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Abstract

Background: Cutaneous squamous cell carcinoma (cSCC) often follows actinic keratosis (AK) and is the second
most common skin cancer worldwide. To reduce metastasis risk, it is important to diagnose and treat cSCC early.
This study aimed to identify hub genes associated with cSCC and AK.

Methods: This study used three datasets GSE45216, GSE98774, and GSE108008. We combined samples from the
GSE45216 and GSE98774 datasets into the new dataset GSE45216–98774. We applied a weighted gene co-
expression network analysis (WGCNA) to investigate key modules and hub genes associated with cSCC and AK. We
considered the hub genes found in both the GSE45216–98774 and GSE108008 datasets as validated hub genes. We
tested whether the expression of hub genes could predict patient survival outcomes in other cancers using TCGA
pan-cancer data.

Results: We identified modules most relevant to cSCC and AK. Additionally, we identified and validated seven hub
genes of cSCC: GATM, ARHGEF26, PTHLH, MMP1, POU2F3, MMP10 and GATA3. We did not find validated hub genes
for AK. Each hub gene was significantly associated with the survival of various cancer types. Only GATA3 was
significantly associated with melanoma survival.

Conclusions: We applied WGCNA to find seven hub genes that play important roles in cSCC tumorigenesis. These
results provide new insights that help explain the pathogenesis of cSCC. These hub genes may become biomarkers
or therapeutic targets for accurate diagnosis and treatment of cSCC in the future.
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Background
Cutaneous squamous cell carcinoma (cSCC) is the sec-
ond most common skin cancer after basal cell carcin-
oma, and in recent years has experienced increased
incidence. cSCC is prone to metastasis. The transition to
invasive cSCC has been reported to occur in 10% of di-
agnosed cases [1]. Frequent moderate chronic ultraviolet

irradiation exposure can cause cSCC. cSCC development
usually follows actinic keratosis (AK), a small, rough
raised area on the skin which is, in most cases, the pre-
cursor lesion of cSCC. To reduce metastasis risk, it is
important to diagnose and treat cSCC early; however,
there are no clinically useful biomarkers for cSCC yet.
The pathogenesis of cSCC involves multiple genetic al-

terations that may dysregulate cell function. Recent
genome-wide association studies from patients identified
several loci associated with cSCC, including
pigmentation-related loci [2, 3]. Many studies have
attempted to understand the mechanism of cSCC by
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comparing cSCC and normal samples through differen-
tial gene expression analysis. These studies found differ-
entially expressed genes (DEGs) involved mainly in cell
division, cell cycle, apoptosis, inflammation, and epider-
mal differentiation [4–6].
Weighted gene co-expression network analysis

(WGCNA) consists of constructing weighted correlation
networks to identify high correlations between key mod-
ules and clinical traits. Also, WGCNA can measure rela-
tionships between modules and genes, even ranking
genes within modules. It is, therefore, a useful tool to
perform association analyses of gene sets with diseases
and identify candidate hub genes [7, 8]. Cancer research
has extensively used WGCNA [9]. A study on pancreatic
ductal adenocarcinoma using WGCNA identified 5
modules and found 10 hub genes that may indicate a
poor prognosis [10].
In this study, we applied this method to identify key

modules and hub genes associated with cSCC and AK.
We also tested whether the expression of hub genes
could predict survival outcomes in other cancers using
TCGA pan-cancer data.

Methods
Data collection
The flow chart in Fig. 1 illustrates the procedures used
in our study. We obtained the normalized, scaled, and
pre-processed array data for cSCC from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/). The
GSE45216 dataset has 30 cSCC samples and 10 AK sam-
ples. The GSE98774 dataset has 18 AK samples and 36
normal samples. We pooled samples from the GSE45216
and GSE98774 datasets. We applied Combat over
GSE45216 and GSE98774 to correct for batch effects
[11]. The combined dataset, named GSE45216–98774,
contained 30 cSCC samples, 28 AK samples, and 36 nor-
mal samples. The GSE108008 dataset consists of 10
cSCC samples, 10 AK samples, and 10 normal samples.
These two datasets, GSE45216–98774 and GSE108008,
would be used for the subsequent analysis, respectively.
The results of the analysis were mutually verified.

