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Abstract

Background: Breast cancer (BC) is a complex disease with high heterogeneity, which often leads to great
differences in treatment results. Current common molecular typing method is PAM50, which shows positive results
for precision medicine; however, room for improvement still remains because of the different prognoses of
subtypes. Therefore, in this article, we used lncRNAs, which are more tissue-specific and developmental stage-
specific than other RNAs, as typing markers and combined single-cell expression profiles to retype BC, to provide a
new method for BC classification and explore new precise therapeutic strategies based on this method.

Methods: Based on lncRNA expression profiles of 317 single cells from 11 BC patients, SC3 was used to retype BC,
and differential expression analysis and enrichment analysis were performed to identify biological characteristics of
new subtypes. The results were validated for survival analysis using data from TCGA. Then, the downstream
regulatory genes of lncRNA markers of each subtype were searched by expression correlation analysis, and these
genes were used as targets to screen therapeutic drugs, thus proposing new precision treatment strategies
according to the different subtype compositions of patients.

Results: Seven lncRNA subtypes and their specific biological characteristics are obtained. Then, 57 targets and 210
drugs of 7 subtypes were acquired. New precision medicine strategies were proposed according to the different
compositions of patient subtypes.

Conclusions: For patients with different subtype compositions, we propose a strategy to select different drugs for
different patients, which means using drugs targeting multi subtype or combinations of drugs targeting a single
subtype to simultaneously kill different cancer cells by personalized treatment, thus reducing the possibility of drug
resistance and even recurrence.
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Introduction
Breast cancer (BC) is one of the most common causes of
cancer-related deaths in women [1, 2]. Chemotherapy is
one of the chief means to treat BC, but its clinical out-
comes vary largely [3]. Studies have shown that the poor
prognosis of BC is mainly because of intratumoral het-
erogeneity [4]. Accurate subtyping of BC can better
analyze intratumoral heterogeneity, make tumor diagno-
sis more accurate, and make the prognostic difference of
subtypes more significant. The treatment strategies
explored based on precise classification can greatly
improve the effect of treatment and reduce the chance
of treatment failure and tumor recurrence.
Recently, commonly used subtyping strategies of BC

have mostly been based on histological analysis, and
multigene signatures provide biological insight and risk
stratification in BC [5–8]. Among them, intrinsic molecu-
lar subtypes, defined by the mRNA expression of 50 genes
(PAM50), including luminal A, luminal B, HER2-enriched,
basal-like and normal-like, have been widely recognized
and applied [9–11]. Treatment outcomes and prognoses
of PAM50 subtypes are different [12–14]. Luminal A sub-
type has the best prognosis, while the prognosis of TNBC
(triple-negative breast cancer) subtype is worst [15–17].
(In clinical research, TNBC is often used to approximately
replace the basal-like subtype, as they overlap approxi-
mately by 80% [18, 19]). These studies suggest that
subtyping methods based on histological multicell levels
cannot reveal complete intratumoral heterogeneity.
PAM50 subtypes reflect the average status of molecular
characteristics of cells in the tissue. Some tumor cells may
be resistant to drugs, resulting in cancer progression or
even recurrence, which can explain the failure of chemo-
therapy to some extent.
In recent years, the development of single cell sequen-

cing technology has provided a great opportunity to
excavate intratumoral heterogeneity information of BC
for precise treatment due to the following advantages:
bulk sequencing technologies provide the average level
of expression of genes distributed in multiple cells of
tissue [20], and information on low-abundance genes
and intratumoral heterogeneity will be lost [21, 22].
However, single-cell sequencing technologies can reveal
the gene expression status of single cell, detect differ-
ences in genetic information between cells, and help to
explain the mechanism of cancer progression [23, 24].
Therefore, the subtyping approaches based on single
cells are better at revealing intratumoral heterogeneity
than subtyping approaches based on multiple cells [7, 25].
However, the current classification of BC at the single-

cell level mainly focuses on mRNAs/genes. Woosung
Chung et al. used a single-cell gene expression profile to
divide 11 BC patients into ER+, HER2, and TNBC sub-
types [26], but it was not much different from the

PAM50 subtypes. Although many contributions have
been made to gain insight into the molecular character-
istics of BC cells, room still remains for further study.
Increasing evidences show that lncRNAs play important

roles in cell differentiation, migration and apoptosis by
regulating gene expression patterns, and lncRNA expres-
sion is more tissue-specific, developmental-stage-specific
and cell-type-specific than mRNA expression, suggesting
that lncRNAs may become key regulators of cell fate and
cell-type-specific functions [27–32]. Based on this, we
suspect that lncRNAs can also be used for BC subtyping.
Subtyping individual cells based on lncRNA expression
profiles may be more conducive to revealing intratumoral
heterogeneity and obtaining more accurate subtyping
results with precise diagnosis and significant prognosis to
further explore more effective treatment strategies.
Because subtyping methods of BC based on single-cell

lncRNA sequencing data can show the molecular char-
acteristics of single cells, we hypothesize that multiple
subgroups/subtypes of cancer cells can be found in the
same patient, which may lead to treatment failure or
tumor recurrence. We should develop more accurate
and effective clinical treatment measures based on the
advantages of single-cell analysis. For patients with dif-
ferent subtypes, different drugs should be selected for
treatment. These drugs can be targeted multi-subtype
drugs or a combination of targeted single-subtype drugs
to improve the medication efficiency and reduce the tox-
icity and side effects.
In this article, we combined single-cell sequencing data

of BC and lncRNA expression profile to subtype 317
tumor cells from 11 BC patients in order to more precisely
discover single-cell subtypes and explore precise treatment
strategies for patients with multiple subtypes (Fig. 1)

Methods
Data processing
Single cell expression profiles (GSE75688) of lncRNAs
and PCGs (protein-coding genes) with processed TPM
values in 517 cells of 13 samples from 11 BC patients
were downloaded from the GEO database [33]. These
samples belong to four subtypes of PAM50 subtypes,
including luminal A (BC01-BC02), luminal B (BC03),
HER2-enriched (BC04-BC06), and basal-like/TNBC
(BC07-BC11), while BC03LN and BC07LN collected
from regional metastatic lymph nodes belong to luminal
B and basal-like, respectively. Tumor cells, stromal cells,
and tumor infiltrating immune cells were isolated by the
label information of cells downloaded directly from the
article of Chung W et.al [26]. The results of cell isolation
showed that BC09 cells were all nontumor cells and
were not included in the subsequent analysis.
We extracted the expression profiles of lncRNAs and

PCGs according to gene type information (lncRNA:
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3prime overlapping ncRNA, antisense, lincRNA, processed
transcript, sense intronic, sense overlapping; PCGs: protein
coding genes) contained in GENCODE [34]. To remove
lncRNAs or PCGs with low expression values, the follow-
ing steps were applied: First, lncRNAs and PCGs with
TPM values < 1 in all tumor cells were considered unreli-
able and removed. Second, lncRNAs and PCGs expressed
in < 1% of tumor cells were removed. Then, TPM values
were log2-transformed after adding a value of one.
In all, 317 single tumor cells of 12 samples from 10

patients along with 4404 lncRNAs and 15,637 PCGs
were applied for the downstream analysis.

