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Abstract

Background: Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of
approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway
in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in
surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM
surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely
perturbed in GBM. Additionally, since these cell surface proteins have ‘direct’ access to drugs, they are appealing
targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet.
Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could
potentially be developed as novel GBM biomarkers for therapeutic purposes.

Methods: We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408)
databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis
that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-
confidence GBM surfaceome signature.

Results: Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the
integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR,
ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an
independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high
expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the
Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature
suggesting potential drug repurposing.

Conclusions: In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be
biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in
future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM.

Keywords: Differentially expressed genes, Protein-protein interaction, Cell surface proteins, Network analysis, TCGA,
GTEx
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Background
Glioblastoma multiforme (GBM) is the most common
and lethal tumour of the central nervous system in
adults [1]. Despite decades of efforts to tackle this dis-
ease, the median survival rate of GBM patients is still
not improving [2]. GBM patients have an average life ex-
pectancy of 15 months post-diagnosis and the 5-years
survival rate is less than 3% [3]. The standard-of-care
GBM treatment generally consists of maximal safe surgi-
cal resection followed by radiotherapy and concomitant
chemotherapy. However rapid post-treatment relapse
and high intra-tumoral heterogeneity that could either
arise naturally during disease progression or treatments-
induced have made this disease intractable and more
challenging to treat [4, 5]. Therefore, there is a pressing
need for better and efficient diagnostic and therapeutic
strategies for this disease.
Temozolomide, an orally administered DNA-alkylating

drug, is the current and commonly used chemotherapy
agent to treat GBM in the clinic [6]. This combination
treatment of temozolomide and radiotherapy is referred
to as the Stupp regimen and it is widely used as the
standard-of-care for the treatment of GBM. The land-
mark study showed that the combination of radiotherapy
and concomitant chemotherapy with temozolomide im-
prove the patient’s prognosis compared to radiotherapy
alone (median survival of 14.6 months vs 12.1 months,
respectively) [6]. Alternative GBM treatment options
such as the VEGF-targeting monoclonal antibody Beva-
cizumab, other DNA alkylating agents such as lomustine
and carmustine implants, alternating electric field ther-
apy and the checkpoint blockade inhibitor have thus far
yielded low efficacy in treating GBM [2, 7, 8]. The Can-
cer Genome Atlas (TCGA) comprehensive GBM mo-
lecular characterizations have identified significant
genetic alterations in several important oncogenic signal-
ling pathways such as the RTK/Ras/PI3K (88%), p53
(87%) and pRB signalling pathways (78%) in GBM pa-
tients [9]. Several clinical trials are currently ongoing
that aim to target these altered GBM oncogenic signal-
ling pathways components using small molecule inhibi-
tors and/or monoclonal antibodies. However, the results
thus far were far from satisfactory [10]. This seems to
suggest that instead of using a single agent targeting a
specific component or pathway, novel treatments should
consider the administration of several inhibitors target-
ing multiple different pathways.
The cell surface proteins or surfaceome serve as an in-

formation gateway that integrates and transduces extra-
cellular cues into intracellular signalling cascades or vice
versa. Surfaceome also play important role in cell adhe-
sion and migration which are among the critical pro-
cesses during tumorigenesis. Indeed, aberrant
surfaceome expression and activity are frequently

observed in many cancer types and therefore are good
candidates for cancer diagnostic or biomarkers as well as
therapeutic targets. Recent evidence has demonstrated
that 56% of cell surface proteins are differentially
expressed in GBM which are also present in cerebro-
spinal fluid or plasma, suggesting their potential use as
biomarkers [11]. Of note, surfaceome expression is more
dynamic than intracellular proteins and they could be
sometimes cell type-specific [12, 13]. Mass spectrometry
analysis showed that the average surfaceome size in
brain cancer cell lines is higher than in other cancer
types [12]. Thus, surfaceome genes in GBM may hold
the key to understand GBM pathogenesis and drug re-
sponsiveness, in which targeting these genes may unravel
potential ‘druggable’ stage in GBM pathways.
A comprehensive overview of the GBM surfaceome

landscape has not been fully defined. Therefore, this
study aimed to characterize the GBM surfaceome genes
expression profile by unifying the two large RNA-Seq
datasets from the TCGA (GBM) and GTEx (normal
brain). We integrated and performed differential gene
expression analysis on these two datasets because of the
low number of normal brain tissue samples in the
TCGA database. A previously annotated surfaceome
gene set was employed to filter and identify the signifi-
cant differentially expressed surfaceome genes in GBM.
To further prioritize the high-confidence GBM cell sur-
face signature, we integrated our transcriptomics ana-
lysis with GBM tissues and cell surface proteomics, and
PPI hub gene analysis. Collectively, we identified a list of
upregulated surfaceome genes in GBM that include
CD44, PTPRJ and HLA-DRA in which their biological
relevance in supporting GBM pathogenesis could be
comprehensively investigated in future studies for the
development of novel GBM diagnostic/prognostic or
therapeutic strategies.