Weighted gene co-expression network analysis
We constructed gene co-expression networks using the
WGCNA package of R [12]. First, we removed unex-
pressed genes based on the expression profile and calcu-
lated the variance for each gene. We selected the genes
with standard deviations in the top 50% for further ana-
lysis. Some samples were distant, and we excluded out-
liers based on cluster distance. To construct a weighted
gene network, we set the soft threshold power β to five
for GSE45216–98774 and six for GSE108008, which
were the lowest power based on a scale-free topology
[13]. After constructing a scale-free network, we

transformed the expression matrix into an adjacency
matrix and a topological matrix. On the basis of the
topological overlap measure, we used the average-
linkage hierarchical clustering method to cluster genes
and set the minimum number of genes per module to
30. We set the threshold for similar module combina-
tions to 0.25. After identifying gene modules using dy-
namic shear, we calculated module eigengenes (MEs, the
first principal component of one module), and then clus-
tered modules and merged closer modules into new
modules based on height = 0.25. To identify associations
between modules and clinical characteristics, we plotted
a heat map of modules-characteristics relationship. We
selected genes in the most significant module for subse-
quent analysis.

Functional enrichment analysis of network module genes
To analyze the genes in modules at the functional level,
we performed Gene Ontology (GO) [14] and Kyoto
Encyclopedia Gene and Genomes (KEGG pathway) [15]
enrichment analyses using the cluster-Profiler package
[16]. We identified overrepresented GO terms and
KEGG pathways. We chose 0.05 as the threshold for the
false discovery rate (FDR) adjusted q-value.

Analyses of DEGs
We identified the DEGs using the limma package [17].
We fitted a linear model to each gene and assessed the
expression differences using empirical Bayes moderated
t-statistics. We estimated the FDR adjusted q-value. Stat-
istical significance for differential expression was set to
q-value < 0.05, coupled with a |log2 fold change
(log2FC)| > 1.

Identification of hub gene and validation
We used the intersecting genes between the most
relevant module and DEGs for hub gene analysis.
Hub genes are a class of highly connected genes
within a module and are significantly associated with
biological function [18]. In this study, we defined
genes with high module membership (MM) (|cor.-
weighted| > 0.8) as hub genes. We considered hub
genes present in both GSE45216–98774 and
GSE108008 as validated hub genes.

Hub gene expression in pan-cancer
TCGA pan-cancer data, including RNA-Seq (RNAseq-
FPKM) and clinical data, were downloaded from xena
browser (https://xenabrowser.net/datapages/) [19]. The
TCGA pan-cancer data include 33 cancer types, and
they are adrenocortical carcinoma (ACC), bladder
Urothelial Carcinoma (BLCA), breast invasive carcin-
oma (BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), cholangio
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Fig. 1 Flow diagram of the whole analysis procedure
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carcinoma (CHOL), colon adenocarcinoma (COAD),
lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell car-
cinoma (HNSC), kidney chromophobe (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papil-
lary cell carcinoma (KIRP), acute myeloid leukemia
(LAML), brain lower grade glioma (LGG), liver hepa-
tocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC),
mesothelioma (MESO), ovarian serous cystadenocarci-
noma (OV), pancreatic adenocarcinoma (PAAD),
pheochromocytoma and paraganglioma (PCPG), pros-
tate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular
germ cell Tumors (TGCT), thyroid carcinoma
(THCA), thymoma (THYM), uterine corpus endomet-
rial carcinoma (UCEC), uterine carcinosarcoma
(UCS), and uveal melanoma (UVM). Comparison of
gene expression between the normal samples and tu-
mors was performed in 21 cancer types which had
more than three associated adjacent normal samples
using Wilcox statistical test. Statistical significance for
differential expression was set to P < 0.05, coupled
with a |(log2FC)| > 1.

Association of hub gene with patient overall survival in
pan-cancer
To investigate the association between hub genes and
patient overall survival, all patient tumor samples were
used in a survival analysis. Patients were stratified into a
high-level group or a low-level group according to the
median expression level, and the Kaplan–Meier method
was used to analyze survival. P < 0.05 indicates signifi-
cant differences.

