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Elevated TYROBP expression predicts poor
prognosis and high tumor immune
infiltration in patients with low-grade
glioma
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Abstract

Background: Tyrosine protein tyrosine kinase binding protein (TYROBP) binds non-covalently to activated receptors
on the surface of various immune cells, and mediates signal transduction and cellular activation. It is dysregulated
in various malignancies, although little is known regarding its role in low-grade glioma. The aim of this study is to
explore the clinicopathological significance, prognostic value and immune signature of TYROBP expression in low-
grade glioma (LGG).

Methods: The differentially expressed genes (DEGs) between glioma samples and normal tissues were identified
from two GEO microarray datasets using the limma package. The DEGs overlapping across both datasets were
functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
STRING database was used to establish the protein-protein interaction (PPI) of the DEGs. The PPI network was
visualized by Cytoscape and cytoHubba, and the core module and hub genes were identified. The expression
profile of TYROBP and patient survival were validated in the Oncomine, GEPIA2 and CGGA databases. The
correlation between TYROBP expression and the clinicopathologic characteristics were evaluated. Gene Set
Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed by R based on the LGG data from
TCGA. The TIMER2.0 database was used to determine the correlation between TYROBP expression and tumor
immune infiltrating cells in the LGG patients. Univariate and multivariate Cox regression analyses were performed to
determine the prognostic impact of clinicopathological factors via TCGA database.
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Results: Sixty-two overlapping DEGs were identified in the 2 datasets, and were mainly enriched in the response to
wounding, focal adhesion, GTPase activity and Parkinson disease pathways. TYROBP was identified through the PPI
network and cytoHubba. TYROBP expression levels were significantly higher in the LGG tissues compared to the
normal tissues, and was associated with worse prognosis and poor clinicopathological parameters. In addition,
GSEA showed that TYROBP was positively correlated to neutrophil chemotaxis, macrophage activation, chemokine
signaling pathway, JAK-STAT signaling pathway, and negatively associated with gamma aminobutyric acid signaling
pathway, neurotransmitter transport, neuroactive ligand receptor intersection etc. TIMER2.0 and ssGSEA showed
that TYROBP expression was significantly associated with the infiltration of neutrophils, macrophages, myeloid
dendritic cells and monocytes. The infiltration of the M2 phenotype macrophages, cancer-associated fibroblasts and
myeloid dendritic cells correlated to worse prognosis in LGG patients. Finally, multivariate analysis showed that
elevated TYROBP expression is an independent risk factor for LGG.

Conclusion: TYROBP is dysregulated in LGG and correlates with immune infiltration. It is a potential therapeutic
target and prognostic marker for LGG.
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Introduction
Gliomas are the most common primary tumors of the
central nervous system, and are primarily composed of
glial cells [1]. Diffuse low-grade and intermediate-grade
gliomas (World Health Organization grades II and III),
hereafter designated as lower-grade gliomas (LGGs), in-
clude astrocytomas, oligodendrogliomas and oligoastro-
cytomas [2, 3]. LGG patients survive longer compared to
patients with higher-grade gliomas [4], with a survival
period ranging from 1 to 15 years [5]. However, it is usu-
ally recalcitrant to conventional treatment, and may even
progress to chronic impairment following radiotherapy
[6]. Hence, it is crucial to identify novel prognostic
markers of LGG in order to improve diagnosis and pre-
dict patient prognosis with greater accuracy.
Tyrosine protein tyrosine kinase binding protein

