probability
on the DCA for predicting 1-, 3-, and 5- year OS. Com-
bining thirteen-IRGs signature with TNM stage showed

better net benefit for predicting 3-year OS (Fig. 7D). The
AUC for 1-, 3-, and 5- year OS of the nomogram in
TCGA dataset was 0.789, 0.783 and 0.790, respectively
(Fig. 7E). Based on Fig. 7F, CRC patients from the high-
risk group, stratified by the median of nomogram ‘s risk
score, had significantly lower OS rates compared to the
low-risk group (P < 0.001). Using the GSE39582 cohort
for validation, we obtained similar results, as displayed
by Fig. S2.

Survival analysis of IRGs
For additional confirmation of their prognostic value
and expression, we applied the Kaplan-Meier survival
analysis for the thirteen IRGs in signature in patients
with CRC from TCGA (Fig. 8). We found that A2ML1,
CALB2, COL22A1, FCRL2, GPX3, HAND1, IDO1,
LAMP5, MAP2, MMRN1, NKAIN4 and VAX2 were
identified as cancer-promoting factors given their high
expression correlation with shorter OS in patients with
CRC. On the other hand, the high expression of CD1B
exhibited a significant correlation with longer OS. This
association implies the possible protective role of RNAs
in CRC. Additionally, we verified ten IRGs have signifi-
cant correlation with OS in the GSE39582 cohort, in-
cluding A2ML1, CALB2, COL22A1, GPX3, HAND1,
IDO1, LAMP5, MAP2, MMRN1 and NKAIN4. (Fig. S3).

Correlation between TIICs and prognostic IRGs
The independent predicted factors of sentinel lymph
node status and OS among cancer patients are the

Fig. 6 Independent prognostic role of the thirteen-IRGs signature. A, Univariate and analyses of clinicopathological features associated with
overall survival in TCGA cohort. B, Multivariate analyses of clinicopathological features associated with overall survival in TCGA cohort. C,
Association of the thirteen-IRGs signature with clinical parameters in TCGA cohort. D, Univariate and analyses of clinicopathological features
associated with overall survival in GSE39582 cohort. E, Multivariate analyses of clinicopathological features associated with overall survival in
GSE39582 cohort. F, Association of the thirteen-IRGs signature with clinical parameters in GSE39582 cohort
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Tumor-infiltrating immune cells (TIICs) [34]. As a re-
sult, we explored the correlation of those thirteen prog-
nostic IRGs with the immune infiltration levels in CRC
using TIMER (Table 1). The outcomes reveal the posi-
tive correlation of the CD1B expression level with the
infiltrating levels of neutrophils (r = 0.468, p = 3.31E-23)
and Dendritic Cells (r = 0.505, P = 2.05E-27) in colon
adenocarcinoma (COAD) (Fig. 9A). Moreover, GPX3
has the highest significant correlations with infiltrating
levels of macrophages (r = 0.54, p = 5.93E-32), neutro-
phils (r = 0.408, p = 4.45E-17) and Dendritic Cells
(r = 0.434, P = 7.01E-20) (Fig. 9B). In addition, IDO1
expression was significantly associated with infiltrat-
ing levels of CD8+ T cells (r = 0.4, P = 4.66E-17),
neutrophils (r = 0.638, p = 3.97E-47) and Dendritic
Cells (r = 0.564, P = 3.47E-35) (Fig. 9C).
We also found that CD1B, FCRL2, IDO1 and MMRN1

were correlated with the infiltration of B cells. Moreover,
CD1B, FCRL2, GPX3, IDO1, MAP2 and MMRN1 were
correlated with the infiltration of CD8+ T cells. The out-
comes reveal the positive correlation of the CD1B, CALB2,
COL22A1, FCRL2, GPX3, HAND1, IDO1, LAMP5, MAP2,
MMRN1, NKAIN4 and VAX2 expression level with the in-
filtrating levels of CD4+ T cells, macrophages and Dendritic
Cells. In addition, CD1B, CALB2, COL22A1, FCRL2,
GPX3, IDO1, LAMP5, MAP2, MMRN1, NKAIN4 and
VAX2 expression was significantly associated with infiltrat-
ing levels of neutrophils.

Discussion
The TME affects the progression and growth of a tumor
[35]. Moreover, it is comprised of the tumor and non-
tumor cells like fibroblasts and immune cells [36].
Tumor-infiltrating immune cells are significantly linked
to oncogenesis and angiogenesis, as well as to the metas-
tasis and growth of tumor cells, which could regulate the
abundance and differentiation of immune cells [37]. Re-
cent literature highlights how the discrepancies between
tumor progression and host’s immune response could
result in tumor’s growth [38]. Thus, it is vital to under-
stand the stromal and immune status in the TME to
develop strategies that could enhance the patient’s re-
sponse rate to immunotherapy.
The cutting-edge therapeutic methods include im-

munotherapies and molecularly targeted therapies, as
well as radiotherapies and chemotherapies. However,
limitations remain prevalent and include toxicity, im-
munity of patients to treatments, low response rates,
and financial burdens caused by high costs [39, 40].
Also, modern cancer treatments still need biomarkers
for prognosis. Hence, we attempted to find prognostic
IRGs that impact the patients’ OS by analyzing the
TME.
Some studies applied the ESTIMATE to some types of

cancers [19, 20], which signify the benefits of using algo-
rithms in large data sets. For example, Vincent et al.
used this algorithm to compute for the breast cancer

