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Abstract

Background: The more selective second-generation BTK inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the
first-generation BTKi lorutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL),
however, similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced
by these BTKi with distinct binding selectivity against BTK remain largely unknown.

Methods: AlamarBlue assays were performed to define cytotoxicity of BTKi against MCL cells, Jeko-1 and Mino.
Cleaved PARP and caspase-3 levels were examined by immunoblot analysis to study BTKi-induced apoptotic effects.
Biological effects of BTKi on MCL-cell chemotaxis and lipid droplet (LD) accumulation were examined in Jeko-1,
Mino and primary MCL cells via Transwell and Stimulated Raman scattering imaging analysis respectively. Enzyme-
linked immunoassays were used to determine CCL3 and CCL4 levels in MCL-cell culture supernatants. RNA-seq
analyses identified BTKi targets which were validated by quantitative RT-PCR (qRT-PCR) and immunoblot analysis.

Results: Acalabrutinib and Zanubrutinib induced moderate apoptosis in Ibrutinib high-sensitive JeKo-1 cells and
Ibrutinib low-sensitive Mino cells, which was accompanied by cleaved PARP and caspase-3. Such effects might be
caused by the stronger ability of Ibrutinib to upregulate the expression of pro-apoptotic genes, such as HRK
GADD45A, and ATM, in JeKo-1 cells than in Mino cells, and the expression of such apoptotic genes was slightly
changed by Acalabrutinib and Zanubrutinib in both JeKo-1 and Mino cells. Further, Acalabrutinib, Zanubrutinib and
Ibrutinib reduced MCL-cell chemotaxis with similar efficiency, due to their similar abilities to downmodulate
chemokines, such as CCL3 and CCL4. Also, these three BTKi similarly suppressed MCL-cell LD accumulation via
downregulating lipogenic factors, DGAT2, SCD, ENPP2 and ACACA without significant differences.
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MCL-cell chemotaxis and LD accumulation.

accumulation

Conclusion: BTKi demonstrated differential capacities to induce MCL-cell apoptosis due to their distinct capabilities
to regulate the expression of apoptosis-related genes, and similar biological and molecular inhibitory effects on
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Background

Mantle cell lymphoma (MCL) is defined as a highly ag-
gressive mature B-cell neoplasm in the WHO classifica-
tion [1]. Among the pathways supporting MCL-cell
survival, B-cell receptor (BCR) signaling plays a promin-
ent role [2]. Bruton tyrosine kinase (BTK), a key compo-
nent of BCR signaling, is an attractive target for the
treatment of B-cell malignancies, including MCL [3].
Ibrutinib is the first-class BTK inhibitor binding to Cys-
481 residue in the ATP binding domain of BTK irrevers-
ibly, and thereby impairing MCL-cell survival via inhibit-
ing BCR signaling. Ibrutinib could potently induce
apoptosis via inhibiting BCR signaling activated canon-
ical NF-«B signaling in MCL [4], or altering the expres-
sion of anti-apoptotic gene, MCL-1 [5]. Furthermore,
blockage of BCR signaling could reduce MCL-cell hom-
ing into microenvironment in lymphoid organs or bone
marrow and thereby inhibiting MCL-cell survival, which
was considered as the predominant action of BTKi [6].
The production of chemokines, CCL3 and CCL4, is in-
creased upon BCR activation in MCL [6], chronic
lymphocytic leukemia (CLL) [7] and diffuse large B cell
lymphoma (DLBCL) [8], and such effects can be im-
paired by Ibrutinib treatment, which also significantly
decreases chemokine receptor CXCR4 expression in
MCL [6] and CLL [9]. Recently, lipid metabolism in can-
cer cells has received increased interest for therapeutic
interventions and some tumor cells have prominent lipid
droplets, which may associated with the enhanced cell
viability, aggressiveness and chemotherapy resistance
[10]. It has been reported that BCR signaling activation
could increase the level of lipoprotein lipase (LPL), a
protein essential for fatty acid metabolism providing
cells with energy and survival advantage, which can be
impaired by Ibrutinib treatment via reducing LPL level
in CLL [11].