(TYROBP) binds non-covalently to activated receptors
on the surface of various immune cells, and mediates
signal transduction and cellular activation [7–9]. Studies
have demonstrated that DAP12 (also known as TYR-
OBP) may play a dual role in the activation and inhib-
ition of natural killer cells, myeloid cells, granulocytes,
monocytes and other cells. When activated, it can acti-
vate natural killer cells and other immune inflammatory
cells by activating PI3K-Akt, MAPK, PLCγ and its down-
stream signaling pathways. However, when inhibited, it
may also lead to the inhibition of Toll-like receptor me-
diated activation, thereby inhibiting relevant inflamma-
tory cells activation [10–12]. Besides, Qisheng Peng
et al. showed that DAP12 inhibit LPS signaling in mac-
rophages to prevent inflammation through physically
combined with DOK3 [13]. TYROBP is an established
oncogene for clear cell renal cell carcinoma and gastric
cancer [14, 15]. Kopatz et al. showed that microglia can
phagocytose glioma cells via the Siglec-h receptor for
apoptosis induction, which indicates an important role

of immune cell infiltration in glioma progression [16].
However, little is known regarding any potential bio-
logical function of TYROBP in glioma.
To this end, we first screened the differentially

expressed genes (DEGs) between LGG and normal tis-
sues from the GEO database, and identified TYROBP as
a hub gene. TYROBP was significantly upregulated in
the LGG patients compared to healthy controls, and pre-
dicted poorer survival outcome in the former. Gene set
enrichment analysis (GSEA) based on The Cancer Gen-
ome Atlas (TCGA) indicated that TYROBP likely pro-
motes LGG progression by regulating the tumor
microenvironment. Consistent with this, ssGSEA and
TIMER2.0 database further confirmed that the elevated
TYROBP expression levels were associated with higher
immune infiltration and poorer prognosis in LGG. Fi-
nally, TYROBP was identified as an independent risk
factor for LGG. Our findings provide new insights into
the oncogenic role of TYROBP in LGG, especially with
regards to the immunological status of the tumor
microenvironment.

Method and materials
Microarray data
The GSE16011 and GSE117423 datasets were down-
loaded from the NCBI Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
[17]. The GSE16011 array data of 276 glioma samples
and 8 controls was submitted by Gravendeel et al., and
GSE117423 array of 6 glioma tissues and 6 normal tis-
sues was submitted by Vidyarthi et al. (Table 1). The
flow chart of the study design is shown in Fig. 1.

Microarray data processing and DEGs screening
The GEO data was downloaded in the MINIML format.
Following quality control, the raw data was standardized
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and converted to the log2 form. R Limma software (ver-
sion: 3.4.2) was used to screen for the DGEs using |log
fold change (FC)| ≥2 and P value < 0.05 as the thresholds
in GSE16011 dataset, and |log FC| ≥ 1.5 and P value <
0.05 in the GSE117423 dataset in order to obtain a lar-
ger number of target genes. The Venn diagram of the
DEGs from both datasets was drawn using R (version:
3.6.3) ggplot2 package, and the overlapping DEGs were
identified.

Functional enrichment analysis
Metascape (http://metascape.org) was used to function-
ally annotate the overlapping DEGs through the Custom
Analysis module [18]. Significantly enriched gene Ontol-
ogy (GO) terms (biological process, cellular component,
and molecular function categories) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
were identified using P value < 0.01, minimum overlap =
3 and enrichment factor > 1.5 as the criteria.

Construction of protein-protein interaction (PPI) network
and hub genes selection
The DEGs are imported into the STRING database (ver-
sion: 11.0b, https://string-db.org) in order to identify the
physically and functionally interacting genes and pro-
teins [19]. The PPI network was constructed using com-
bined score > 0.4 and further visualized by Cytoscape.
The CytoHubba plug-in of Cytoscape version 3.8.2
(http://www.cytoscape.org/) [20, 21] was used to screen
for the top 5 hub genes with the highest degree of inter-
action in the PPI network through the maximal clique
centrality (MCC) algorithm.

Expression analysis
The TYROBP mRNA expression profile was evaluated
in Oncomine database [22] (https://www.oncomine.org).
P value < 0.0001, fold change > 2.0, and genes ranking in
the top 10% were set as thresholds. TYROBP mRNA ex-
pression levels in different subtypes of LGG were vali-
dated using data from GEPIA2 (http://gepia2.cancer-

Table 1 Details of GEO glioma data

GEO Platform Tumor Normal Total number of samples Number of identified DEGs

GSE16011 GPL8542 276 8 284 2629

GSE16011 GPL16686 6 6 12 166

Fig. 1 Flow diagram of study
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pku.cn/#index) [23] and CGGA (http://www.cgga.org.
cn/). The data from Oncomine and CGGA [24, 25] were
analyzed and visualized by R.