Methods
TCGA and GTEx data acquisition, normalization and
quality control
The analysis combined the TCGA-GBM and GTEx nor-
mal brain RNA-Seq read count data. The GBM RNA-
Seq gene raw read counts from TCGA were downloaded
from Genomics Data Commons Data Portal (https://
portal.gdc.cancer.gov). GTEx data were used for the nor-
mal brain tissues. The GTEx data used for the analyses
described in this manuscript were obtained from the
GTEx Portal on 29/03/19. We downloaded RNA-Seq
gene raw read counts (from the cortex, frontal cortex,
anterior cingulate cortex) from the GTEx portal (https://
gtexportal.org/home/datasets). This allows us to perform
the analysis of the differentially expressed gene on the
166 samples of GBM tumour from TCGA and 408 sam-
ples of normal brain tissues data from GTEx. The RNA-
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Seq raw read counts pre-processing steps involve are
data filtering and data normalization. The normalization
process of both data set was then performed by using
mean as gene-level normalization using log2-counts per
million where raw data are adjusted to account for fac-
tors that will prevent direct comparison of expression
measures and to safeguard the expression distributions
are similar for each sample across the whole experiment.
Data that unlikely to be informative or simply erroneous
data will be removed by using variance filter (less than
15) and low abundance (less than 4).

Cell surface gene set classification and analysis
The identified differentially expressed genes (DEGs) of
glioblastoma were classified into cell-surface genes set as
discussed in the main text (See Results 2.4). The classifi-
cation of the gene sets was performed based on the
mapping set of DEGs with this resource. Other genes,
which did not map to this resource were removed from
the final dataset.

Differential gene expression
DEGs analysis was performed using NetworkAnalyst
[14], a web-based application tool for visualizing mo-
lecular and entity interactions. This platform utilizes the
statistical method on data comparison from the R pack-
age, limma to identify genes whose expression is differ-
ent. Genes that have adjusted p-value < 0.05 and log2
fold change |2| were considered as statistically signifi-
cant DEGs.

Functional annotation and pathway analysis
The enrichment analysis of the identified glioblastoma
associated genes was performed using DAVID (https://
david.ncifcrf.gov/), a web-based tool for analyzing func-
tional gene analysis. The tool comprises databases from
various public resources for biological analysis. The en-
richment analysis such as GO and KEGG pathways were
performed with top results as per gene counts.

Identification of hub genes through PPI network analysis
A biological database for known and predicted protein-
protein interactions called IMEx interactome database
(https://www.imexconsortium.org) was used to construct
the protein-protein interaction (PPI) of the DEGs. The
network of interacting proteins was extracted and visual-
ized using NetworkAnalyst. The top 87-gene modules of
highly interacting gene clusters among the DEG were
found with default parameters. For the classified gene
sets, the PPI network was constructed and the network
topological parameters i.e. degree and betweenness cen-
trality were calculated.

Co-expression network of CD44
Co-expression analysis was performed using Graphia
Professional (https://kajeka.com/graphia-professional/),
previously known as BioLayout Express3D [15] using raw
read counts and then saved as an “.expression” file. This
contains a unique identifier for each row of data. Follow-
ing import into Graphia Professional, a pairwise Pearson
correlation matrix was calculated thereby performing a
gene vs. gene comparison of the expression profile of
each gene. All Pearson correlations where r > 0.7 were
saved to a “.pearson” file. Based on a user-defined
threshold of r > 0.75, an undirected network graph of the
data was generated. In this context, nodes represent in-
dividual genes and the edges between them represent
Pearson correlation coefficients above the selected
threshold (r > 0.75). CD44 was selected along with its
neighbour in the network, representing CD44 co-
expression partners. The class set of CD44 co-expressed
genes were visualized to compare the expression values
in this class set with genes in normal samples.

Results
Patients’ characteristics of TCGA and GTEx
We utilized the publicly available TCGA and GTEx
RNA-Seq database as our primary sources of GBM
tumour and normal brain tissue transcriptomic data, re-
spectively. We downloaded the datasets containing
RNA-Seq gene expression profiles and clinical informa-
tion of 166 patients from TCGA-GBM and 408 normal
brain tissues from the GTEx database. The combined
data were stratified based on sex, age and treatment as
shown in Table 1. Out of a total of 166 GBM cases, 104
cases (62.7%) were male, 56 cases (33.7%) were female
and 6 cases did not have sex specification. GBM is more
prevalent in patients aged ≥60 years old which accounts

Table 1 TCGA GBM patients’ clinical data

Cases

Sex Male 104 (62.7%)

Female 56 (33.7%)

Not reported 6 (3.6%)

Total 166

Age at diagnosis (Years old) < 40 9 (5.4%)

40–60 49 (29.5%)

> 60 71 (42.8%)

Not reported 37 (22.3%)

Total 166

Treatment Yes 52 (31.3%)

No 11 (6.6%)

Not reported 103 (62%)

Total 166
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for 42.8% of total cases in the TCGA GBM cohort. Fifty-
two patients (31.3%) have undergone treatments whereas
62.1% of cases did not have any treatment data. Unfortu-
nately, the clinical data for the GTEx normal brain sam-
ples are not publicly available.