Acalabrutinib and Zanubrutinib are the second-
generation covalent BTK inhibitors binding to Cys-481
residue of BTK irreversibly with more selectivity [12,
13]. Similar with Ibrutinib, Acalabrutinib treatment in-
hibits the migratory capacity of CLL cells mediated by
tissue-homing chemokines, CCL3 and CCL4 [14, 15],
and induces CLL-cell apoptosis accompanied by cleavage
of PARP and caspase-3 via inhibiting the activation of
ERK and AKT [16]. Moreover, Acalabrutinib treatment
is associated with inhibition of fatty acid metabolism

induced by fatty acid synthase (FASN) downregulation,
which may trigger significant apoptosis of MCL [17] or
CLL cells [14]. Zanubrutinib could inhibit homing of
CLL cells through downregulating homing receptors
such as CXCR5 [18], and effectively disrupt AKT/mTOR
signaling and NF-kB function, leading to MCL-cell
apoptosis [19]. Furthermore, Zanubrutinib downmodu-
lates two metabolic enzymes involved in fatty acid syn-
thesis, FASN and Acetyl-CoA carboxylase 1 (ACC1),
which might potentially impair MCL-cell survival via
inhibiting lipid metabolism [19].

Although Ibrutinib, Acalabrutinib and Zanubrutinib
have similar biologic effects and comparable clinical re-
sponses, molecular mechanisms underlying their anti-
MCL activities might be differential due to their distinct
binding selectivity against BTK [12, 13]. In this study, we
performed transcriptome-wide RNA sequencing analyses
to identify the target genes of Ibrutinib, Acalabrutinib or
Zanubrutinib in MCL cells, by which addressed molecu-
lar mechanisms underlying the induction of MCL-cell
apoptosis and inhibition of MCL-cell chemotaxis and
LD accumulation induced by these three BTKi.

Methods

Cell culture and reagents

MCL cell lines, JeKo-1 and Mino, or HS-5 human stro-
mal cell line were obtained from ATCC, and cultured in
RPMI1640 or DMEM medium (Hyclone, Waltham, MA)
respectively, containing 10% fetal bovine serum (FBS;
GIBCO, Carlsbad, CA), 2 mM L-glutamine, 100 U/ml
penicillin and 100 pg/ml streptomycin. The cells with
passage number 6 were used for the experiments. Un-
treated specimens of bone marrow aspirates were ob-
tained from patients with MCL after they provided
informed consents, in compliance with the Declaration
of Helsinki, and approved by the Institutional Review
Board at both Beihang University and the First Affiliated
Hospital of Kunming Medical University. Mononuclear
cells were separated by Ficoll-Hypaque density centrifu-
gation, and primary MCL cells were isolated by the use
of anti-CD19 microbeads (#130-050-301, Miltenyi Bio-
tec), and total of 3 cases were tested in this research. Pri-
mary MCL cell cultures were maintained in RPMI 1640
medium containing 10% FBS, 2 mM L-glutamine, 100 U/
ml penicillin and 100 pg/ml streptomycin. All the cells
were maintained at 37 °C in a humidified atmosphere of
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5% CO,. Ibrutinib (HY-10997), Acalabrutinib (HY-
17600) and Zanubrutinib (HY-101474) were purchased
from MedChem Express (Shanghai, China).

Chemotaxis assay

MCL cells were serum-starved for 12 h and then treated
with or without each BTKi (2 uM) for 6 h. A total of 5 x
10° cells were seeded in the upper compartment of
Transwell culture polycarbonate insert with 6.5-mm
diameter and 5 pm of pore size (Corning). Cells were in-
cubated for 8h in serum free medium at 37 °C and 5%
CO, and the migration toward HS-5 conditioned
medium was analyzed by flow cytometry (FACScan) for
1 min under constant flow rate. The percentage of mi-
grating cells was calculated as the number of migrated
cells divided by total number of input cells.

RNA-seq analysis

BTKi treated (2 uM) and untreated cells were harvested
in Trizol reagent (Invitrogen) and total RNA extraction
operation was the same with that of qRT-PCR section.
Sequence libraries were generated and sequenced by
CapitalBio Technology (Beijing, China). Triplicate samples
of all assays were constructed an independent library,
followed by sequencing on an Illumina HiSeq sequencer
(Ilumina). Parameters for classifying significantly differen-
tially expressed genes (DEGs) are |log2FC| = 0.6 (FC: fold
change of expressions) in the transcript abundance and
q<0.05. KEGG pathway enrichment analysis was per-
formed for the DEGs using Goseq R package and KOBAS
3.0 software (Available online: http://kobas.cbi.pku.edu.
cn). KEGG pathway terms with p-value less than 0.05
were considered significantly enriched by target genes.
RNA-seq data are accessible at NCBI (BioProject acces-
sion number: PRINA608627).