Results
A weighted gene co-expression network
We identified a total of 26 modules in the GSE45216–
98774 dataset and highlighted these separately with dif-
ferent colors. We calculated correlations between mod-
ules and clinical characteristics, as shown in Fig. 2a.
According to the correlation between MEs and charac-
teristics, module 5 was the most relevant for cSCC. This
module contained 1742 genes (Supplementary Table 1).
Module 23 was the most relevant for AK and included
31 genes (Supplementary Table 2). Module 9 was the
most relevant for normal samples and included 352
genes (Supplementary Table 3).
We identified a total of 12 modules in the GSE108008

dataset and highlighted them separately with different
colors. We calculated the correlations between modules

Fig. 2 Identification of modules associated with cSCC, AK and normal samples. a Heatmap of the correlations between relevant modules and
clinical characteristics for the GSE45216–98774 dataset. b Heatmap of the correlations between relevant modules and clinical characteristics for
the GSE108008 dataset
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and clinical characteristics, as shown in Fig. 2b. Module
5 was the most relevant for cSCC and had 249 genes
(Supplementary Table 4). Module 10 was the most cor-
related module for AK and contained 324 genes (Supple-
mentary Table 5). Module 7 was the most correlated
module for normal samples and included 525 genes
(Supplementary Table 6). Next, these modules would be
further analyzed.

Gene ontology and pathway enrichment analyses
GO and KEGG pathway enrichment analyses were per-
formed for genes in the module 5 (relevant for cSCC) of
the GSE45216–98774 dataset. The most overrepresented
GO terms are listed in Fig. 3a and Supplementary Table
7. They were associated with glutathione, collagen,
extracellular matrix and cytokine, among others. Ac-
cording to the KEGG database, the genes in module 5
were mainly enriched in the TNF signaling pathway,
glutathione metabolism, cytokine-cytokine receptor
interaction, hepatocellular carcinoma, colorectal cancer
and focal adhesion, among others (Fig. 3b and Supple-
mentary Table 8). GO and KEGG pathway enrichment
analyses were performed for genes in module 23 (rele-
vant for AK). No overrepresented GO term with an ad-
justed q < 0.05 was found. According to the KEGG
database, genes in the module 23 were mainly enriched

in one pathway of mineral absorption (Supplementary
Table 9). GO and KEGG pathway enrichment analyses
were also performed for genes in module 9 (relevant for
normal samples). Overrepresented GO terms were asso-
ciated with scavenger receptor activity, among others
(Supplementary Table 10). According to the KEGG data-
base, genes in module 9 were mainly enriched in Wnt
signaling pathway and complement and coagulation cas-
cades (Supplementary Table 11).
GO and KEGG pathway enrichment analyses were

performed for genes in module 5 (relevant for cSCC) of
the GSE108008 dataset. Figure 3c and Supplementary
Table 12 list the top overrepresented GO terms. Not-
ably, they were associated with collagen and extracellular
matrix, among others. According to the KEGG database,
genes in module 5 were mainly enriched in one pathway
of focal adhesion (Supplementary Table 13). We per-
formed GO and KEGG pathway enrichment analyses for
genes in module 10 (related to AK). The most overrep-
resented GO terms were associated with key enzymes in
controlling the synthesis of fatty acid and triglycerides,
among others (Fig. 3d and Supplementary Table 14). Ac-
cording to the KEGG database, genes in the module 10
were mainly enriched for fatty acid metabolism, steroid
biosynthesis and terpenoid backbone biosynthesis,
among others (Fig. 3e and Supplementary Table 15). We

Fig. 3 Functional enrichment for modules most associated with cSCC and AK. a Most overrepresented GO terms in module 5 (relevant for cSCC)
for the GSE45216–98774 dataset. b KEGG functional enrichment of genes in module 5 (relevant for cSCC) for the GSE45216–98774 dataset. c GO
functional enrichment of genes in module 5 (relevant for cSCC) for the GSE108008 dataset. d Most overrepresented GO terms in module 10
(relevant for AK) for the GSE108008 dataset. e KEGG functional enrichment of genes in module 10 (relevant for AK) for the GSE108008 dataset
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also performed GO and KEGG pathway enrichment ana-
lyses for genes in module 7 (related to normal samples).
The most overrepresented GO terms were associated
with sulfur compound binding, Wnt-protein binding,
extracellular matrix structural constituent and fibronec-
tin binding, among others (Supplementary Table 16).
According to the KEGG database, genes in module 7
were mainly enriched for Wnt signaling pathway (Sup-
plementary Table 17).
According to the results of KEGG pathway enrich-

ment for cSCC, focal adhesion was enriched in both
datasets. Focal adhesions are composed of adhesins
outside the cell membrane, integrins on the cell
membrane and cytoskeletal proteins in the cell. The
functions of focal adhesion are mechanical structure
function and signal transmission function. Abnormal-
ities in this pathway may be one of the causes of
cSCC pathogenesis. Wnt signaling pathway for normal
tissue was enriched in both datasets. Wnt signaling is
a key pathway in controlling skin development and
homeostasis, which indicates the importance of this
pathway for the maintenance of normal skin function.