Identification of differentially expressed genes in
glioblastoma
The analysis pipeline employed in this study is depicted
in Fig. 1. Briefly, the RNA-Seq raw read counts from the
two large compendiums, TCGA and GTEx were utilized
to identify the differentially expressed genes between
GBM and normal brain tissues. Since most GBM cases
are generally found in the supratentorial region of the
brain such as the cerebral hemisphere [16], we only ex-
tracted the RNA-Seq profiles of this region namely the
cortex, frontal cortex, anterior cingulate cortex as per
GTEx description. We performed t-distributed stochas-
tic neighbour embedding (t-SNE) analysis to reflect the
directionality of transcripts expression among GBM
tumour and normal brain tissues read count values. The
t-SNE plot showed that all RNA-Seq profiles of all GTEx
cortex regions clustered together while the GBM RNA-
Seq profiles form a separate cluster, thus confirming dis-
tinct expression patterns between these groups (Fig. 2A).
In total, RNA expression data from 18,021 genes were
obtained from these combined TCGA and GTEx data-
sets but only 13,548 genes passed the quality control

check. By applying the cut-off criteria log2 fold change
|2| and adjusted p-value < 0.05, we identified 2381 genes
as significantly differentially expressed genes (DEGs) in
GBM, of which 648 genes were upregulated and 1733
genes were downregulated (Fig. 2B). The detailed infor-
mation of the differential gene expression analysis is
listed in Supplementary Table S1.

Functional enrichment analysis and classification of DEGs
The significant DEGs were then subjected to functional
enrichment analysis using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
tools to define their properties and putative biological
relevance in GBM. Interestingly, the GO cellular compo-
nent analysis of both upregulated and downregulated
DEGs showed enrichment of cell surface and
membrane-associated proteins (Supplementary Fig. S1A
and B). The KEGG pathway enrichment indicated that
the upregulated DEGs are involved in pathways related
to infectious diseases, pathways in cancer and cell adhe-
sion (Supplementary Fig. S1C). Downregulated genes
mainly involve in neuroactive ligand-receptor interaction
and major cellular signalling pathways (Supplementary
Fig. S1D).

Identification of GBM cell-surface antigen candidates
The DEGs were then further filtered and classified into
the surfaceome gene set as previously defined by

Fig. 1 Analysis pipeline to obtain the GBM predictive surfaceome markers applied from the initial TCGA GBM and GTEx data integration
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Bausch-Fluck et al. [13], Cunha et al. [17] and Lee et al.
[18]. These studies utilized different criteria and strin-
gency in curating the surfaceome gene list. From the
overall DEGs in GBM, we identified 395 common cell
surface genes within these three surfaceome definitions,
including 124 upregulated and 271 downregulated genes
(Supplementary Fig. S2A and Supplementary Table S2).
We further classified the surfaceome according to their
main subclasses, which are receptors, transporters, en-
zymes, miscellaneous and unclassified, as previously re-
ported by Almén et al. [19]. Among the defined
surfaceome subclasses, 42.8% of the significant differen-
tially expressed surfaceome in GBM belong to the recep-
tor subclass (Supplementary Fig. S2B). KEGG analysis of
the GBM-enriched cell surface proteins identified path-
ways related to immune defence and infectious disease
pathways while GBM-deficient cell surface genes are
enriched in pathways related to neuroactive ligand-
receptor interaction and major cellular signalling path-
ways (Supplementary Fig. S3A and B). These findings
are almost similar to the enrichment analysis of overall
DEGs in GBM (Supplementary Fig. S1C and D) suggest-
ing that surfaceome has significant roles in dictating
GBM cellular activities.