ELISA quantification of CCL3 and CCL4 production

MCL cells were treated with or without BTKi (2 uM) for
48 h in the presence of anti-human IgM F (ab), (#2022—
01, Southern Biotech, Birmingham, AL), and CCL3
(#DMAO00) and CCL4 (#DMBO00) enzyme-linked im-
munoassay kits (R&D Systems, Minneapolis, MN) were
used to determine CCL3 and CCL4 protein concentra-
tions in the culture supernatants based on the manufac-
turer’s instructions.

Stimulated Raman scattering (SRS) imaging in cultured
cells

SRS imaging was performed on a femtosecond SRS
microscope, with laser beating frequency tuned to the
C-H stretching vibration band at 2845cm™', as de-
scribed previously [20]. No cell damage was observed
during imaging procedure. LD area in the fields of view
(n=3) obtained from each sample was quantified using
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Image]. Specifically, “Threshold” function was used to
select LDs in the cells due to their significantly higher
signal intensities compared to other cellular structures.
“Analyze Particles” function was then used to quantify
the area fractions of LDs in the whole image area, then
normalized to the cell number counted from the same
image.

Cell-viability assay

Cell viability was evaluated using AlamarBlue assay ac-
cording to manufacturer’s protocol (Bio-Rad, Serotec).
JeKo-1 and Mino cells were seeded in 96-well cell cul-
ture plates at 5 x 10* cells/100 pl/well (# =5). Alamar-
Blue solution (10 pul) was added to each well after cells
were treated with BTKi at dose of 0, 0.25, 0.5, 1, 2 and
5uM for 24, 48 and 72h respectively. Fluorescence
values were determined with a 560 nm excitation and
590 nm emission wavelengths after 3h incubation in
37°C. Cell-viability was calculated based on manufac-
turer’s instruction.

Quantitative RT-PCR (qRT-PCR)

MCL cells were treated with or without BTKi (2 uM) for
48h, and total RNA was extracted with TRIzol
(#15596018; Thermo Fisher Scientific, Beijing) and RNA
samples that meet following requirements were used in
subsequent experiments: RNA integrity number (RIN) >
7.0 and a 28S:18S ratio >1.8. To avoid genomic DNA
contamination, total RNA samples were treated with a
RNase-Free DNase Kit (Invitrogen) following manufac-
turer’s instructions and cDNA was synthesized from 2 pg
of total RNA using Superscript III First-strand Synthesis
System (#18080-051; Invitrogen, Beijing) according to
manufacturer’s instructions. qRT-PCR was performed
using PowerUp SYBR Green Mix (#00710493; Applied
Biosystems, Beijing). The primers used for qRT-PCR were
shown in Additional file 2: supplementary Table S1.

Immunoblot analysis

MCL cells were treated with or without BTKi (2 uM) for
24 h, and cell lysates were prepared using Pierce™ RIPA
buffer (#89900; Thermo Fisher Scientific) with Protease/
Phosphatase Inhibitor Cocktail (#5872; Cell Signaling
Technology) at 4°C and quantified using Pierce™ BCA
Protein Assay Kit (#23227; Thermo Fisher Scientific)
before applying to a 10% polyacrylamide gel and trans-
ferring to a polyvinylidene difluoride membrane
(#IPVHO00010) from Immobilon-P. Antibodies against
DGAT2 (#ab237613) and ENPP2 (#ab140915) were pur-
chased from Abcam. Antibodies against SCD (#2794),
ACACA (#3663), cleaved caspase-3 (#9661), cleaved
PARP (#5625) and GAPDH (#5174) were all obtained
from Cell Signaling Technology. Signals were detected
using SuperSignal West Femto Maximum Sensitivity
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Substrate (#34095; Thermo Fisher Scientific) and images
were acquired with Mini Chemiluminescent Imaging
and Analysis System (Sage Creation Science, Beijing,
China). Integrated optical density (IOD) of bands was
evaluated by densitometry and analyzed using Gel-Pro
Analyzer 4.0 software (Media Cybernetics, MD).