Intratumoral heterogeneity analysis
To illustrate the intratumoral heterogeneity of BC, we
compared the similarity of lncRNA expression between
cells. The R package Rtsne (version 0.15) [35] was used

for the visualization of cell distances in the reduced 2D
space of all mixed cells, tumor cells, and nontumor cells
to represent the relative positions of the coordinates for
comparing the degree of similarity between cells.

Analysis of PAM50 subtypes at the single-cell level
To show the molecular characteristics of PAM50 sub-
types at single cell level, we took the following steps: 1.
The R package stats (version 4.0.3) [36] was used to
obtain the expression density curves of PAM50 subtypes
in 12 samples. The average expression value of signature
genes of each PAM50 subtype in each cell was taken as
the expression value of this subtype in each cell. 2. The R
package GSVA (version 1.38.2) [37] was used to evaluate
the expression activity of PAM50 in 12 samples from 10
patients. 3. The R package genefu (version 2.22.1) [38]
was applied for PAM50 classification of individual cells.

Fig. 1 Workflow diagram
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Analysis of the expression characteristics of lncRNAs in
tumor cells
To explore whether lncRNAs can also be used as
markers for subtyping BC, such as PAM50, we com-
pared the expression characteristics of lncRNAs and
PAM50 by the following aspects: 1. Expression density
of lncRNA/PAM50 in each cell and 2. Expressed cell
proportion of each lncRNA/PAM50. And density curve
figures were drawn by R packages stats (version 4.0.3).
To further illustrate that lncRNAs are better markers

than PAM50, we performed the following steps: 1. The
Pearson correlation coefficient between the lncRNAs
and PAM50 genes in cells was compared. The larger the
Pearson correlation coefficient, the smaller the hetero-
geneity. 2. Compare the CV (coefficient of variation =
standard deviation/mean) of lncRNAs and PAM50
genes, with the CV reflecting the degree of dispersion of
expression of lncRNA/PAM50. The larger the CV, the
higher the heterogeneity. The Wilcoxon test was used to
verify the statistical significance of the above two steps.

Identification of lncRNA subtypes
To identify subtypes of BC more accurately, and save
calculating time and cost, M3Drop [39] was applied to
select important lncRNA features that have key effects
on subtyping. Since the Michaelis-Menten equation is a
nonlinear convex function, the lncRNAs in the upper/
right (which means FDR < 0.05) of the Michaelis-Menten
model are differentially expressed lncRNAs between cell
populations in the data set, which indicates that they
have key roles in subtyping. Threshold was set to FDR <
0.05.
Six unsupervised clustering methods, including un-

supervised clustering methods developed based on bulk
sequencing data, including hierarchical clustering (HC),
NMF [40] and unsupervised clustering methods devel-
oped specifically for single-cell sequencing data, includ-
ing SC3 [41], SIMLR [42], RaceID [43] and Seurat [44],
were used to perform cluster analysis based on import-
ant lncRNA expression profiles of tumor cells.
By comparing the average rouge score (the higher the

rouge value, the higher the purity of the cell cluster and
the better the clustering method) calculated by the R
package ROUGE (version 1.0) [45], we selected the most
appropriate clustering method.

Identification of markers of lncRNA subtypes
SC3 was used to identify the lncRNA markers of each
lncRNA subtype, and the threshold was set to
auroc≥0.75, P < 0.01. In order to verify the representa-
tiveness of the obtained lncRNA markers, we performed
cluster analysis again by using SC3 based on the lncRNA
markers of subtypes, and compared them with the previ-
ous clustering results. The indicator adjusted Rand index

(ARI) is used to measure the consistency of the two
clustering results and is calculated by python module
‘scikit-learn’. The closer the ARI id to 1, the higher the
degree of consistency between the two clustering results,
and the more representative the identified lncRNA
markers are.

Enrichment analysis
To further clarify the functional characteristics of each
lncRNA subtype, we directly identified the differentially
expressed genes (DEGs) of lncRNA subtypes and
enriched DEGs with GO term functions. The R package
scran (version 1.18.5) [46], a method to find candidate
marker genes for cell clusters by detecting differential
expression between cell clusters, was used to identify
DEGs in each subtype, with the screening threshold set
as follows: the |logFC| between subtypes was greater
than or equal to 1, and the FDR was less than 0.01.
Based on these DEGs, the enrichment of GO functions
was performed using the R package clusterProfiler (ver-
sion 3.18.1) [47], and P < 0.05 was selected as the thresh-
old of GO terms for significant enrichment.

Survival analysis
To verify the effect of different subtypes on the survival
prognosis of patients, tissue expression profiling data
and corresponding patient survival information from
TCGA-BRCA was used to perform survival analysis.
Since the expression profile of TCGA cannot completely
cover 44 lncRNA markers of 7 lncRNA subtypes, we
used the DEGs of each lncRNA subtype to calculate the
Pearson correlation between TCGA patients and the 7
lncRNA subtypes. Hierarchical clustering was performed
based on the correlation matrix to group patients.
Kaplan–Meier survival curves of different patient groups
were generated using the R package survival (version
3.2.7).

Candidate drugs for each lncRNA subtypes
To provide novel insight for the clinical treatment of BC
based on the characteristics of new lncRNA subtypes
and further explore the treatment strategy of BC at the
single-cell level, we identified candidate targets and
drugs for each lncRNA subtype according to the follow-
ing steps: after removing the duplicate GO terms be-
tween the lncRNA subtypes, the specific GO terms of
each lncRNA subtype were obtained. Then, the Pearson
correlation between lncRNA markers and genes of spe-
cific GO terms was calculated by the R package psych
(version 2.0.12), and we selected genes with |cor| > 0.2
[48] and P < 0.05 as candidate regulatory targets for
lncRNAs. The R package scran (version 1.18.5) [46] was
used to identify DEGs between tumor cells and nontu-
mor cells. Intersection of candidate regulatory target
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genes of lncRNA and DEGs between tumor cells and
nontumor cells were served as candidate targets for each
lncRNA subtype. Then we downloaded the drug-target
information from three databases (DrugBank [49], TTD
[50], and Drug Repurposing Hub [51]), integrated candi-
date targets of each subtype and drug-target interaction
information, and selected drugs appearing in more than
two databases as candidate drugs for each subtype.