Survival analysis
The LGG data from TCGA (https://portal.gdc.cancer.
gov/) [26] and CGGA were incorporated in the Kaplan
Meier survival analysis using the R survival and survmi-
ner packages. TIMER2.0 (http://timer.comp-genomics.
org/) [27] databases was used to evaluate the effect of
TYROBP expression in different LGG subtypes.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) is a computa-
tional method to determine whether a pre-defined set of
genes shows significant differences between two bio-
logical states [28, 29]. To investigate the potential mech-
anisms underlying the impact of TYROBP expression on
LGG progression, GSEA was conducted using R cluster-
Profiler package [30] to screen for biological pathways
that showed significant differences between TYROBPhigh

and TYROBPlow groups. For each analysis, gene set per-
mutations were implemented 5000 times. Gene sets with
a false discovery rate (FDR) < 0.05 and adjusted P value
< 0.05 were considered significantly enriched.

Tumor infiltration analysis
The single-sample GSEA (ssGSEA) was performed using
the R GSVA package [31] to quantify the tumor infiltra-
tion of 24 immune cell types based on TCGA . Feature
gene panels for each immune cell type were obtained
from a recent publication [32]. The TIMER2.0 database
was then used to analyze the correlation between TYR-
OBP expression and infiltration of neutrophils, macro-
phages, myeloid dendritic cells (DCs) and monocytes. P
value < 0.01 was the threshold for significant association
between TYROBP and immune cell infiltration. OS was
analyzed as a function of TYROBP expression, M2
macrophage, myeloid dendritic cells (MDCs) and
cancer-associated fibroblasts (CAFs).

Univariate and multivariate cox regression analysis
Univariate and multivariate Cox analysis was used to de-
termine the correlation of TYROBP expression and
other clinicopathological factors (age, gender, race,
grade, and radiation therapy) on OS, PFS and DSS with
TCGA (https://portal.gdc.cancer.gov/) data. P value <
0.05 was set as the cut-off criterion. The P value, HR
and 95% CI of each variable were calculated using the R
forestplot package.

Results
Identification of DEGs
A total of 2629 DEGs were identified in GSE16011 and
166 in GSE117423 after normalizing the chip results. As
shown in Fig. 2, there were 62 overlapping DEGs be-
tween the two datasets, including 41 up- and 21 down-
regulated genes.

Functional annotation of TYROBP
The DEGs were functionally annotated using Metascape.
As shown in Fig. 3A, with similarity > 0.3, the edges con-
tained the links and each node indicated an enriched
term represented by the cluster-ID in the network. The
enriched terms consisted of response to wounding,
Golgi-to-ER retrograde transport, Parkin-Ubiquitin Pro-
teasomal System pathway etc. In addition, the most sig-
nificantly enriched GO terms for biological processes
(BP) were response to wounding, aging and adenylate
cyclase-inhibiting G protein-coupled receptor signaling
pathway, cellular component (CC) terms included focal
adhesion, collagen-containing extracellular matrix and
perinuclear region of cytoplasm, and the molecular func-
tions (MF) terms were GTPase activity, calmodulin bind-
ing and ubiquitin-like protein ligase binding (Fig. 3B-D).
The KEGG pathway related to Parkinson disease was
also significantly enriched among the DEGs (Fig. 3E).

PPI network construction and key gene selection
The PPI network of the overlapping DEGs was estab-
lished by Cytoscape (Fig. 4A), and the first 5 hub genes
identified via the CytoHubba plugin were ranked in
terms of the MCC score. The most closely connected
module was identified (Fig. 4B). Based on the rank and
novelty, we select TYROBP as the key gene for further
analysis (Fig. 4C).