As for AK, the two datasets were not enriched in
common pathways associated with AK.

Detection of DEGs
By comparing the cSCC and AK samples in the
GSE45216–98774 dataset, we identified a total of 1432
DEGs (Fig. 4a and Supplementary Table 18), including
722 down-regulated genes and 710 up-regulated genes.
By comparing AK and normal samples, we found 696
DEGs (Fig. 4b and Supplementary Table 19). Among
them, 377 genes were down-regulated and 319 genes
were up-regulated. We identified 599 relevant DEGs
present in all the comparisons, indicating that they may
play continuous roles in AK and cSCC development
(Fig. 4c).
By comparing cSCC and AK samples in the

GSE108008 dataset, we identified a total of 183 DEGs
(Fig. 4d and Supplementary Table 20), including 65
down-regulated genes and 118 up-regulated genes. By
comparing AK and normal samples, we found 52 DEGs
(Fig. 4e and Supplementary Table 21). Of these, 39 were
down-regulated and 13 were up-regulated. We identified

Fig. 4 Volcano plots and Venn diagrams reflecting significant differentially expressed genes (DEGs). a Comparison between cSCC and AK samples
from the GSE45216–98774 dataset uncovered 1432 DEGs. b Comparison between AK and normal samples from the GSE45216–98774 dataset
uncovered 696 DEGs. c Venn diagram showing the common genes in comparisons between the GSE45216–98774 dataset samples (cSCC vs AK
samples and AK vs normal samples). d Comparisons between cSCC and AK samples from the GSE108008 dataset uncovered 183 DEGs. e
Comparisons between AK and normal samples from the GSE108008 uncovered 52 DEGs. f Venn diagram showing the common genes in
comparisons between the GSE108008 dataset samples (cSCC vs AK samples and AK vs normal samples)
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46 relevant DEGs present in all the comparisons, indi-
cating that they may play continuous roles in AK and
cSCC development (Fig. 4f). Among them, 18 genes
were present in both the GSE45216–98774 and
GSE108008 datasets, including ACER1, ACSBG1, ACSL1,
APOD, CST6, CYB5A, DGAT2, ELOVL4, FAXDC2, IL24,
MET, MMP1, MMP10, MMP12, PLEK2, PSAPL1, PTHL
H and STC1. Thus, these genes have a relatively high
priority for future research.

Hub gene identification and validation
In the GSE45216–98774 dataset, 418 DEGs (from the
cSCC/AK samples comparison) were also present in
module 5 (relevant for cSCC). Ten DEGs (from the AK/
normal samples comparison) were also present in mod-
ule 23 (relevant for AK). One gene from module 23 and
51 genes from module 5 fulfilled the screening criteria of
hub genes in the co-expression network.
In the GSE108008 dataset, 21 DEGs (from the cSCC/

AK samples comparison) were also present in module 5

(relevant for cSCC). Thirty-two DEGs (from the AK/
normal samples comparison) were also present in mod-
ule 10 (relevant for AK). Sixteen genes from module 5
and 30 genes from module 10 fulfilled the criteria for
hub genes in the co-expression network.
We considered the hub genes present in both the

GSE45216–98774 and GSE108008 datasets as validated
hub genes. Finally, there were seven hub genes for cSCC,
including GATM, ARHGEF26, PTHLH, MMP1,
POU2F3, MMP10 and GATA3. We visualized the ex-
pression of these seven hub genes between cSCC and
AK samples by plotting heatmaps (Fig. 5a and b). How-
ever, no hub gene was validated for AK.

Hub gene expression in pan-cancer
To understand the expression of hub genes in other can-
cers, we investigated the expression levels of 7 hub genes
in primary patient tumors of 21 cancer types that have
at least 3 paired adjacent normal samples (Fig. 6 and
Supplementary Table 22). All hub genes except POU2F3

Fig. 5 Differentially expressed heatmaps of the seven validated hub genes between cSCC samples and AK samples. a Heatmap for the
GSE45216–98774 dataset. b Heatmap for the GSE108008 dataset
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showed significant differential expression in different
cancer types. However, the direction of the altered ex-
pression varies for each gene and for each cancer type.
Although PTHLH, MMP1 and MMP10 were mainly up-
regulated in the 21 cancer types, the rest of the members
GATM and ARHGEF26, were primarily down-regulated
with a few exceptions. GATA3 was both up-regulated
and down-regulated in different cancer types.