Statistical analysis

Statistical analysis was performed with GraphPad Prism
8.0 (GraphPad Software Inc.). Data were shown as
mean + SEM. Differences between two groups or among
multiple groups were determined by unpaired 2-tailed
Student’s t-test or by one-way ANOVA with Tukey’s
multiple comparisons test respectively. P-values less than
0.05 were considered significant.

Results

BTKi induced differential cytotoxicity against MCL cell
lines

We firstly aimed to compare the cytotoxic effectiveness
of Ibrutinib, Acalabrutinib and Zanubrutinib observed in
MCL. The peak plasma concentration of Ibrutinib,
Acalabrutinib and Zanubrutinib in patients treated with
these drugs is about 0.5uM [21, 22], 1.1 uM [16] and
1.4 uM [13] respectively, which can affect 100% occu-
pancy and BTK inhibition. Accordingly, MCL cell lines,
JeKo-1 and Mino, were treated with Ibrutinib, Acalabru-
tinib or Zanubrutinib individually at dose of 0, 0.25, 0.5,
1, 2 and 5uM for 24, 48 and 72h and measured cell-
viability using AlamarBlue assay (Fig. 1a), which showed
that Ibrutinib presented a stronger cytotoxic activity in
JeKo-1 cells than in Mino cells, and the cytotoxicity of
Acalabrutinib and Zanubrutinib were weak in both
JeKo-1 and Mino cells over time. Such cytotoxic effects
were accompanied by slight cleavage of caspase-3 and
PARP (Fig. 1b and Additional file 1: Fig. S1), which were
consistent with cytotoxic capacities of these three BTK
inhibitors.

RNA-seq identified apoptosis-related targets of BTKi

To understand the comprehensive mechanisms involved
in MCL-cell apoptosis, we analyzed differentially
expressed genes (DEGs) in Jeko-1 and Mino cells treated
with Ibrutinib, Acalabrutinib or Zanubrutinib, versus un-
treated cells, via whole-transcriptome RNA sequencing
(RNA-seq). The DEGs with |log2FC|>0.6 and g-value
<0.05 were identified. A total of 2664 and 2587 DEGs
were identified in JeKo-1 and Mino cells respectively.
The overall hierarchical clustered graph showed that
three repetitions of Ibrutinib, Acalabrutinib or Zanubru-
tinib treatment in JeKo-1 or Mino cells were clustered
together, which mean the reproducibility were fairly
good, and the differences between BTK inhibitor treat-
ment were identified as well (Additional file 1: Fig. S2a),
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which might be caused by the different off-target effects
of the three BTK inhibitors. The Venn diagram sets
showed the number of DEGs regulated by Ibrutinib,
Acalabrutinib or Zanubrutinib group in JeKo-1 or Mino
cells (Additional file 1: Fig. S2b): 1832, 662 and 1891
DEGs were identified in JeKo-1 cells, and 1879, 1546
and 1399 DEGs were identified in Mino cells.

KEGG enrichment analysis was used to perform a fur-
ther functional classification and pathway assignment of
DEGs regulated by Ibrutinib, Acalabrutinib or Zanubru-
tinib individually in JeKo-1 and Mino cells (Additional
file 1: Fig. S3). Among KEGG enrichment pathways,
DEGs involved in cell growth and death were of primary
interest, from which apoptosis-related DEGs were
screened. The numbers of these genes were shown in
Venn diagram, which revealed relationships between
each inhibitor in JeKo-1 and Mino groups (Fig. 2a). We
next analyzed the overlapping set of apoptosis-related
DEGs regulated by each BTK inhibitor in JeKo-1 or
Mino respectively, followed by generating intersections
of the DEGs in JeKo-1 and Mino (Fig. 2b), from which
critical pro-apoptotic genes, HRK, GADD45A and ATM,
were screened and validated by qRT-PCR. Obviously,
Ibrutinib was more able to upregulate such apoptotic
genes in JeKo-1 cells than in Mino cells, which might re-
sult in the more sensitivity of JeKo-1 cells to Ibrutinib
than Mino cells. Acalabrutinib and Zanubrutinib had
weak capabilities to change the expression of HRK,
GADD45A and ATM, which may explain their low-level
toxicities in both JeKo-1 and Mino cells (Fig. 2c). Such
results revealed novel target genes regulated by these
three BTK inhibitors, resulting in their distinct
apoptosis-inducing abilities in MCL.