Results
lncRNAs as better subtyping markers than PAM50
Figure 2a, b, and c show that tumor heterogeneity
mainly comes from the heterogeneity of tumor cells and
Fig. 2b and c show that the heterogeneity of tumor cells
is greater than that of nontumor cells. Figure 2b indicate
that there is a wide range of heterogeneity between
tumor cells even within tumor cells of the same PAM50
subtype. In Fig. 2b, we also found that samples from the
same PAM50 subtype were not gathered together at the
single cell level. For example, BC01 and BC02 are two
separate parts, but both belonging to luminal A, which
indicates that there is a wide range of intratumoral
heterogeneity in PAM50 subtypes. This shows obvious
patient variability, which presents heterogeneity at the
patient level.
Based on the above phenomenon, we further evaluated

the molecular characteristics of PAM50 subtypes at the
single-cell level (Figure S1) by expression density maps
of PAM50 subtypes in 10 patients. For all samples ex-
cept BC06, the corresponding subtype curve cannot be
separated from the other three. In particular, BC03,
which belongs to luminal B, was highly expressed in the
expression density map, and its signature genes wereHER2-
enriched. A previous study showed that luminal B subtypes
can express ERBB2/HER2 genes [52]. This shows that the
PAM50 subtypes do not completely express the heterogen-
eity characteristics of single tumor cell.

In addition, the expression activity (Figure S2) was dis-
played to evaluate the expression status of PAM50 sub-
types in 10 patients. Taking BC01 as an example, the
signature genes of luminal A have different expression
trends in different cells (some are highly expressed and
some are expressed at low levels), and they cannot be
well distinguished from at gene expression of the other
three PAM50 subtypes. Moreover, the expression pat-
tern of PAM50 subtypes varies from cell to cell, and
each sample has expression characteristics of multiple
PAM50 subtypes.
Therefore, we further predicted the PAM50 subtype of

individual cells. From the PAM50 classification results of
individual cells (Fig. 3), multiple cells belonging to one
PAM50 subtype at the tissue level will belong to differ-
ent PAM50 subtypes, which indicates that the effect of
PAM50 subtypes is not ideal and cannot reveal the
complete intratumor heterogeneity of BC. Therefore, a
new subtyping method is needed to analyze the hetero-
geneity of BC cells.
We supposed that subtyping markers should meet the

following criteria: 1. Markers should be highly expressed
in a small number of cells, and expressed close to 0 in
most cells and 2. In a single cell, only a small number of
markers are highly expressed, and the expression of
others is close to 0. Here, we compared the expression
consistency of lncRNAs and PAM50 (Fig. 4a-b, Add-
itional file 1) to illustrate that lncRNAs can be similar to
PAM50 in characterizing BC cells. Then, we compared
the expression heterogeneity of lncRNAs and PAM50
(Fig. 4c-d) to assess whether lncRNAs are more suitable
than PAM50 as new markers for subtyping of BC.
From Fig. 4a-b, we found that for each lncRNA

expressed in high abundance in a few of cells, PAM50
was too, which indicates that lncRNA is similar to
PAM50, that is the expression of lncRNAs in cancer
cells is also heterogeneous, and thus, lncRNAs can be

Fig. 2 Tsne display of all cells (a), tumor cells (b), and nontumor cells (c) in 11 patients. BC01-BC02: Luminal A, BC03: Luminal B, BC04-BC06: HER2-
enriched, BC07-BC08, BC10-BC11: Basal-like/TNBC
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used as markers for reclassifying BC cells. In Fig. 4c, ex-
cept BC03LN and BC06 (their cell number is too small
to accurately reflect the overall level of heterogeneity
distribution), the intercellular similarity of lncRNAs in
other samples is lower than that of PAM50. Figure 4d
shows that the CV of lncRNAs is significantly higher
than that of PAM50, indicating that the degree of dis-
persion of lncRNAs between tumor cells is stronger and
that the intercellular heterogeneity of lncRNAs is higher
than that of PAM50. Therefore, lncRNAs can more sig-
nificantly represent the heterogeneity of tumor cells,
which means lncRNAs might be more suitable as sub-
typing markers for BC.

Identification of new subtypes of breast cancer
In the expression profile of lncRNAs, some lncRNAs
have weak correlation with BC heterogeneity, which will
interfere with subtyping results. Therefore, we first iden-
tified important lncRNAs. A total of 119 lncRNAs with a
multiple correction FDR < 0.05 were obtained (Fig. 5a)
for further analysis. Then, 6 clustering methods were
performed on important lncRNAs in 317 tumor cells
(Fig. 5b).
We prefer to select the method meeting the following

conditions: 1. Complete separation between clusters, 2.
The number of clusters was at least greater than the
number of PAM50 subtypes, and 3. The average rouge
score is highest. The average rouge scores of the six
methods are 0.999921 (SC3), 0.999641 (HC), 0.994104
(NMF), 0.999166 (RaceID), 0.997553 (Seurat) and
0.998465 (SIMLR), respectively. It can be seen that SC3
is the best. From Fig. 5b, the clustering visualization of
SC3 (Figure S3) is most obvious, and the number of
clusters (lncRNA subtypes) is 7. In Fig. 5c, it can be seen
that the cells of the same PAM50 subtype are not always
similar. Tumor cells of the same PAM50 subtype were
dispersed in at least two lncRNA subtypes. In the

lncRNA subtypes of SC3, except for a few cells, the clus-
tering results of other cells can ensure that the closely
related clusters are separated from each other.
Resubtyping strategies based on the expression of im-

portant lncRNAs better solves the problem of unclear
boundaries of subtypes due to intratumoral heterogen-
eity in BC. Since the gold standard for the molecular
classification of BC is PAM50 subtypes, we compared
lncRNA subtypes with PAM50 subtypes (Fig. 6a-b).
Compared with PAM50 subtypes, lncRNA subtypes can
reveal the phenomenon of multiple lncRNA subtypes in
each PAM50 subtype at the single-cell level. We have
counted the types and proportions of lncRNA subtypes
in each patient (Fig. 6c-d). Some patients contain cells of
multiple lncRNA subtypes at the same time, which re-
flects the high resolution of typing based on the single
cell sequencing data. For example, patients BC02, BC03,
BC04, BC5, BC07 and BC08, have at least two PAM50
subtypes. For these patients, the cell number of each
lncRNA subtype was different. We defined the lncRNA
subtype with a highest proportion of cancer cells as the
major/dominant subtype, and other lncRNA subtypes
were minor subtypes. Detailed information about the
subtypes of each patient is shown in Additional file 2.