Fig. 2 Venn diagram of DEGs. Comparison of two datasets with
2629 and 166 DEGs, revealing 41 up- and 21 down-regulated
overlapping DEGs between glioma and normal tissues
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Prognostic significance of TYROBP
Oncomine analysis of TYROBP in the LGG and normal
tissues revealed that TYROBP was significantly up-
regulated in the different LGG subtypes across multiple
datasets (Fig. 5A-D). GEPIA2 analysis of 3 LGG subtypes
and normal samples also indicated significantly higher
levels of TYROBP in the LGG samples (Fig. 5E). The ex-
pression values of TYROBP in the LGG and normal tis-
sues are summarized in Fig. 5F.
To determine the relationship between TYROBP and

clinicopathological parameters in LGG patients, we ana-
lyzed the data from CGGA and TCGA databases. As
shown in Fig. 5G and I, TYROBP expression was signifi-
cantly associated with the tumor grade, and increased

with advanced grade (p < 0.001). Elevated TYROBP in
LGG was significantly associated with the WHO grade
(G3 vs. G2, OR = 1.812, 95%CI [1.257–2.621], P = 0.002,
IDH status (Mut vs. WT, OR = 0.357, 95%CI [0.219–
0.568], P < 0 .001, 1p/19q codeletion (non-codel vs.
codel, OR = 8.062, 95%CI [5.243–12.706], P < 0.001),
P53 status (Mut vs. WT, OR = 3.23, 95%CI [2.24–4.67],
P < 0 .001 and ATRX status (Mut vs. WT, OR = 3.21,
95%CI [2.17–4.75], P < 0 .001,while no significant cor-
relation was seen with either gender or age (Table 2).
Logistic regression analysis further indicated a correl-
ation between TYROBP and adverse prognosis (Table 3).
The influence of TYROBP expression on the survival of
LGG patients was analyzed using TCGA portal and

Fig. 3 The enrichment analysis of 62 overlapping DEGs in glioma (Metascape). (A) An interactive network of the top 17 enriched terms color-
coded by cluster-ID. Each color indicates one pathway. (B-E) Bar graph of GO terms, including BP, CC and MF, and KEGG pathways of the
overlapping DEGs in glioma and normal tissues. The enriched terms are in orange. GO, Gene Ontologies; BP, Biological Process; CC, cellular
component; MF, Molecular Feature; KEGG, Kyoto Encyclopedia of Genes and Genomes
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CGGA database. As shown in Fig. 5H and J, the sur-
vival of LGG patients with high TYROBP expression
was significantly shorter (p = 0.006, p < 0.001). These
results indicate that TYROBP functions as an onco-
gene in LGG, and its high expression level portend
worse prognosis.

Putative functional role of TYROBP in LGG
GSEA was used to distinguish between TYROBPhigh and
TYROBPlow LGG in terms of GO and KEGG enrich-
ment (adjust P value < 0.05, FDR < 0.05). Neutrophil
chemotaxis, macrophage activation, regulation of den-
dritic cell differentiation, regulation of mononuclear cell
migration and positive regulation of leukocyte prolifera-
tion were the significantly enriched GO terms in the
TYROBPhigh phenotype, whereas gamma aminobutyric
acid signaling pathway, neurotransmitter transport,

regulation of neuronal synaptic plasticity, GABA gated
chloride ion channel activity and voltage gated cation
channel activity were significantly enriched in the TYR-
OBPlow phenotype (Fig. 6A). The top 5 enriched KEGG
pathways in TYROBPhigh LGG were the chemokine sig-
naling, JAK-STAT, NOD-like receptor, natural killer
cell-mediated cytotoxicity and T cell receptor signaling
pathways. In contrast, only the calcium signaling path-
way and neuroactive ligand receptor intersection were
significantly enriched in the TYROBPlow phenotype (Fig.
6B). The GO and KEGG items are summarized in
Table 4. Thus, TYROBP is involved in LGG develop-
ment and progression.