Association of hub gene with patient overall survival in
pan-cancer
We further tested whether the expression of hub genes
could also predict patient survival outcomes in other
cancers. For the survival analysis, all 33 cancer types
were tested with the Kaplan–Meier method. The results
showed that each of the hub genes was significantly as-
sociated with the survival of several cancer types

(Supplementary Table 23); however, the direction of the
association varied depending on the member queried
and the cancer type tested. More specifically, increased
expression of MMP1, MMP10 and PTHLH was mainly
associated with increased survival disadvantage. MMP1
predicted poor prognosis of patients with ACC, CESC,
KICH, KIRP, LIHC, LUAD, MESO, PAAD, SARC and
UVM. MMP10 predicted poor prognosis for patients
with LGG, LIHC, MESO and SARC. PTHLH predicted
poor prognosis for patients with KIRP, LGG, LIHC,
MESO, PAAD, THCA and UVM. In contrast, increased
expression of GATM, ARHGEF26 and POU2F3 was pri-
marily associated with survival advantage and predicted
better survival. GATM predicted good prognosis for pa-
tients with ACC, KIRC, SARC and UCEC. ARHGEF26
predicted good prognosis for patients with KIRC, OV
and PAAD. POU2F3 predicted good prognosis for

Fig. 6 Differential expression for hub genes in 21 different TCGA cancer types
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patients with STAD and THCA. The rest of GATA3
were associated with either survival advantage or disad-
vantage depending on the cancer types. In more detail,
increased expression of GATA3 predicted poor progno-
sis for patients with ACC, GBM, KIRP, LGG and UVM,
but predicted survival advantage for patients with BLCA,
SKCM and THYM. It is worth noting that only GATA3
was significantly associated with the survival of SKCM,
another skin cancer.

Discussion
cSCC is a common malignant tumor that can be fatal
if treatment is delayed. Clinical symptoms are not ob-
vious in the early stages of cSCC, but cSCC is hard
to cure in the late stages. Although new medical ap-
proaches have greatly improved the quality of life for
patients with cancer, the 5-year survival rate of meta-
static cSCC has not significantly improved. Studying
the occurrence of cSCC at the genomic level, there-
fore, can help develop effective measures to prevent
and inhibit cSCC metastasis. Here, we applied
WGCNA to identify key modules and hub genes asso-
ciated with cSCC and AK. We identified two modules
associated with cSCC (module 5 from the GSE45216–
98774 dataset and module 5 from the GSE108008
dataset). We considered hub genes present in both
the GSE45216–98774 and GSE108008 datasets as vali-
dated hub genes. We thus identified and validated
seven hub genes: GATM, ARHGEF26, PTHLH,
MMP1, POU2F3, MMP10 and GATA3. Three of them
(MMP1, MMP10, and PTHLH) were also DEGs be-
tween cSCC and AK samples and between AK and
normal samples, suggesting that they play continuous
roles in AK and cSCC development. We identified
two modules associated with AK in the GSE45216–
98774 and GSE108008 datasets. However, no hub
gene was validated for AK. These results provide new
insights that will help explain the pathogenesis of
cSCC, and the hub genes may become biomarkers or
therapeutic targets for future accurate diagnosis and
treatment of cSCC.
When we investigated the expression of hub genes in

pan-cancer, we found great heterogeneity of the levels of
hub gene expression among different tumor types. Al-
though MMP1, MMP10 and PTHLH were mainly up-
regulated in the 21 cancer types, the other two members
GATM and ARHGEF26, were primarily down-regulated.
We further tested whether the expression of hub genes
could also predict patient survival outcomes in pan-
cancer, and found that the direction of association is also
dependent on cancer type. In general, though, MMP1,
MMP10 and PTHLH were mainly associated with poor
prognosis, indicating a tumor promoting role in most
cancers. GATM, ARHGEF26 and POU2F3 were

associated with better survival, and were recognized as
tumor suppressors. The rest of GATA3 had an antagon-
istic association with survival depending on the cancer
types.
Many studies have reported that the seven hub genes