The lncRNA markers of new lncRNA subtypes
Forty-four lncRNA markers, including 10, 5, 3, 3, 1, 10,
and 12 lncRNAs of 7 lncRNA subtypes, were obtained
(Fig. 7, Additional file 3). SC3 was reused to perform un-
supervised clustering for 317 tumor cells based on 44
lncRNA markers to assess the representativeness of
lncRNA markers by comparing the number of clusters
with those of the previous lncRNA subtypes. The opti-
mal number of clusters of markers is the same as the
previous number of clusters. The consistency of the
marker clustering results with the previous lncRNA sub-
typing results was high (ARI = 0.928). This illustrates

Fig. 3 Sample source, bulk PAM50 subtype, predicted PAM50 subtypes of individual cells
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Comparison of the expression consistency of lncRNAs and PAM50. a Proportion density distribution of lncRNAs and PAM50 in each cell.
The abscissa indicates the level of expression, and the ordinate indicates the density of expressed lncRNAs or APM50. b The expression density
distribution of each lncRNA and each signature gene of PAM50 in cells. The abscissa indicates the expression level, and the ordinate indicates the
density of the expressed cells. c. Comparison of expression heterogeneity of lncRNAs and PAM50 in 10 patients. The abscissa represents the
samples and the ordinate represents the Pearson similarity between cells. Red represents lncRNAs and green represents PAM50. d CV of lncRNAs
and PAM50 for 10 patients. The abscissa indicates lncRNAs and PAM50, and the ordinate indicates the CV

Fig. 5 Feature selection and comparison of results of 6 clustering methods. a Important lncRNAs selected by M3Drop. The abscissa is the
expression value, the ordinate is the dropout rate, the blue line is the fitted curve, and the orange dots represent the important lncRNAs. b Tsne
dimensionality reduction display and clustering result displays of HC, SC3, SIMLR, NMF, RaceID and Seurat after feature selection. c Tsne
dimension reduction visualization of PAM50 subtypes and lncRNA subtypes of SC3. BC01-BC02: Luminal A, BC03: Luminal B, BC04-BC06: HER2-
enriched, BC07-BC08, BC10-BC11: Basal-like/TNBC
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that the identified lncRNA markers of each subtype are
sufficient to distinguish the new lncRNA subtypes.

Biological characteristics of lncRNA subtypes
To better characterize the biological functions of each
lncRNA subtype, we performed enrichment analysis of
DEGs of each lncRNA subtype to obtain their specific
functional characteristics. When the threshold was
|logFC| ≥ 1 and FDR < 0.01, the numbers of DEGs of
each subtype identified were 427, 332, 652, 419, 248, 526
and 942 (Additional file 4). Significantly enriched GO
terms were selected at P < 0.05 and are shown in
Additional file 5. Each subtype has specific functional
characteristics. For example, C3 is related to

transcriptional functions, including RNA degradation,
RNA splicing, RNA stability regulation, and RNA
localization [53]. The RNA-binding protein NONO that
promotes BC proliferation [43] is involved in nuclear
speck of CC (cellular component) and RNA splicing of BP
(biological process).

Survival validation based on TCGA patients
Since there is no survival time information in our data,
we downloaded a new set of data from 1092 BC patients
from TCGA for survival analysis. The Pearson correl-
ation between the patients and the 7 lncRNA subtypes is
shown in Fig. 8a, and patients were divided into 3 popu-
lations. Population 1 has the highest correlation with C4,

Fig. 6 Types and proportions of lncRNA subtypes of patients. a Enrichment of lncRNA subtypes in each PAM50 subtype, b enrichment of PAM50
subtypes in each lncRNA cluster, c enrichment of lncRNA subtypes in each patient, and d enrichment of patients in each lncRNA subtype
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medium correlation with C1 and C3, and the lowest
correlation with C2, and the other ncRNA subtypes have
no difference from population 2. In contrast, population
2 has the highest correlation with C2 and the lowest cor-
relation with C1 and C3. Population 3 has the highest

correlation with C1 and C7, and the lowest correlation
with C4 and C6. The survival curves of the 3 popula-
tions are shown in Fig. 8b. Population 2 had the lowest
survival rate and population 3 had the highest survival
rate.

Fig. 7 Heatmap of lncRNA marker expressions of lncRNA subtypes

Fig. 8 Results of survival analysis. a Heatmap of the Pearson coefficient between TCGA patients and 7 lncRNA subtypes. b The survival curves of
3 populations of TCGA patients
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To verify the difference in survival curves among the 3
populations, we tested the impact of lncRNA markers of
7 lncRNA subtypes on the survival or prognosis of pa-
tients or the development of BC through the literatures.
For population 2, there is no literature to show the

correlation between lncRNA markers of C2/C3 and BC,
and thus, so we focused on the impact of lncRNA
markers of C1 on BC. LINC00993, a lncRNA marker of
C1, acts as a tumor suppressor [54]. The lowest correl-
ation with C1 confirms that population 2 has the lowest
survival rate.
For population 3, we focused on markers of C1, C4

and C6 because there are no reports about the relation-
ship of markers of C7 and BC. H19 is a lncRNA marker
of C4. Studies show that H19 overexpression in 73% of
BC tissues enhances BC cell migration [55]. It mediates
the resistance of BC cells to paclitaxel, trastuzumab and
tamoxifen for [55–57]. It is associated with poor progno-
sis in BC patients, particularly in TNBC subtype [58].
DSCAM-AS1 and SNHG1 are lncRNA markers of C6.
DSCAM-AS1 promoted the proliferation and invasion of
BC cells by reducing miR-204-5p and inhibiting miR-
204-5p expression [59]. SNHG1 promotes BC [60] and
impedes the immune escape of BC [61]. The highest
correlation with C1 and the lowest correlation with C4
and C6 confirm that population 3 has the highest sur-
vival rate. However, since the longest survival time of
population 3 patients is only 3283 days, the trend of the
survival curve in the second half of population 3 cannot
be predicted. For population 1, the highest correlation
with C4 and medium correlation with C1 verified the
medium survival rate of population 1.

Precision treatment for patients with multiple subtypes
To explore treatment strategies based on the new sub-
typing result, it is also necessary to identify candidate
therapeutic drugs for single-cell lncRNA subtypes. Drugs
can indirectly target lncRNAs to exert antitumor efficacy
by regulating lncRNA-related pathways or regulators.
Therefore, we indirectly targeted lncRNA by identifying
drugs that target lncRNA regulatory genes. For 7
lncRNA subtypes, 210 candidate drugs were identified
and are shown in Table 1 and Additional file 6. We con-
ducted direct (drug-disease relationships) or indirect
(drug-target, target-disease relationships) literature veri-
fication on candidate drugs. In addition, the total litera-
ture verification rate is 86.2%. We found that some
drugs are for only one lncRNA subtype, such as ima-
tinib, which is only for subtype C1, and some drugs are
suitable for multiple subtypes, such as canfosfamide,
which is a therapeutic drug for the C4, C5 and C6 sub-
types. Among these predicted drugs, we found that some
drugs are currently used to treat PAM50 subtypes. For
example, candidate drugs for C1, including trastuzumab,