RNA-seq identified chemotaxis-related target genes of
BTKi

Chemokines-activated BCR signaling facilitates cell mi-
gration (pseudoemperipolesis) beneath stromal cells
[23]. In the current study, conditioned medium from
HS-5 human marrow stromal cells induced migration of
JeKo-1, Mino and primary MCL cells, which was inhib-
ited by BTKi without significant differences between
drug treatments at 2 uM (Fig. 3a). To understand the
potentially ~distinct mechanisms underlying BTKi-
controlled biological processes including MCL-cell mi-
gration, KEGG enrichment analysis was used to perform
chemokine signaling pathway assignment of DEGs regu-
lated by Ibrutinib, Acalabrutinib or Zanubrutinib individu-
ally in JeKo-1 and Mino cells, which was included in the
immune system subcategory (Additional file 1: Fig. S3).
We then analyzed the overlapping set of chemotaxis-
related DEGs regulated by each BTKi in JeKo-1 or Mino
respectively, followed by generating intersections of the
DEGs in JeKo-1 and Mino, by which downregulated
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Fig. 1 BTKi had differential apoptotic effects on MCL cells lines. a BTK inhibitors reduce MCL cell-viability. JeKo-1 and Mino cells were treated with
Ibrutinib, Acalabrutinib or Zanubrutinib in a dose-dependent manner (0.25 uM, 0.5 uM, 1T uM, 2.5 uM, 5 uM) for 24, 48 and 72 h (n="5). The cell-
viability was determined by AlamarBlue assay. Data are shown as mean + SEM; ****P < 0.0001, as calculated using the Student’s t-test. b Cleaved
caspase-3 and cleaved PARP were increased in MCL cells, JeKo-1 and Mino, treated with Ibrutinib, Acalabrutinib or Zanubrutinib in a dose-
dependent manner (1 uM, 2 uM, 5 uM) for 24 h, which were examined by immunoblot analysis. GAPDH was used as loading control

chemotaxis-related genes were screened, including
CCL3L1, CCL3, CCL4, CCL4L2, CXCL16 and CXCRS
(Fig. 3b). Accordingly, we examined the levels of CCL3
and CCL4 in the supernatants of JeKo-1, Mino and pri-
mary MCL cells treated with or without BTKi individually
for 48 h in the presence of anti-human IgM F (ab),, and
the results indicated that these three BTKi significantly
suppressed the production of CCL3 and CCL4 with simi-
lar degree in MCL cells (Fig. 3c). These data suggested
that the three BTKi demonstrated similar abilities to
modulate chemotaxis-related genes, which may result in
their similar MCL-cell chemotaxis inhibition.

BTKi inhibited LD accumulation in MCL

Considering the critical role of LDs for MCL-cell sur-
vival, we next aimed to investigate the capability of BTKi
to block LD accumulation. Firstly, SRS imaging analysis
was performed to test the LD accumulation in primary
MCL cells treated with each BTKi for 24 h versus cells
treated with vehicle control, which revealed that these
three BTKi could significantly suppress LD accumulation
(Fig. 4a, b). Next, JeKo-1 and Mino cells were treated
based on the procedure shown in Additional file 1: Fig. S4,
and analyzed by SRS imaging. The results showed that
MCL cells cultured in 10% FBS media had abundant LDs,
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which diminished after serum-deprivation for 24 h unless
provided with 10% FBS again, however, treatment with
BTKi inhibited the capacity of FBS to stimulate the pro-
duction of LDs significantly (Fig. 4c, d).

RNA-seq identified LD accumulation related target genes

of BTKi

To reveal the molecular mechanism underlying BTKi-
inhibited MCL-cell LD accumulation, KEGG enrichment
analysis showed that BTKi could modulate the expres-
sion of some critical lipid metabolism-related DEGs
(Additional file 1: Fig. S3), whose number was shown in
Venn diagram (Fig. 5a). We then screened the overlapping
set of lipid metabolism-related DEGs regulated by each
BTKi in JeKo-1 or Mino respectively, followed by generat-
ing intersections of the DEGs in JeKo-1 and Mino (Fig.
5b), and four downregulated LD accumulation-related
genes, DGAT2, SCD, ACACA (ACC1) and ENPP2, were
selected and validated by qRT-PCR analysis (Fig. 5c¢) and
immunoblot analysis (Fig. 5d and Additional file 1: Fig.
S5). Since the inhibition of these four lipogenic genes
could initiate tumor cell apoptosis [24—27], such findings
may demonstrate novel mechanism underlying the anti-

survival effects of these three BTKi in MCL via impairing
lipid biosynthesis at least partially.