Identification of GBM cell-surface signature by integration
of proteomics and transcriptomics data analysis
Thus far, we have (i) classified the overall DEGs in GBM
using transcriptomics data and (ii) highlighted the differ-
entially expressed cell-surface genes in GBM. Even
though this transcriptomics analysis is very informative
for biomarker discovery, we aimed to add another layer
of analysis to select a more high-confidence cell surface
signature for GBM. To attain this, we integrated our
transcriptomics analysis data with the publicly available
proteomics data. This integration will validate the cell

surface genes prediction and eliminate the possible dis-
crepancy between the expression levels of mRNAs and
proteins due to post-transcriptional and post-
translational modifications. Thus, we gathered the pub-
licly available quantitative mass spectrometry analysis
data for both GBM tissues and cell lines. We postulated
that GBM tissues and cell lines might have different cell
surface repertoires and therefore it is important to strat-
ify between these two sources. Additionally, GBM cell
lines cell surface signature, as identified in this present
study, could be validated experimentally in future func-
tional studies.
Mass spectrometry analysis of five GBM cell lines re-

vealed the upregulation of EGFR, CD44, PTPRJ,
SLC1A5, F2R, and TSPAN6 proteins in these samples
[12], whereby the expression level of these proteins was
in concordance with our transcriptomics data analysis
(Fig. 3). For tissue proteomics, we found several studies
that performed comparative GBM vs. normal brain

Fig. 2 Identification of global differentially expressed genes in GBM. (A) t-SNE plots showing the GBM and GTEX data cluster. (B) Volcano plot of
the differentially expressed genes in GBM versus normal brain tissues. Genes that are significantly dysregulated in GBM versus GTEx (log2 fold
change |2|) were highlighted in red (downregulated) and green (upregulated)

Fig. 3 Integration of TCGA GBM transcriptomics, GBM tissues
proteomics and cell lines proteomics data
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tissues proteome profiling [11, 20–23]. However, some
of these studies either identified only a limited number
of proteins or the data are not downloadable. Only one
study by Polisetty et al. has identified a large number of
proteins in their proteome profiling study that included
1834 high-confidence membrane proteins with more
than 2-fold change [11]. We, therefore, used this dataset
where we performed an integrative analysis with our an-
alyzed transcriptomics data and identified 10 overlapped
genes, MRC2, FCGR3A, HLA-DRA, CD44, CD74, MSR1,
CD163, EGFR, ITGB2, PTPRZ1 (Fig. 3). The mRNA ex-
pression levels correlated with the protein expression
levels except for the PTPRZ1 where the mRNA levels
showed upregulation while proteomics data showed
downregulation (Supplementary Table S3 and S4). In
total, there are 14 genes from the combined tissues and
cell lines proteomics that overlapped with our tran-
scriptomics data (Fig. 3). It is important to note that
proteins identification in mass spectrometry can be lim-
iting due to protein isolation methods, proteins solubil-
ity, and other intrinsic variations that affect the proteins
abundance as well as the sensitivity and detection cap-
ability of the MS instrumentation [24, 25]. Thus, these
limitations may underestimate the results of transcripto-
mics prediction and proteomics discoveries.

Surfaceome protein-protein interaction network cluster
analysis and prioritization of high-confidence GBM cell
surface markers
We set out to further analyze the GBM-enriched cell
surface markers using protein-protein interaction (PPI)
network analysis. This is to better understand the inter-
play between the cell surface genes within the identified
DEGs as well as with other genes. More importantly, this
would enable us to further select the genes that are
highly interconnected from the integrated proteomics
and transcriptomics analysis. Network analysis of the
identified differentially expressed cell surface protein
genes was performed using NetworkAnalyst [14] to de-
termine the relationship between genes according to the
network topological parameters such as degree and be-
tweenness. These parameters reflect the role and prop-
erty of proteins within the network. The nodes and
edges in the PPI network represent the proteins and
their interactions, respectively. The GBM-enriched cell
surface proteins network contains 1321 nodes and 1767
edges interactions based on a number of validated fea-
tures including functional experiments, co-expression
analysis, text mining, neighbourhood, gene fusion and
databases (Fig. 4A). We identified 87-gene modules of
clusters and the top cluster genes with more than 30

Fig. 4 Prioritization of 6 high-confidence GBM surface marker genes. (A) Protein-protein interaction network analysis of the significantly
upregulated GBM surfaceome genes. (B) Venn diagram showing the genes that are overlapped between the PPI network and transcriptomics-
proteomics data integration analysis. (C) Expression of the 6 high confidence surface markers on the basis of GBM cell microenvironment
extracted from scRNA-seq data [26]
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interactions include VCAM1, EGFR, TGFBR1, CD44,
NGFR, ITGB2, DCC, PTPRJ, ANBCA1, HLA-DRA, CCR5
and CSF1R (Fig. 4A and Supplementary Table S5). Vas-
cular Cell Adhesion Molecule 1 (VCAM1) has the high-
est interacting cluster as it was found to have 426
degrees with a 422,712.18 betweenness score. We subse-
quently mapped the 14 genes identified from the inte-
grated transcriptomics and proteomics data analysis (Fig.
3) with the top genes that have at least 20 interactions
from the PPI network analysis. We found 6 genes that
were in common between these two datasets which rep-
resent the high-confidence GBM predictive surfaceome
markers (Fig. 4B). It is important to highlight that our
analysis thus far integrated multi-OMICS data from bulk
samples. It is known that GBM suffers from inter and
intra-tumoural heterogeneities that contribute to the
emergence of several molecular subtypes [26–28].
Single-cell RNA-sequencing (scRNA-seq) corroborated
that the co-existence and interaction between different
cells population within the GBM microenvironment
drive the GBM cells pro-oncogenic cellular programs.
To examine this, we integrated our analysis with the
scRNA-seq data containing 24,131 cells from adult and
pediatric GBM patients [26]. The study further stratified
the cells within the GBM microenvironment into macro-
phages, oligodendrocytes, T-cells and malignant cells
(Supplementary Fig. S4). Of the identified 6 high-
confidence cell surface markers, only EGFR was strongly
expressed in the malignant GBM cells, while the other
genes were strongly expressed in the macrophages (Fig.
4C).