Tumor infiltration analysis
The extent of lymphocyte infiltration in tumor tissues
is an independent prognostic factor of survival and

Fig. 4 PPI network and hub genes identification. (A) The PPI network of DEGs was constructed by Cytoscape. Red nodes indicate up-regulated
genes, green nodes indicate down-regulated genes, the node size is indicative of the degree of connectivity, and line thickness represents
combined score. (B-C) The top five hub genes evaluated by cytoHubba and ranked by MCC. The intensity of red color indicated ranking. PPI,
protein–protein interaction; MCC, maximal clique centrality
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Fig. 5 Differential TYROBP expression in LGG and correlation with survival. TYROBP expression in the different LGG subtypes and normal brain
samples by Oncomine (A-D) and GEPIA2 (E). The expression of TYROBP across LGG samples and normal tissues (GEPIA2) (F). The relationship
between tumor grade and TYROBP in LGG patients (G, I). Kaplan-Meier curves of LGG patients stratified by TYROBP expression (H, J). ns, p≥ 0.05;
*, p < 0.05; **, p < 0.01; ***, p < 0.001

Lu et al. BMC Cancer          (2021) 21:723 Page 7 of 14



sentinel lymph node status in various neoplasms.
Therefore, we analyzed the correlation between TYR-
OBP expression and infiltrating immune cells in LGG.
As shown in Fig. 7A, TYROBP expression correlated
significantly with the infiltration of T cells, activated
DCs (aDCs), B cells, cytotoxic cells, eosinophils, im-
mature DCs (iDCs), macrophages, neutrophils,
CD56bright NK cells, CD56dim NK cells, NK cells, T
helper cells, Th17 cells, Treg (P < 0.001), CD8 T
cells, DCs, Tgd, Th1 cells, T effector memory (Tem)
cells (P < 0.01), plasmacytoid DCs (pDCs) and T fol-
licular helper (Tfh) cells (P < 0.05). In contrast, no
significant association was found between TYROBP
expression and mast cells, T central memory (Tcm)
cells and Th2 cells infiltration (Fig. 7A). Furthermore,
TIMER2.0 showed that the expression of TYROBP
also significantly correlated with the infiltration of
neutrophils (r = 0.767, P = 8.48e-94), macrophages (r =
0.899, P = 1.27e-172), myeloid DCs (r = 0.832, P =
1.12e-123) and monocytes (r = 0.762, P = 6.00e-92) in

LGG (Fig. 7B). Finally, higher M2 macrophage infil-
tration was associated with poor prognosis for TYR-
OBPhigh LGG (Fig. 7C; HR = 3.25, p = 0.000174).
Similarly, higher CAF and myeloid DC infiltration
also correlated with worse outcome in LGG (Fig. 7D-
E).

Cox regression analysis
Univariate Cox regression analysis showed that TYROBP
was significantly associated with the OS (HR 1.39259, 95%
CI = 1.18444,1.63732, p = 6e-05), PFS (HR 1.31277, 95%
CI = 1.15623,1.44925, p = 3e-05) and DSS (HR 1.42686,
95% CI = 1.20255,1.6930, p = 5e-05). In addition, the
multivariate Cox regression analysis showed that TYROBP
was independent risk factor for OS (HR 1.48103, 95% CI =
1.17368, 1.86885, p = 0.00093), PFS (HR 1.18366, 1.41746,
95% CI =1.69744, p = 0.00015) and DSS (HR 1.51275, 95%
CI = 1.18616,1.92926, p = 0.00052). The results are sum-
marized in Fig. 8.