Discussion

BTK is a major kinase in BCR signaling pathway, which is
highlighted by the clinical effectiveness of irreversible
small-molecule BTKi, Ibrutinib, Acalabrutinib and Zanu-
brutinib. In this study, we made a parallel analysis of Ibru-
tinib, Acalabrutinib and Zanubrutinib to uncover their
potential similarities and differences in anti-survival effects
in MCL, since they have differential binding selectivity
against their common target, BTK, but have similar bio-
logic effects and comparable clinical responses. Our
MCL-cell viability data showed that Ibrutinib demon-
strated a high cytotoxic activity in JeKo-1 cells, but not in
Mino cells, which was consistent with previous findings
that JeKo-1was classified as an Ibrutinib-sensitive cell line,
while Mino was classified as an Ibrutinib-resistant cell line
[28]. Also, the sensitivities of both JeKo-1 and Mino cells
to Acalabrutinib and Zanubrutinib were low. In order to
explain the mechanism underlying such effects, RNA-seq
analysis followed by KEGG analysis were performed to
identify the critical upregulated pro-apoptotic genes and
downregulated anti-apoptotic genes controlled by each
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Fig. 3 BTKi inhibit chemotactic migration in MCL cells. a Chemotaxis of JeKo-1, Mino and primary MCL cells (n =3, primary MCL cells collected
from patient 1-3.) was measured by a Transwell assay measuring migration towards either medium or stroma-conditioned medium for 8 h. Data
are shown as mean + SEM; *P < 0.05; **P < 0.01, as calculated using the Student’s t-test. b Heatmap of chemotaxis-related DEGs regulated by
Ibrutinib, Acalabrutinib or Zanubrutinib in both JeKo-1 and Mino cells, versus control respectively. Red represents upregulation and blue indicates
downregulation. ¢ CCL3 and CCL4 levels were examined in the supernatants of JeKo-1, Mino and primary MCL cells (n =3, primary MCL cells
collected from patient 1-3.) treated with individual BTKi (2 uM) for 48 h compare to untreated cells in the presence of anti-human IgM F (ab),.
Data are shown as mean + SEM; **P < 0.01; ***P < 0.001, as calculated using the Student’s t-test

BTKi, and the data showed that Ibrutinib was more
powerful to upregulate pro-apoptotic genes, HRK,
GADD45A and ATM in JeKo-1 cells than in Mino cells. In
addition, Acalabrutinib and Zanubrutinib had low capaci-
ties to modulate the expression of such three apoptotic
genes in both JeKo-1 and Mino cells. Of note, these three
apoptosis-related genes identified in this study were well-
known in apoptosis signaling. GADD45A is associated
with DNA damage and is proapoptotic [29], and ATM, as
a tumor suppressor gene, plays a role in the initiation and/
or progression of MCL [30]. As a member of the pro-
apoptotic subgroup of BCL-2 family, HRK is an essential
initiators of apoptosis that can function as tumor suppres-
sors [31]. All of these findings could support the idea that
these genes play roles in mediating MCL-cell apoptosis in-
duced by BTK inhibitors, even though overall apoptotic
effects induced by BTKi were moderate in MCL.

Both Ibrutinib and Acalabrutinib have been shown to
decrease levels of CCL3 and CCL4, two critical chemo-
kines inducing migration or homing of leukemia cells, in

CLL-cell cultures and their separate clinical trials [14—
16, 32]. Zanubrutinib could inhibit homing of CLL cells
through downregulating CXCR5, a homing receptor me-
diating migration or homing and BCR signaling activa-
tion [18, 33]. However, regulatory impact of these three
BTKi on chemotaxis and chemotaxis-related genes in
MCL still need to be analyzed. Our study showed that
conditioned medium from HS-5 human marrow stromal
cells induced migration of MCL cells, which was inhib-
ited by Ibrutinib, Acalabrutinib and Zanubrutinib with-
out significant differences between drug treatments.
Consistent with these functional data, our results indi-
cated that Ibrutinib, Acalabrutinib and Zanubrutinib
similarly reduced the expression of CCL3, CCL4 and
CXCR5 via RNA-seq followed by KEGG analysis, and
the production of CCL3 and CCL4 was validated by
ELISA quantification, which did not show significant dif-
ferences between drug treatments as well. Except these
known chemotaxis-related target genes of BTKi, we also
found that Ibrutinib, Acalabrutinib and Zanubrutinib
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could similarly reduce the expression of CCL3LI,
CCL4L2 and CXCL16.