pertuzumb, lapatinib and sorafenib are commonly used
for HER2-enriched subtypes. Fulvestrant, a commonly
used drug for luminal A, is on the candidate drug list of
C3. The history of TNF-α is closely related to the history
of tumor immunotherapy [62]. TNF-α is one of the most
important pro-inflammatory cytokines found in breast
cancer, mainly secreted by M1 activated macrophages
[63]. TNF-α belongs to the TNF/TNFR superfamily and
is considered to be one of the most promising anti-
cancer factors [64]. TNF-α affects the development of
BC at all stages, including the development of primary
tumors, EMT, metastasis and disease recurrence [65].
Therefore, a treatment plan related to TNF-α in BC has
been produced: neutralization of endogenous TNF-α by
TNF antagonists [65]. In some preclinical studies, TNF-
α antagonists have been shown to effectively inhibit the
growth and spread of BC [65]. The predicted TNF-
targeted drugs are MSX-122, nimesulide, adalimumab,
AME-527, certolizumab pegol, etanercept, golimumab,
infliximab, and thalidomide. Etanercept can bind to
TNF-α, thereby inhibiting its biological activity [65].
Infliximab inhibits tumor growth and lymph node me-
tastasis by combining molecular pathways mediated by
TNF-α [66]. In addition, when TNF-α stimulates BC, it
will activate the transcription factors NFkβ and cJun,
drive the transcription of EMMPRIN and MIF genes,
and induce the increase of MMP secreted by macro-
phages in TME. It has been found to promote tumor cell
invasion and metastasis [67]. The drugs that target
MMP family genes are marimastat, SC-74020, and UK-
356618. Among which, marimastat can prevent tumor
cell invasion and metastasis [68, 69].
We hypothesized that the presence of multiple single-

cell subtypes in a patient is the cause of treatment failure
or even tumor recurrence. For patients with multiple
subtypes, clinically, the patient may only display the
phenotypic characteristics of the dominant subtype, and
the phenotypic characteristics of minor/secondary sub-
types will be covered up. Only treating the dominant
subtype may result in poor treatment effects. For ex-
ample, lncRNA subtype C1 accounted for the majority/
dominance in patient BC05, followed by C7. Clinically,
the tumor phenotype characteristics of C1 may cover
those of the C7 subtype, and the patient phenotype ap-
parently represents the C1 subtype. Usually, according
to the current treatment strategy, BC05 is treated ac-
cording to the C1 subtype. During the process of treat-
ment, C1 cells are gradually eliminated, and C7 cancer
cells appear, leading to drug resistance or a potential risk
of recurrence. Therefore, for patients with multiple sub-
types, we proposed new treatment strategies that should
use targeting multi-subtype drugs or combinations of
targeting single-subtype drugs to simultaneously treat
the patient with multiple subtypes. For BC05, we can
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use a drug shared by two subtypes, such as TW-37,
which is confirmed to effectively induces apoptosis in a
dose-dependent manner [70] or a combination of drugs
to target C1 and C7 subtypes, such as pertuzumab [71]
and melatonin [72]. Treatment strategies of other pa-
tients are in Additional file 7.

Discussion
Accurate classification can improve the accuracy and
success rate of subtype diagnosis, obtain the good prog-
nosis of each subtype, and greatly help the exploration
of precise treatment strategies. In our research, we used
lncRNA expression profiles of single cells to retype BC
to better highlight the heterogeneity among cancer cells,

identify precise subtypes, and performing more precise
treatment.
PAM50 molecular subtypes are based on bulk sequen-

cing and cannot completely reveal intratumoral hetero-
geneity. The subtyping of BC at the single-cell level is
mainly based on mRNAs/genes, still leaving some room
for improvement. In this article, we first demonstrated
that lncRNAs are more suitable as markers for present-
ing the intratumoral heterogeneity of BC by comparing
the expression consistency and variance of mRNAs and
lncRNAs among cells and found that the expression
variance of lncRNAs was higher than that of mRNAs.
Therefore, we used single-cell lncRNA expression data
to retype 317 tumor cells from 12 samples of 10 BC

Table 1 Information of candidate drugs for each lncRNA subtype

LncRNA
subtypes

Numbers
of drugs

Numbers of drugs only
for one subtype

Numbers of drugs shared
with other subtypes

lncRNA subtypes
sharing drugs

Drugs shared with
other subtypes

C1 33 31 2 C1; C2 BMS-536924

C1; C2; C6; C7 TW-37

C2 18 13 5 C1; C2 BMS-536924

C2; C6 AMD-070

MSX-122

Plerixafor

C1; C2; C6; C7 TW-37

C3 45 44 1 C3; C6; C7 R547

C4 39 38 1 C4; C5 Curcumin

C5 16 13 3 C4; C5 Curcumin

C5; C6 Canfosfamide

Ezatiostat

C6 34 22 12 C1; C2; C6; C7 TW-37

C2; C6 AMD-070

MSX-122

Plerixafor

C3; C6; C7 R547

C5; C6 Canfosfamide

Ezatiostat

C6; C7 ABT-737

Obatoclax

Phosphonothreonine

SNS-032

THZ1

C7 42 35 7 C1; C2; C6; C7 TW-37

C3; C6; C7 R547

C6; C7 ABT-737

Obatoclax

Phosphonothreonine

SNS-032

THZ1
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patients, identified new lncRNA subtypes, their markers
and specific functional characteristics, and performed
survival analysis. At the same time, we compared
lncRNA subtypes with the PAM50 subtype, which is the
gold standard for BC classification, and found that
lncRNA subtypes can more accurately reveal intratu-
moral heterogeneity.
When subtyping by PAM50 is to cluster patients, each

patient shows one subtype. While subtyping based on
single-cell lncRNA markers is the clustering of cells, we
also found that some patients had multiple lncRNA
subtypes. We also found that some patients had multiple
lncRNA subtypes. If these patients with multiple
subtypes are treated only for the tumor cells of the
major/dominant subtype, neglecting those of minor
subtypes based on the current treatment strategy, the
activities of these tumor cells of minor subtypes would
be highlighted with the disappearance of tumor cells of
major subtype in the progress of treatment, which would
result in drug resistance and tumor recurrence. Based
on this, we further identified candidate therapeutic drug
targets and corresponding drugs for each lncRNA sub-
type to explore new treatment strategies. The literature
verification rate of predicted drugs is 86.2%, which
reflects the accuracy of our results to some extent. For
these patients, we propose a new treatment strategy in
which we should use one targeting multi-subtype drug
or choose a combination of drugs targeting only one
subtype to improve the treatment effect. Specifically, we
prefer to recommend the former with fewer side effects.
For BC05, we recommend TW-37 shared by C1 and C7
subtypes rather than the combination of pertuzumab
and melatonin.
In this article, some positive results have been ob-

tained and also providing new perspectives and founda-
tions for further BC research, but these results need to
be verified further, especially by population investiga-
tions in the future.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-021-08617-7.

Additional file 1. Density matrix.zip.

Additional file 2. Results of SC3.xls.

Additional file 3. lncRNA markers of lncRNA subtypes.xls.

Additional file 4. DEGs of lncRNA subtypes.xls.

Additional file 5. GO terms of lncRNA subtypes.xls.

Additional file 6. Candidate drugs of lncRNA subtypes.xls.

Additional file 7. Treatment strategies of patients.docx.

Additional file 8: Figure S1. Expression density maps of PAM50
subtypes in 10 patients. The abscissa represents the level of gene
expression, and the ordinate represents the density of the expressed cells.
Different colors of the curve represent different PAM50 subtypes of BC.