Validation of high-confidence GBM signature gene and
survival-expression correlation analysis
Next, we validated the expression profiles of the identi-
fied 6 high-confidence cell surface markers using an in-
dependent database, Gene Expression Profiling
Interactive Analysis (GEPIA) [29]. GEPIA also combines
the TCGA and GTEx gene expression data that were
processed from raw reads count and unified using its
own pipeline. In line with our findings, the identified
GBM cell surface signature genes were confirmed to be
significantly upregulated in the GBM GEPIA database
(Supplementary Fig. S5A – F). To investigate whether
the expression level of these signature genes would
modulate/influence GBM patients’ prognosis, we first
performed the overall survival analyses on GBM patients
who had high or low expression of each of these 6 genes
(Supplementary Fig. S6A – F).
However, there were no significant differences in the

overall survival between patients who had high or low
expression of these 6 individual prioritized genes. Since
GBM patients have a low overall survival rate (average <
2 years’ survival post-diagnosis), we postulated that it

would be more appropriate to look at the disease-free
survival endpoint rather than the overall survival. More-
over, the overall survival endpoint is more suited for a
longer follow-up period (typically 5 years) for the data to
be meaningful [30]. Hence, we examined the disease-free
survival profile of the GBM patients in a similar fashion.
We found that high expression of CD44, PTPRJ and
HLA-DRA were significantly correlated (p < 0.05) with
poor disease-free survival in GBM patients (Supplemen-
tary Fig. S7A – S7F).
In addition to performing survival analysis on the indi-

vidual gene, we also assessed whether combining the
level of all 6 GBM signature genes as a group could pre-
dict the GBM patients’ overall survival and disease-free
survival. We observed that there was no statistically sig-
nificant difference in the overall survival and disease-free
survival between patients who had high expression and
low expression of the signature group (Supplementary
Fig. S8A – B). Interestingly, by combining only CD44,
PTPRJ and HLA-DRA in the gene signature, we found
that subjects with high expression of this signature
group had significantly poor disease-free survival (p <
0.0084) compared to patients who had low expression of
these genes (Supplementary Fig. S9). However, there was
still no significant difference in the overall survival be-
tween GBM patients in this signature group (Supple-
mentary Fig. S9).

Co-expression network of CD44
CD44 is a transmembrane receptor and has multifaceted
functions in both normal and disease physiology.
OMICS studies have identified CD44 to be overex-
pressed in many types of cancer including glioblastoma
[31, 32]. Based on our analysis, CD44 seems particularly
important as it can be both identified in transcriptomics
and proteomics-based approaches, among the top hub
gene and whose high expression correlated with poor
disease-free survival. In addition, scRNA-seq identified
CD44 was enriched in mesenchymal-like cell state in
GBM population, and orthotopic xenografts of these
CD44-enriched fractions in immunocompromised mice
was able to initiate GBM [26]. We performed a co-
expression network analysis to further interrogate its as-
sociation with other genes using our transcriptomics.
The nodes represent in the network analysis represent
genes, while the edges represent Pearson correlation
above r > 0.75. The neighbouring genes connected to
CD44 was extracted and shown in Fig. 5A. There are 27
genes in this complex connected to CD44. Among the
highly correlated genes are ELK3, CLIC4, GALNT2,
TNC, and VIM. All genes in this CD44 co-expression
cluster are highly expressed in GBM compared to nor-
mal brain samples (Fig. 5B), further corroborating the
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biological relevance of CD44 in supporting GBM
pathogenesis.