Table 2 Association of the expression profile of TYROBP mRNA with clinicopathological factors of low-grade glioma

Characteristic Low expression of TYROBP High expression of TYROBP p

n 264 264

WHO grade, n (%) 0.002

G2 128 (27.4%) 96 (20.6%)

G3 103 (22.1%) 140 (30%)

IDH status, n (%) < 0.001

WT 29 (5.5%) 68 (13%)

Mut 233 (44.4%) 195 (37.1%)

1p/19q codeletion, n (%) < 0.001

codel 139 (26.3%) 32 (6.1%)

non-codel 125 (23.7%) 232 (43.9%)

Age, meidan (IQR) 41 (33, 52.25) 39 (32, 53) 0.674

P53 status, n (%) < 0.001

WT 172 (42.79%) 101 (25.12%)

Mut 79 (19.65%) 150 (37.31%)

ATRX status, n (%) < 0.001

WT 198 (39.44%) 135 (26.89%)

Mut 53 (10.56%) 116 (23.11%)

Table 3 TYROBP expression correlated with clinicopathological characteristics

Characteristics Total(N) Odds Ratio(OR) P value

Gender (Female vs. Male) 528 0.898 (0.637–1.266) 0.541

Age (> 40 vs. <=40) 528 0.886 (0.629–1.246) 0.486

WHO grade (G3 vs. G2) 467 1.812 (1.257–2.621) 0.002

IDH status (Mut vs. WT) 525 0.357 (0.219–0.568) < 0.001

1p/19q codeletion (non-codel vs. codel) 528 8.062 (5.243–12.706) < 0.001
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Discussion
Glioma is an aggressive malignancy of the central ner-
vous system, and shows rapid recurrence after

standardized temozolomide chemotherapy and radio-
therapy [33]. Currently, gliomas are classified into the
high-grade and low grade tumors, and the survival of

Fig. 6 Functional annotation of TYROBP in LGG. (A) GSEA results showing differential enrichment of GO terms as a function of TYROBP
expression. Top 5 GO terms for TYROBPhigh - neutrophil chemotaxis, macrophage activation, regulation of dendritic cell differentiation, regulation
of mononuclear cell migration and positive regulation of leukocyte proliferation. Top 5 GO terms for TYROBPlow - gamma aminobutyric acid
signaling pathway, neurotransmitter transport, regulation of neuronal synaptic plasticity, GABA gated chloride ion channel activity and voltage
gated cation channel activity. (B) GSEA results showing differential enrichment of KEGG pathways as a function of TYROBP. Top 5 KEGG pathways
for TYROBPhigh - chemokine signaling pathway, JAK-STAT signaling pathway, NOD like receptor signaling pathway, natural killer cell mediated
cytotoxicity and T cell receptor signaling pathway. Two KEGG pathways in TYROBPlow - calcium signaling pathway and neuroactive ligand
receptor intersection. All results of GSEA were based on NES, adjusted P value and FDR value. GSEA, gene set enrichment analysis
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LGG patients ranges from 1 to 15 years [34]. LGG tu-
mors cannot be completely excised due to their invasive
nature, and progress frequently to glioblastoma [35].
Therefore, the clinical prognosis of LGG would greatly
improve if diagnosed at the early stage. Bioinformatics is
a high-throughput approach that can quickly and accur-
ately identify biomarkers associated with the develop-
ment of LGG. In the present study, we found that
TYROBP was significantly upregulated in the LGG tis-
sues compared to normal samples, and its high expres-
sion levels correlated with adverse clinicopathological
parameters and worse prognosis, which indicated that
we could determine the WHO grade, IDH status, and
1p/19q codeletion to a certain extent through the detec-
tion of TYROBP, which makes it possible for us to carry
out clinical work in the future and provide precise and
individualized treatment for patients. In addition, TYR-
OBP overexpression was established as an independent
risk factor in LGG patients. The, TYROBP is a potential
prognostic factor in patients with LGG.
Infiltration of immune cells into solid tumors is a sig-

nificant factor influencing tumor genesis and progres-
sion. For instance, DAP12 mediates acute non-infectious
lung tissue injury by activating the tissue-resident alveo-
lar macrophages, and increasing neutrophil infiltration
[36]. In addition, Siglecc-15 promotes TGF-β secretion
by tumor-associated macrophages via the DAP12-SYK