Additional file 9: Figure S2. Heatmap of the expression activity of
PAM50 in 10 patients. In almost all samples, multiple subtypes are highly
expressed in different cells at single-cell resolution.

Additional file 10: Figure S3. Cluster evaluation of SC3 to determine
the best cluster number. a). Consensus matrix diagram of the SC3 results.
A similarity of 0 (blue) indicates that two cells are always assigned to
different clusters. In contrast, a similarity of 1 (red) indicates that two cells
are always assigned to the same cluster. b). Average silhouette width of
SC3 results. The average silhouette width varies from 0 to 1, where 1
represents a perfectly block-diagonal consensus matrix. The best cluster-
ing is achieved when the average silhouette width is close to 1.

Acknowledgements
Not applicable.

Authors’ contributions
XJ C designed the project, DN Z and Y Z designed the methods of the
article, QK M and F X collected data and conducts calculation and analysis.
Y Z analyzed the results. XJ C and Y Z wrote the paper. All authors reviewed
the manuscript. ZQ L participated in the revision work of this paper. Y Z,
DN Z, QK M and ZQ L contributed equally to this paper. The authors read
and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China [Grant No. 61671191, 61971166].

Availability of data and materials
The datasets used in this article is download from Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75688) with
accession number GSE75688 [26]. And all data generated during this study
are included in supplementary information files.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential
conflict of interest.

Author details
1College of Bioinformatics Science and Technology, Harbin Medical
University, Harbin 150081, Heilongjiang Province, P. R. China. 2Department of
Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin
150001, Heilongjiang Province, P. R. China.

Received: 8 December 2020 Accepted: 15 July 2021

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer

statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/
caac.21262.

2. Januškevičienė I, Petrikaitė V. Heterogeneity of breast cancer: the
importance of interaction between different tumor cell populations. Life Sci.
2019;239:117009. https://doi.org/10.1016/j.lfs.2019.117009.

3. Cui Q, Tang J, Zhang D, Kong D, Liao X, Ren J, et al. A prognostic eight-
gene expression signature for patients with breast cancer receiving
adjuvant chemotherapy. J Cell Biochem. 2020;121:3923–34. https://doi.org/1
0.1002/jcb.29550.

4. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How Many
Etiological Subtypes of Breast Cancer: Two, Three, Four, Or More? J Natl
Cancer Inst. 2014;106(8):dju165.

Zhang et al. BMC Cancer          (2021) 21:918 Page 13 of 15

https://doi.org/10.1186/s12885-021-08617-7
https://doi.org/10.1186/s12885-021-08617-7
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75688
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21262
https://doi.org/10.1016/j.lfs.2019.117009
https://doi.org/10.1002/jcb.29550
https://doi.org/10.1002/jcb.29550


5. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene
expression profiling predicts clinical outcome of breast cancer. Nature. 2002;
415(6871):530–6.

6. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-
gene signature as an aid to treatment decisions in early-stage breast
Cancer. N Engl J Med. 2016;375(8):717–29. https://doi.org/10.1056/NEJMoa1
602253.

7. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al.
Prospective validation of a 21-gene expression assay in breast Cancer. N
Engl J Med. 2015;373(21):2005–14. https://doi.org/10.1056/NEJMoa1510764.

8. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al.
Supervised risk predictor of breast Cancer based on intrinsic subtypes. J Clin
Oncol. 2009;27(8):1160–7. https://doi.org/10.1200/JCO.2008.18.1370.

9. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael
JF, et al. Comprehensive molecular portraits of human breast tumours.
Nature. 2012;490(7418):61–70.

10. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–
52. https://doi.org/10.1038/35021093.

11. Prat A, Parker JS, Fan C, Perou CM. PAM50 assay and the three-gene model
for identifying the major and clinically relevant molecular subtypes of breast
cancer. Breast Cancer Res Treat. 2012;135(1):301–6. https://doi.org/10.1007/
s10549-012-2143-0.

12. Gadi VK, Davidson NE. Practical Approach to Triple-Negative Breast Cancer. J
Oncol Pract. 2017; 13(5):293–300.

13. Wiechmann L, Sampson M, Stempel M, Jacks LM, Patil SM, King T, et al.
Presenting Features of Breast Cancer Differ by Molecular Subtype. Ann Surg
Oncol. 2009;16(10):2705–10.

14. Wörmann B. Breast cancer: basics, screening, diagnostics and treatment.
Med Monatsschr Pharm. 2017;40(2):55–64.

15. Palma G, Frasci G, Chirico A, Esposito E, Siani C, Saturnino C, et al. Triple
negative breast cancer: looking for the missing link between biology and
treatments. Oncotarget. 2015;6(29):26560–74. https://doi.org/10.18632/
oncotarget.5306.

16. Vincent-Salomon A, Gruel N, Lucchesi C, Macgrogan G, Aurias A.
Identification of typical medullary breast carcinoma as a genomic sub-
group of basal-like carcinomas, a heterogeneous new molecular entity.
Breast Cancer Res. 2007;9(2):R24. https://doi.org/10.1186/bcr1666.

17. Gonçalves A, Sabatier R, Charafejauffret E. Triple-negative breast cancer
histoclinical and molecular features, therapeutic management and
perspectives. Bull Cancer. 2013;100(5):453–64.

18. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ.
Strategies for subtypes—dealing with the diversity of breast cancer:
highlights of the St Gallen international expert consensus on the primary
therapy of early breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47. https://
doi.org/10.1093/annonc/mdr304.

19. Kim HK, Park KH, Kim Y, Park SE, Lee HS, Lim SW, et al. Discordance of the
PAM50 intrinsic subtypes compared with immunohistochemistry-based
surrogate in breast Cancer patients: potential implication of genomic
alterations of discordance. Cancer Res Treat. 2019;51(2):737–47. https://doi.
org/10.4143/crt.2018.342.

20. Zhu S, Qing T, Zheng Y, Jin L, Shi L. Advances in single-cell RNA sequencing
and its applications in cancer research. Oncotarget. 2017;8(32):53763–79.
https://doi.org/10.18632/oncotarget.17893.

21. Shirai M, Taniguchi T, Kambara H. Emerging Applications of Single-Cell
Diagnostics. In: Tang NLS, Poon T, editors. Chemical Diagnostics: From Bench
to Bedside. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 99–116.

22. Ofengeim D, Giagtzoglou N, Huh D, Zou C, Yuan J. Single-cell RNA
sequencing: unraveling the Brain one cell at a time. Trends Mol Med. 2017;
23(6):563–76. https://doi.org/10.1016/j.molmed.2017.04.006.

23. Potter SS. Single-cell RNA sequencing for the study of development,
physiology and disease. Nat Rev Nephrol. 2018;14(8):479–92. https://doi.
org/10.1038/s41581-018-0021-7.

24. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with
single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69. https://doi.org/1
0.1038/nrc.2017.58.

25. Cardoso F, Veer LVT, Rutgers E, Loi S, Piccart-Gebhart MJ. Clinical application
of the 70-gene profile: the MINDACT trial. J Clin Oncol. 2008;26(5):729–35.
https://doi.org/10.1200/JCO.2007.14.3222.