Identification of drugs targeting GBM signature and CD44
network
We next determined whether there are any clinically ap-
proved drugs targeting the identified high confidence
GBM cell surface markers (Supplementary Fig. S4) and
components of the constructed CD44 co-expression net-
work (Fig. 5A). To achieve this objective, we utilized the
Drugbank database (https://go.drugbank.com/) and our
searches yielded several approved drugs that can be po-
tentially effective or repurposed to target CD44, EGFR,
C1R, CALR and TNFSR1A (Table 2). Hyaluronic acid,
for example, is a clinically approved ligand for CD44 and
this drug has been administered in the clinic to treat dis-
eases such as osteoarthritis [33]. Excessive hyaluronic
acid administration has been demonstrated to inhibit
tumour growth, possibly by impeding cell-cell

interaction [34]. Besides, the use of nanomaterials to en-
hance the efficiency of hyaluronic acid delivery for can-
cer therapy is also actively being explored [35, 36]. Thus,
the promising features of hyaluronic acid in mediating
enhanced drugs or genes delivery to cancer cells via the
overexpressed CD44 receptor could potentially be ap-
plied and developed for novel GBM therapeutic strat-
egies. In regards to EGFR, several inhibitors and
monoclonal antibodies have already been therapeutically
approved to target this protein due to its roles as an im-
portant driver of tumorigenesis in many cancer types
[37].
Moreover, of the 28 components of the CD44 co-

expression network (Fig. 5A), only C1R, CALR, and
TNFSR1A have drugs that can modulate them (Table 2).
For instance, 3 drugs can be used or repurposed to tar-
get C1R. The pharmacological activity of Palivizumab to
bind the C1R subcomponent is under investigation,
whereas the conestat alfa and human C1-esterase

Fig. 5 CD44 gene co-expressed network analysis. (A) CD44 gene co-expressed network with Pearson correlation value, r > 0.75. Nodes represent
genes and edges are coloured on a sliding scale according to the strength of the correlation (red, r = 1.0 and blue, r = 0.75). (B) Histograms of
CD44 co-expression cluster from (A) showing the average expression of genes on GBM tumour (red bar) and normal (yellow bar)

Table 2 Available approved drugs to target the identified GBM molecular signature and CD44 co-expression network

Gene Approved drugs

CD44 Hyaluronic acid

EGFR Cetuximab, Gefitinib, Erlotinib, Lapatinib, Panitumumab, Lidocaine, Vandetanib, Afatinib, Necitumumab, Osimertinib, Neratinib, Brigatinib,
Foreskin keratinocyte, Fostamatinib, Dacomitinib, Zanubrutinib

C1R Palivizumab, Conestat alfa, Human C1-esterase inhibitor

CALR Tenecteplase, Antihemophilic factor, Melatonin, Lonoctocog alfa, Moroctocog alfa

TNFS
R1A

Tasonermin
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inhibitor can directly target the C1R subcomponent and
disrupt the complement system activation.

Discussion
The surfaceome comprise cellular frontiers that permit/
inhibit signal transduction as well as playing important
roles in modulating cells proliferation, migration and in-
vasion, and cells-cells interaction. The surfaceome can
organize itself at a nanoscale resolution [38]. This spa-
tiotemporal nanoscale organization could define the cell
identity and phenotypes, and capacity to communicate
with microenvironments such as the extracellular
matrix, growth factors, hormones and drugs. Due to
their accessibility on the cell membrane, surfaceome
proteins are ideal candidates for biomarkers and often
targeted for drugs development. Over 50% of drugs cu-
rated in the DrugBank target the surfaceome. In addition
to their ubiquitous expression on the plasma membrane,
the extracellular stalks of these cell surface proteins can
be cleaved and released into the bloodstream, making
them suitable targets for blood-based diagnostics. Surfa-
ceome can also be draped with glycans during post-
translational modifications, which will mediate their
interaction with other proteins that reside on either the
same or neighbouring cells as well as with the microen-
vironments [38]. Dysregulated surfaceome expressions
and functions have been shown to promote tumour for-
mation and progression [39]. Therefore, scientists have
begun profiling and cataloguing surfaceome in various
types of cancers [40–43]. These cell surface proteins can
be elevated in cancer cells in which they can respond to
the increased level of growth factors, rendering cancer
cells to sustain their infinite proliferative capabilities [44]
and interact with the microenvironment that could ei-
ther directly or indirectly modulate the tumour growth
and metastatic capabilities [45].
The GBM transcriptomics dataset has been previously

utilized to uncover genes that support GBM pathogen-
esis as well as genes that have potential prognostic
values [46–48]. For example, Nicolasjilwan et al. ana-
lyzed the TCGA database to predict the survival of GBM
patients based on clinical features, MRI images genomics
alterations [46]. However, most TCGA GBM differential
genes expression analyses either relied on a low number
of normal brain tissue samples, in which the TCGA
GBM cohort contained only 5 normal brain tissues
RNA-Seq data, or the data were combined with the
GBM TCGA microarray data. This might create an im-
balance that would lead to inaccuracy or bias in the
downstream analysis. Hence, to increase the robustness
of this study in identifying the significantly upregulated
GBM surfaceome repertoire, we included the normal
brain tissues GTEx RNA-Seq database TCGA in our
analysis. On a similar scale, the GTEx studies have