Fig. 7 Establishment of the nomogram predicting overall survival for CRC patients in the TCGA cohort. A, Nomogram predicting 1-year, 3-year
and 5-year OS for CRC patients. B, Calibration plot for nomogram predicted and observed 3-year overall survival rate. C, Decision curve analysis
for 1-year, 3-year and 5-year overall survival predictions. D, Decision curve analysis comparing nomogram with the TNM stage and the thirteen-
IRGs signature. E, Time-dependent ROC curves for overall survival prediction by the nomogram in TCGA cohort. F, Kaplan–Meier curves for overall
survival prediction by the nomogram in TCGA cohort
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tumor purity and prove that the immune and stromal
components are nonexistent in vitro [41]. To compre-
hend the TME of CRC, we applied the ESTIMATE to
generate tumor purity, as well as the stromal and im-
mune scores. In recent studies, [42, 43] our analysis de-
duced the positive correlation of stromal scores and
immune scores with the stages of a tumor, and tumor
purity was inversely correlated with tumor stages. More-
over, longer survival times highlighted the presence of
low tumor purity and high stromal and immune scores
amongst the CRC patients. This suggests the key role of
TME in patient outcomes.

We classified the TCGA patients into high and low
stromal scores, immune scores and tumor purity groups
to detect IRGs. Then, we applied the GO analysis to
confirm the involvement of those genes in the TME,
such as leukocyte activation, leukocyte migration, T cell
activation, extracellular matrix, side of membrane and
receptor regulator activity. The outcomes have been
consistent with the results of previous studies, where im-
mune cells and ECM molecules influenced the creation
of the interdependence within the CRC’s tumor micro-
environment [14, 35]. Also, we established the PPI mod-
ules to unveil the association and purpose of IRGs. The

Fig. 8 Correlation of expression of those thirteen IRGs in overall survival in TCGA. Kaplan-Meier survival curves were generated for selected
immune-related genes extracted from the comparison of groups of high (red line) and low (blue line) gene expression. p < 0.05 in Log-rank test
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nodes with high degree of connectivity among modules,
such as C3, FBN1 and ITGB2, were linked to apoptosis,
migration, angiogenesis, proliferation, and immune re-
sponse [44–46].
Then, we performed LASSO Cox analyses to generate

a thirteen-IRGs signature for predicting the prognosis of
OS patients in TCGA dataset, and cross-validated from
the GEO database GSE39582. The AUC values for the
signature in predicting 1, 3, and 5-year survival were
0.703, 0.711, and 0.676, which indicates a good capability
for predicting survival in CRC patients. We further

evaluated the association between the signature and clin-
ical parameters to figure out the clinical value of this
thirteen-IRGs signature. It was found that high-risk pa-
tients were associated significantly with TNM stages.
DCA and ROC analysis indicated that the nomogram
consists of the thirteen-IRGs signature and conventional
clinical parameters exhibited high performance in prog-
nostic sensitivity for patients with CRC. These results
demonstrated great applicability and stability of the
thirteen-IRGs signature for predicting prognosis of pa-
tients with CRC.

Fig. 9 Integrative analysis between the IRGs with tumor infiltration immune cells in CRC. A, The correlation between CD1B gene expression and
immune cells. B, The correlation between GPX3 gene expression and immune cells. C, The correlation between IDO1 gene expression and
immune cells
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To ascertain the association of IRGs with immune infil-
tration, we used a marker called CD1B. Guo et al. found
that miR-582/CD1B, which are involved in resting and ac-
tivated dendritic cells, may be potential novel biomarkers
for immunotherapy [47]. Similar to our study, in prostate
cancer, the decreased levels of CD1B expression could be
linked to the poorer disease-free survival [48]. Finally,
using the TIMER algorithm, we evaluated how prognosis-
related genes are correlated with immune-infiltrating
levels in CRC. Our results suggest that in both READ and
COAD, the expression level of CD1B is significantly
positive correlation with the tumor-infiltrating levels of
neutrophils and Dendritic Cells.
Previous studies indicated that IDO1 suppressed the

CD8+ T cell response in colon cancer, which may pro-
vide a theoretical basis for the development of new im-
munotherapy for the treatment of colon cancer [49].
The positive correlation of the IDO1 expression with
PD-L1 pathways on T cells is also evident [50]. Further-
more, during the PD-L1 therapy, both CD8+ and CD4+

T cells had higher abundance levels in the TME. As a re-
sult, this activates the IDO1 on the T cells, which im-
proves this process and causes improvements in tumor
immunity.
To our understanding, this is a pioneering study on

CRC that investigates IRGs in the TME. Thus, we took
advantage of the opportunities. First, we used the GEO
and TCGA databases to study the TME. Both sources
gave us an extensive amount of CRC samples. We cross-
checked our results using independent cohorts. Then,
we acknowledged the complexities associated with the
TME, which include genetic factors among many others.
Furthermore, this study extensively evaluated how the
TME (immune score, stromal scores and tumor purity)
interacted with prognostic IRGs.

Conclusions
In conclusion, our current study established a thirteen-
gene signature based on ESTIMATE algorithm-derived
immune/stromal scores, which could serve as a favorable
prognostic factor. Our model would be of clinical value
and provide additional data for better understanding of
the TME. Finally, the results of functional analysis pro-
vide a novel insight for revealing the molecular mechan-
ism in tumor initiation and progression.
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