26. Chung W, Eum HH, Lee H-O, Lee K-M, Lee H-B, Kim K-T, et al. Single-cell
RNA-seq enables comprehensive tumour and immune cell profiling in

primary breast cancer. Nat Commun. 2017;8(1):15081. https://doi.org/10.103
8/ncomms15081.

27. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al.
Integrative annotation of human large intergenic noncoding RNAs reveals
global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.
https://doi.org/10.1101/gad.17446611.

28. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Front
Genet. 2012;3:219.

29. Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI. LSINCT5 is over expressed
in breast and ovarian cancer and affects cellular proliferation. RNA Biol.
2011;8(3):496–505. https://doi.org/10.4161/rna.8.3.14800.

30. Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, et al. The lncRNA H19
mediates breast cancer cell plasticity during EMT and MET plasticity by
differentially sponging miR-200b/c and let-7b. Sci Signal. 2017;10(483):
aak9557.

31. Cooper C, Guo J, Yan Y, Chooniedass-Kothari S, Hube F, Hamedani MK, et al.
Increasing the relative expression of endogenous non-coding steroid
receptor RNA activator (SRA) in human breast cancer cells using modified
oligonucleotides. Nucleic Acids Res. 2009;37(13):4518–31. https://doi.org/1
0.1093/nar/gkp441.

32. Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB,
et al. SNORD-host RNA Zfas1 is a regulator of mammary development and
a potential marker for breast cancer. RNA (New York, NY). 2011;17(5):878–91.

33. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids
Res. 2013;41(Database issue):D991–5. https://doi.org/10.1093/nar/gks1193.

34. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.
GENCODE: the reference human genome annotation for the ENCODE project.
Genome Res. 2012;22(9):1760–74. https://doi.org/10.1101/gr.135350.111.

35. Krijthe JH: Rtsne: T-distributed stochastic neighbor embedding using
Barnes-Hut implementation. R package version 013, 2015. https://github.
com/jkrijthe/Rtsne.

36. Hazelton ML, Cox MP. Bandwidth selection for kernel log-density estimation.
Comput Stat Data Anal. 2016;103:56–67. https://doi.org/10.1016/j.csda.2016.
05.003.

37. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics. 2013;14(1):7. https://doi.
org/10.1186/1471-2105-14-7.

38. Gendoo DM, Ratanasirigulchai N, Schröder MS, Paré L, Parker JS, Prat A,
et al. Genefu: an R/Bioconductor package for computation of gene
expression-based signatures in breast cancer. Bioinformatics (Oxford,
England). 2016;32(7):1097–9.

39. Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for
scRNASeq. Bioinformatics. 2018;35(16):2865–7.

40. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix
factorization. BMC Bioinformatics. 2010;11(1):367. https://doi.org/10.1186/14
71-2105-11-367.

41. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Hemberg M. SC3: consensus
clustering of single-cell RNA-seq data. Nat Methods. 2017;14(5):483–6.
https://doi.org/10.1038/nmeth.4236.

42. Wang B, Ramazzotti D, De Sano L, Zhu J, Pierson E, Batzoglou S. SIMLR: a
tool for large-scale genomic analyses by multi-kernel learning. PROTEOMICS.
2018;18(2):1700232. https://doi.org/10.1002/pmic.201700232.

43. Grün D, Muraro MJ, Boisset J-C, Wiebrands K, Lyubimova A, Dharmadhikari
G, et al. De novo prediction of stem cell identity using single-cell
transcriptome data. Cell Stem Cell. 2016;19(2):266–77. https://doi.org/10.101
6/j.stem.2016.05.010.

44. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd,
et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888–
1902.e1821.

45. Liu B, Li C, Li Z, Wang D, Ren X, Zhang Z. An entropy-based metric for
assessing the purity of single cell populations. Nat Commun. 2020;11(1):
3155. https://doi.org/10.1038/s41467-020-16904-3.

46. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level
analysis of single-cell RNA-seq data with Bioconductor. F1000Research.
2016;5:2122.

47. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics. 2012;16(5):284–7. https://
doi.org/10.1089/omi.2011.0118.

48. Harmouche-Karaki M, Mahfouz M, Obeyd J, Salameh P, Mahfouz Y, Helou K.
Development and validation of a quantitative food frequency questionnaire

Zhang et al. BMC Cancer          (2021) 21:918 Page 14 of 15

https://doi.org/10.1056/NEJMoa1602253
https://doi.org/10.1056/NEJMoa1602253
https://doi.org/10.1056/NEJMoa1510764
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.1038/35021093
https://doi.org/10.1007/s10549-012-2143-0
https://doi.org/10.1007/s10549-012-2143-0
https://doi.org/10.18632/oncotarget.5306
https://doi.org/10.18632/oncotarget.5306
https://doi.org/10.1186/bcr1666
https://doi.org/10.1093/annonc/mdr304
https://doi.org/10.1093/annonc/mdr304
https://doi.org/10.4143/crt.2018.342
https://doi.org/10.4143/crt.2018.342
https://doi.org/10.18632/oncotarget.17893
https://doi.org/10.1016/j.molmed.2017.04.006
https://doi.org/10.1038/s41581-018-0021-7
https://doi.org/10.1038/s41581-018-0021-7
https://doi.org/10.1038/nrc.2017.58
https://doi.org/10.1038/nrc.2017.58
https://doi.org/10.1200/JCO.2007.14.3222
https://doi.org/10.1038/ncomms15081
https://doi.org/10.1038/ncomms15081
https://doi.org/10.1101/gad.17446611
https://doi.org/10.4161/rna.8.3.14800
https://doi.org/10.1093/nar/gkp441
https://doi.org/10.1093/nar/gkp441
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1101/gr.135350.111
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
https://doi.org/10.1016/j.csda.2016.05.003
https://doi.org/10.1016/j.csda.2016.05.003
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1002/pmic.201700232
https://doi.org/10.1016/j.stem.2016.05.010
https://doi.org/10.1016/j.stem.2016.05.010
https://doi.org/10.1038/s41467-020-16904-3
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118


to assess dietary intake among Lebanese adults. Nutr J. 2020;19(1):65.
https://doi.org/10.1186/s12937-020-00581-5.

49. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al.
DrugBank: a comprehensive resource for in silico drug discovery and
exploration. Nucleic Acids Res. 2006;34(suppl_1):D668–72.

50. Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target
database 2020: enriched resource for facilitating research and early
development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):
D1031–d1041. https://doi.org/10.1093/nar/gkz981.

51. Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The
drug repurposing hub: a next-generation drug library and information
resource. Nat Med. 2017;23(4):405–8. https://doi.org/10.1038/nm.4306.

52. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index,
HER2 status, and prognosis of patients with luminal B breast cancer. J Natl
Cancer Inst. 2009;101(10):736–50. https://doi.org/10.1093/jnci/djp082.