performed genes expression profiling in more than
11,000 samples across multiple human tissues from
nearly 1000 healthy donors. We compared the TCGA
GBM and normal cortex GTEx RNA-seq data and iden-
tified 2381 significant differentially expressed genes in
GBM, in which 648 were upregulated and 1733 down-
regulated genes. In agreement with the previous GBM
proteomics profiling study [12], the GO cellular com-
partment analysis showed that most of the dysregulated
genes in GBM encode for the cell surface proteins, sug-
gesting the importance of cell surface proteins in GBM
pathogenesis.
Of the 2381 significant DEGs in GBM, 395 genes en-

code for cell surface proteins, in which 124 and 271
genes were found to be significantly upregulated and
downregulated, respectively. Interestingly, receptor sub-
class was the predominant dysregulated genes in GBM,
suggesting the crucial roles of cell surface receptors in
supporting GBM pathogenesis. This was indeed in line
with several studies reporting the implications of cell
surface receptors dysregulation in the pathogenesis of
many cancer types [49]. For this reason, the develop-
ment of cancer treatment strategies has been revolved
around targeting the cell surface receptors such as the
receptor tyrosine kinases (RTKs) [50] and G protein-
coupled receptors (GPCRs) [51]. Therefore, targeting the
cell surface proteins particularly the receptor subclass
could potentially be further explored as novel GBM
therapeutic options.
Robust cancer biomarkers are those that could be re-

producibly identified by multi-omics platforms or re-
ported in several different studies. To this end, we
integrated the analyzed transcriptomics data with pub-
licly available GBM proteomics data to prioritize high-
confidence cell surface proteins. Also, due to post-
transcriptional and post-translational modifications, the
mRNAs expression level is sometimes not correlated
with their respective protein expression levels [52]. After
mapping the prioritized genes from the transcriptomics-
proteomics integrative analysis with the PPI network
analysis data, we identified 6 genes; HLA-DRA, CD44,
SLC1A5, EGFR, ITGB2, PTPRJ, whereby we considered
these genes as the high-confidence GBM predictive sur-
face markers. Previously integrated transcriptomics
based on bulk expression profiles suggested that GBM is
heterogeneous and can be clustered into at least three
subtypes namely pro-neural, classical; and mesenchymal
[28]. Recently, scRNA-seq analysis confirmed the intra-
tumoural heterogeneity of GBM in which it can exist in
multiple states with distinct cells and transcriptional
programs that can be dynamically transitioned into dif-
ferent subtypes [27]. Most of the identified 6-gene signa-
ture belongs to macrophage cell type while only EGFR is
specific to GBM (Fig. 4C and Supplementary Fig. S4).
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Although most of the hits are not GBM-specific genes,
these different cells are part of the GBM microenviron-
ment or tumour niche, which are equivalently important
in driving GBM pathogenesis. Hence, regulation of these
genes within the tumour microenvironment recapitu-
lates the cellular program, plasticity and genetic drivers
of GBM. Overall survival analyses revealed that there
was no significant difference in the overall survival be-
tween patients who had high and low expression of these
6 genes, either the genes were analyzed individually or
when combined. However, when looking at the disease-
free survival, patients who had high expression of CD44,
PTPRJ, and HLA-DRA, either individually or as a group,
had significantly poor disease-free survival (Supplemen-
tary Fig. 6 and 8B) compared to subjects with low ex-
pression of the genes. These findings indicate that these
3 genes, CD44, PTPRJ, and HLA-DRA, could potentially
be developed as GBM prognostic markers in the clinic.
In addition to identifying the already known GBM

drivers like CD44 and EGFR, our integrative analysis ap-
proach has also enabled us to identify potential novel
genes that have not either been reported or thoroughly
discussed in the context of GBM. For instance, within
the 6 GBM signature genes, ITGB2 has not been widely
associated with the pathogenesis of GBM. ITGB2 en-
codes for cell surface protein that is important in regu-
lating cell adhesion and cell-surface mediated signalling
[53]. Hence overexpression of this protein is relevant in
promoting cancer growth possibly by modulating cancer
cells adhesive and migratory properties, and the pro-
oncogenic signalling cascades. Though there are in-silico
and in-vitro studies that associated the ITGB2 as one of
the important genes in cancer, the exact mechanisms of
how this gene promotes GBM remains elusive and worth
to be investigated in the future [11, 54, 55]. Human
leukocyte antigen (HLA)-DRA is a classical major histo-
compatibility complex (MHC) class II molecule that
plays important role in immune responses modulation.
High expression of the HLA-DR gene family has been
associated with more aggressive tumour grade in gliomas
and poor prognosis [56, 57]. Nonetheless, the functions
of HLA-DRA in driving GBM growth has not been fully
elucidated.
PTPRJ gene is a member of the protein tyrosine phos-