are cancer-related and play roles in tumorigenesis and
malignant phenotypes. GATM encodes a mitochondrial
enzyme that catalyzes the biosynthesis of guanidinoace-
tate, the immediate precursor of creatine. This gene is
mainly associated with renal cell cancer (RCC). A study
found that BC039389-GATM chimeric read-through
transcripts were up-regulated in RCC [20]. Assays per-
formed in RCC-derived cell lines also revealed that two
microRNAs targeted GATM for arginine metabolism
[21]. ARHGEF26 is a RhoG-specific guanine nucleotide
exchange factor that plays a role in promotion of micro-
pinocytosis. Glioblastoma tumors overexpress ARHG
EF26, which favors glioma invasion [22]. A novel signal-
ing pathway involving ARHGEF26 regulates invadopodia
disassembly in breast cancer cells [23]. The protein
encoded by PTHLH is a parathyroid hormone, which
regulates epithelial-mesenchymal interactions. PTHLH is
up-regulated in oral squamous cell carcinoma (OSCC),
head and neck squamous cell carcinoma (HNSCC),
colon cancer, and hepatocellular carcinoma (HCC).
PTHLT influences cell proliferation and cell cycle and is
highly associated with metastasis [24–26].
Matrix metalloproteases (MMPs) are intriguing genes

implicated in cancer progression, angiogenesis promo-
tion, metastasis, and avoidance of immune surveillance.
Many studies have noted that these genes are frequently
up-regulated in cancers [27]. It has been shown that
MMP1 is associated with initiating malignant tumor for-
mation leading to aberrant regulation of cell prolifera-
tion [28]. Some studies have implicated MMP10 in
colon and lung cancers. The MMP10 level can serve as a
marker of poor prognosis in patients with colon cancer
[29]. It is required for lung cancer stem cell mainten-
ance, tumor initiation, and metastatic potential [30].
POU2F3 is primarily expressed in the epidermis and
plays a key role in keratinocyte proliferation and differ-
entiation. Its encoded protein is also a candidate tumor
suppressor protein, and aberrant promoter methylation
of this gene may play a role in cervical cancer. POU2F3
has been reported to be used for recognizing different
subtypes of small cell lung cancer (SCLC) [31, 32].
GATA3 contains two GATA-type zinc fingers and is an
important regulator of T-cell development, which plays
an important role in endothelial cell biology. GATA3 is a
useful marker not only for mammary and urothelial but
also for renal and germ cell tumors and mesotheliomas
[33]. A recent genomic analysis of human breast cancer
has revealed a high-frequency of mutation in GATA3 in
luminal tumors [34]. In an immunohistochemical
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expression assay of GATA3 protein in a wide variety of
epidermal and cutaneous adnexal tumors, GATA3 ex-
hibited positive staining in most cases [35].
MMP1 and GATA3 have shown their demonstrated

links with cSCC. Invasive cSCC have significantly higher
MMP1 mRNA and protein levels than non-invasive
cSCC [36]. A report has shown that decreased GATA3
protein immunohistochemical staining is associated with
cSCC progression [37]. As for GATM, ARHGEF26,
PTHLH, POU2F3, and MMP10, which are relatively new
molecules, there are few reports on their role in cSCC.
Nevertheless, they play an important role in cSCC
tumorigenesis, with significant differences between cSCC
and AK. Understanding their roles in cSCC requires fur-
ther research.
Using two datasets containing normal, AK, and cSCC

samples, we identified and validated seven hub genes re-
lated to cSCC. We acknowledge that this study has some
limitations and shortcomings. First, the hub genes for
AK development were not verified. Second, the clinical
parameters and prognosis were not well analyzed for
cSCC samples due to the availability of data.

Conclusion
We applied WGCNA to construct co-expression net-
works and explore the gene expression in cSCC. We
found seven hub genes (GATM, ARHGEF26, PTHLH,
MMP1, POU2F3, MMP10 and GATA3) that played im-
portant roles in cSCC tumorigenesis. Among them,
three genes (MMP1, MMP10, and PTHLH) may play
continuous roles in AK and cSCC development. Abnor-
malities in the pathway of focal adhesion may be one of
the causes of cSCC pathogenesis. These seven hub genes
may provide a better understanding of tumorigenesis
mechanisms in patients with cSCC. Moreover, these hub
genes may serve as prognostic biomarkers and thera-
peutic targets in the future.
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