53. Laka K, Makgoo L, Mbita Z. Survivin Splice Variants in Arsenic Trioxide
(As2O3)-Induced Deactivation of PI3K and MAPK Cell Signalling Pathways in
MCF-7 Cells. Genes. 2019;10(1):41.

54. Guo S, Jian L, Tao K, Chen C, Yu H, Liu S. Novel breast-specific long non-
coding RNA LINC00993 acts as a tumor suppressor in triple-negative breast
Cancer. Front Oncol. 2019;9:1325. https://doi.org/10.3389/fonc.2019.01325.

55. Collette J, Le Bourhis X, Adriaenssens E. Regulation of human breast Cancer
by the long non-coding RNA H19. Int J Mol Sci. 2017;18(11):2319. https://
doi.org/10.3390/ijms18112319.

56. Sun Z, Zhang C, Wang T, Shi P, Tian X, Guo Y. Correlation between long
non-coding RNAs (lncRNAs) H19 expression and trastuzumab resistance in
breast cancer. J Cancer Res Ther. 2019;15(4):933–40.

57. Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the
chemosensitivity of breast cancer cells via Wnt pathway and EMT process.
Onco Targets Ther. 2018;11:8001–12. https://doi.org/10.2147/OTT.S172379.

58. Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, et al. Lnc RNA H19
is associated with poor prognosis in breast cancer patients and promotes
cancer stemness. Breast Cancer Res Treat. 2018;170(3):507–16. https://doi.
org/10.1007/s10549-018-4793-z.

59. Liang WH, Li N, Yuan ZQ, Qian XL, Wang ZH. DSCAM-AS1 promotes tumor
growth of breast cancer by reducing miR-204-5p and up-regulating RRM2.
Mol Carcinog. 2019;58(4):461–73. https://doi.org/10.1002/mc.22941.

60. Zheng S, Li M, Miao K, Xu H. SNHG1 contributes to proliferation and
invasion by regulating miR-382 in breast cancer. Cancer Manag Res. 2019;
11:5589–98. https://doi.org/10.2147/CMAR.S198624.

61. Pei X, Wang X, Li H. LncRNA SNHG1 regulates the differentiation of Treg
cells and affects the immune escape of breast cancer via regulating miR-
448/IDO. Int J Biol Macromol. 2018;118(Pt A):24–30. https://doi.org/10.1016/j.
ijbiomac.2018.06.033.

62. Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR, et al.
Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl
Med. 2018;16(1):242. https://doi.org/10.1186/s12967-018-1611-7.

63. Biswas SK, Mantovani A. Macrophage plasticity and interaction with
lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–
96. https://doi.org/10.1038/ni.1937.

64. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-
induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S
A. 1975;72(9):3666–70. https://doi.org/10.1073/pnas.72.9.3666.

65. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of
tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and
therapeutic approaches. Cell Oncol (Dordrecht). 2020;43(1):1–18. https://doi.
org/10.1007/s13402-019-00489-1.

66. Yu M, Zhou X, Niu L, Lin G, Huang J, Zhou W, et al. Targeting
transmembrane TNF-α suppresses breast cancer growth. Cancer Res. 2013;
73(13):4061–74. https://doi.org/10.1158/0008-5472.CAN-12-3946.

67. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, et al.
Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B
and JNK. J Immunol (Baltimore, Md : 1950). 2005;175(2):1197–205.

68. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical
applications. Biochem Pharmacol. 2001;61(3):253–70. https://doi.org/10.1016/
S0006-2952(00)00529-3.

69. Bjørnland K, Bratland A, Rugnes E, Pettersen S, Johansen HT, Aasen AO,
et al. Expression of matrix metalloproteinases and the metastasis-
associated gene S100A4 in human neuroblastoma and primitive
neuroectodermal tumor cells. J Pediatr Surg. 2001;36(7):1040–4. https://
doi.org/10.1053/jpsu.2001.24735.

70. Wang G, Nikolovska-Coleska Z, Yang CY, Wang R, Tang G, Guo J, et al.
Structure-based design of potent small-molecule inhibitors of anti-apoptotic
Bcl-2 proteins. J Med Chem. 2006;49(21):6139–42. https://doi.org/10.1021/
jm060460o.

71. Squires H, Pandor A, Thokala P, Stevens JW, Kaltenthaler E, Clowes M, et al.
Pertuzumab for the neoadjuvant treatment of early-stage HER2-positive
breast Cancer: an evidence review group perspective of a NICE single
technology appraisal. PharmacoEconomics. 2018;36(1):29–38. https://doi.
org/10.1007/s40273-017-0556-7.

72. Nooshinfar E, Safaroghli-Azar A, Bashash D, Akbari ME. Melatonin, an
inhibitory agent in breast cancer. Breast cancer (Tokyo, Japan). 2017;24(1):
42–51.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhang et al. BMC Cancer          (2021) 21:918 Page 15 of 15

https://doi.org/10.1186/s12937-020-00581-5
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1038/nm.4306
https://doi.org/10.1093/jnci/djp082
https://doi.org/10.3389/fonc.2019.01325
https://doi.org/10.3390/ijms18112319
https://doi.org/10.3390/ijms18112319
https://doi.org/10.2147/OTT.S172379
https://doi.org/10.1007/s10549-018-4793-z
https://doi.org/10.1007/s10549-018-4793-z
https://doi.org/10.1002/mc.22941
https://doi.org/10.2147/CMAR.S198624
https://doi.org/10.1016/j.ijbiomac.2018.06.033
https://doi.org/10.1016/j.ijbiomac.2018.06.033
https://doi.org/10.1186/s12967-018-1611-7
https://doi.org/10.1038/ni.1937
https://doi.org/10.1073/pnas.72.9.3666
https://doi.org/10.1007/s13402-019-00489-1
https://doi.org/10.1007/s13402-019-00489-1
https://doi.org/10.1158/0008-5472.CAN-12-3946
https://doi.org/10.1016/S0006-2952(00)00529-3
https://doi.org/10.1016/S0006-2952(00)00529-3
https://doi.org/10.1053/jpsu.2001.24735
https://doi.org/10.1053/jpsu.2001.24735
https://doi.org/10.1021/jm060460o
https://doi.org/10.1021/jm060460o
https://doi.org/10.1007/s40273-017-0556-7
https://doi.org/10.1007/s40273-017-0556-7

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Data processing
	Intratumoral heterogeneity analysis
	Analysis of PAM50 subtypes at the single-cell level
	Analysis of the expression characteristics of lncRNAs in tumor cells
	Identification of lncRNA subtypes
	Identification of markers of lncRNA subtypes
	Enrichment analysis
	Survival analysis
	Candidate drugs for each lncRNA subtypes

	Results
	lncRNAs as better subtyping markers than PAM50
	Identification of new subtypes of breast cancer
	The lncRNA markers of new lncRNA subtypes
	Biological characteristics of lncRNA subtypes
	Survival validation based on TCGA patients
	Precision treatment for patients with multiple subtypes

	Discussion
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