phatase (PTP) family whose substrates include the RTKs
such VEGFR, PDGFR and EGFR [58]. Since the RTKs
pro-oncogenic properties are well-established in which
their activation largely depends on phosphorylation,
PTPRJ is thus deemed to function as tumour suppressor
proteins due to its function as a phosphatase that can
negatively regulate the signalling pathway. This was also
evidenced by the ectopic expression of PTPRJ in in-vitro
models that resulted in cell growth inhibition [59, 60]. In
contrast to these previous reports, we found that PTPRJ

expression was upregulated in GBM and led us to sug-
gest that PTPRJ might have a pro-oncogenic role in
GBM pathogenesis. To our knowledge, there have been
no previous reports linking PTPRJ expression and func-
tion with GBM pathogenesis. This notion of PTPRJ po-
tential ‘double-edged sword’ and GBM-specific pro-
oncogenic function needs to be investigated further.
SLC1A5, another hit target from our analysis, is a neu-
tral amino acid transporter in which its high expression
has been implicated in many cancer types including
GBM [61]. In GBM, SLC1A5 expression is under the
control of pro-oncogenic c-Myc protein but how this
transporter supports the tumour cells proliferation and
growth remain poorly understood [62].
As highlighted above, the identification of CD44 and

EGFR in this present study is expected because they
have been previously described as one of the key targets
for GBM [32, 63]. This validates the robustness of our
approach in the sense that not only our analysis identi-
fied several novel genes, but also the findings overlap
with previous studies. Since EGFR pro-oncogenic roles
have been widely implicated in many cancer types and
several drugs have been developed and clinically ap-
proved to target EGFR [37, 64, 65], we focused our ana-
lysis on CD44. The CD44 encodes for transmembrane
glycoprotein that serves as the receptor for hyaluronic
acid, a component of the extracellular matrix, and sev-
eral other ligands including osteopontin, fibronectin and
collagen [32]. The CD44 antigen has been implicated in
modulating tumorigenesis in many cancer types in
which high expression of this CD44 increases cancer
cells proliferation, motility and survival as well as pro-
moting cancer metastasis [66]. In GBM, high expression
of CD44 was identified in the proteogenomic profiling of
GBM tissues [23] and further classified as a GBM cell
surface antigen in a systematic analysis [31]. Interest-
ingly, this transmembrane glycoprotein can be cleaved
and secreted into the vasculatures, suggesting its poten-
tial to be developed as a diagnostic marker [67]. It has
been reported that the activation of CD44 by its ligand
promotes cancer stem cell-like phenotypes in GBM and
increased therapeutic resistance [68]. Consistent with
this, drugs targeting CD44 are currently in clinical trials,
and so far the results are promising in that CD44 inhib-
ition impede GBM cells growth [69]. Our co-expression
network analysis using graph-based analytics [15] dem-
onstrated that genes connected to CD44 were also highly
co-expressed in GBM compared to normal brain tissues,
suggesting that the CD44 signalling axis is important in
GBM tumorigenesis.
The currently approved therapies to treat GBM are far

from satisfactory and have remained unchanged for
more than a decade [70]. This includes the alkylating
agent temozolomide, which is the first line of drug used
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in treating GBM. Therefore, there is a need for novel or
alternative treatment strategies for GBM. Due to the up-
regulated expression of CD44 in GBM, drugs targeting
CD44 are currently undergoing clinical trials and the re-
sults are thus far promising in that CD44 inhibition im-
pedes GBM cells growth [69]. In addition to this, our
drug mapping analysis revealed hyaluronic acid as an ac-
tionable CD44 binding molecule. It is therefore appeal-
ing to investigate the activity and potential use of this
existing drug to treat GBM in the future, which has yet
to be comprehensively studied. Within the CD44 co-
expressed interactome, three additional targets already
have drugs that can modulate them namely the C1R,
CALR and TNFSR1A (Table 2). Based on our know-
ledge, the activity and efficacy of these drugs have not
been tested in any in-vitro or in-vivo GBM models yet.
Also, studying a combination of these available drugs
targeting our GBM signature or the CD44 co-expression
network could disrupt the aberrant hub gene interac-
tome and potentially enhance GBM treatment efficacy.

Conclusions
In summary, we identified GBM surfaceome by combin-
ing RNA-seq data. Through an integrative multi-OMICS
strategy, we highlighted 6 GBM surface-enriched genes
that could be important in driving GBM development.
Some of these genes can be targeted by clinically ap-
proved drugs for other diseases suggesting potential drug
repurposing. Additionally, further studies of these genes
could lead to potential GBM diagnostic/prognostic
markers or a therapeutic regimen to treat GBM.
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