Since elevated LDs could enhance MCL-cell survival
[34], we detected whether these three BTKi could inhibit
pro-survival LD accumulation in MCL-cell via SRS im-
aging analysis, a label-free live-cell imaging technique for
testing intracellular components accumulation, including
LDs [35]. As expected, quantitative analysis of lipogenesis
at single-cell level via SRS imaging revealed that treatment
with BTKi significantly reduced the accumulation of LDs
in MCL. Based on the KEGG classification of RNA-seq
data, we found that BTKi treatment dramatically reduced
the expression of several pivotal lipogenic genes, DGAT?2,
ENPP2, SCD and ACACA (ACCI). DGAT?2 catalyzes the
final step in synthesis triglyceride, which is a major com-
ponent of LDs [36], and genetic deletion of DGAT2 was
lethal with knockout mice presenting severe and systemic

reductions in triglyceride [37]. SCD is a principal enzyme
responsible for fatty acid desaturation, which is critical for
growth, survival and tumorigenesis [25, 38]. ENPP2, also
known as Autotaxin (ATX), is always overexpressed in
many malignancies [39], including MCL [40]. Interest-
ingly, ATX catalyzes the extracellular biosynthesis of lyso-
phosphatidic acid (LPA), and LPA is responsible for
cancer cells growth and anti-cancer therapy resistance of
many cancer cells [27]. Combined with our findings show-
ing BTKi-associated ENPP2 downregulation, the down-
regulation of SCD might be caused by the reduction of
LPA levels at least partially, since LPA could stimulate
SCD expression and therefore accelerate the formation of
lipid droplets [41]. Besides, ACC]1, also known as ACACA,
controls de novo lipogenesis, whose chemical inhibition
suppresses lipogenesis and induces apoptosis in cancer
cells [26]. Previous study showed that Zanubrutinib could
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Fig. 5 RNA-seq identified LD accumulation related targets of BTKi. a Venn diagram showing the relationship between DEGs of three drug
treatment groups, which were involved in lipid metabolism. DEGs were analyzed by comparing Ibrutinib, Acalabrutinib or Zanubrutinib treatment
group with untreatment control group. b Heatmap of cell growth and death related DEGs regulated by Ibrutinib, Acalabrutinib or Zanubrutinib in
both JeKo-1 and Mino cells, versus control respectively. Red represents upregulation and blue indicates downregulation. ¢ Analysis of mRNA
expression of DGAT2, ENPP2, SCD and ACACA in MCL cells via gRT-PCR (n = 3), which were treated with Ibrutinib, Acalabrutinib or Zanubrutinib

(2 uM), and primary MCL cells collected from patient 1-3. Data are shown as mean + SEM; **P < 0.01; ***P < 0.001; ****P < 0.0001, as calculated
using the Student's t-test. d Analysis of protein expression of DGAT2, ENPP2, SCD and ACACA in MCL cells via immunoblot analysis, which were
treated with Ibrutinib, Acalabrutinib or Zanubrutinib (2 uM), and primary MCL cells collected from patient 1

downregulate the expression of ACACA in MCL [19], and
our study demonstrated that both Ibrutinib and Acalabru-
tinib downmodulated ACACA expression in MCL as well.
Importantly, inhibition of fatty acid synthesis, a crucial
step of LDs accumulation, triggers significant apoptosis in
MCL [17]. Accordingly, our data suggested that BTKi-
induced downregulation of DGAT2, ENPP2, SCD and
ACACA might result in LD accumulation inhibition,
which trigger modest MCL-cell death at least partially,
and such findings provide a new evidence that targeting
the lipid metabolism pathway might be a strategy to treat
MCIL, or other B-cell malignancies, which deserves further
studies.

Conclusions

BTKi differentially initiate MCL-cell apoptosis via modu-
lating distinct apoptotic target genes, and similarly in-
hibit MCL-cell chemotactic homing or LD accumulation
due to their similar capabilities to regulate chemotaxis
or LD accumulation related target genes.
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