pathway, which in turn accelerates neoplasm progression
[37]. TIMER2.0 database analysis confirmed that higher
TYROBP expression correlated to increased infiltration
of neutrophils, macrophages, myeloid DCs and mono-
cytes, suggesting that TYROBP may negatively impact
LGG prognosis by regulating the immune microenviron-
ment. However, the underlying mechanisms have to be
validated further. To this end, we functionally annotated
TYROBP through GO terms and KEGG pathways, and
found that TYROBP overexpression positively correlated
with neutrophil chemotaxis, macrophage activation,
regulation of DC differentiation, regulation of mono-
nuclear cell migration and positive regulation of
leukocyte proliferation, thus underscoring the immuno-
regulatory role of TYROBP in LGG. Moreover, high ex-
pression levels of TYROBP negatively correlated with
gamma aminobutyric acid signaling pathway, neuro-
transmitter transport, regulation of neuronal synaptic
plasticity, GABA gated chloride ion channel activity, and
voltage gated cation channel activity. The GABA recep-
tor has been detected in low-level glioma cells and cell
lines [38–40], and its down-regulation leads to uncon-
trolled proliferation and progression of glioblastoma [40,
41]. Therefore, TYROBP may regulate LGG by targeting
GABA receptors. High TYROBP expression was posi-
tively correlated with chemokine signaling pathway,
JAK-STAT signaling pathway, NOD like receptor

Table 4 Gene enrichment analysis based on high and low TYROBP expression phenotype

Gene set name NES P.adjust FDR

high expression

GO_NEUTROPHIL_CHEMOTAXIS 1.546 0.003 0.002

GO_MACROPHAGE_ACTIVATION 1.547 0.003 0.002

GO_REGULATION_OF_DENDRITIC_CELL_DIFFERENTIATION 1.595 0.012 0.009

GO_REGULATION_OF_MONONUCLEAR_CELL_MIGRATION 1.542 0.003 0.002

GO_POSITIVE_REGULATION_OF_LEUKOCYTE_PROLIFERATION 1.507 0.003 0.002

KEGG_CHEMOKINE_SIGNALING_PATHWAY 1.394 0.004 0.004

KEGG_JAK_STAT_SIGNALING_PATHWAY 1.328 0.007 0.006

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.369 0.038 0.033

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.435 0.004 0.004

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 1.442 0.004 0.004

low expression

GO_GAMMA_AMINOBUTYRIC_ACID_SIGNALING_PATHWAY −1.546 0.013 0.011

GO_NEUROTRANSMITTER_TRANSPORT −1.611 0.004 0.004

GO_REGULATION_OF_NEURONAL_SYNAPTIC_PLASTICITY −1.688 0.004 0.004

GO_GABA_GATED_CHLORIDE_ION_CHANNEL_ACTIVITY −1.735 0.004 0.004

GO_VOLTAGE_GATED_CATION_CHANNEL_ACTIVITY −1.698 0.004 0.004

KEGG_CALCIUM_SIGNALING_PATHWAY −1.509 0.009 0.009

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION −1.644 0.009 0.009

NES: normalized enrichment score; P.adjust: adjust P value; FDR: false discovery rate
Gene sets with adjust p-value < 0.05 and FDR q-value < 0.05 are considered as significant
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signaling pathway, natural killer cell mediated cytotox-
icity, and T cell receptor signaling pathway. Studies
show that the JAK/STAT and NOD like receptor signal
pathways are activated during the malignant progression
of gliomas [42, 43]. Taken together, elevated TYROBP in
LGG may lead to poor prognosis by increasing immune
cell infiltration in the tumor microenvironment through
the activation of these pathways. However, more studies
are required to determine the potential mechanisms.
TYROBP, also known as KARAP/DAP12 (12 kDa

Killer Cell Activated Receptor-related protein/DNAX

activating protein), is primarily expressed in myeloid
cells and natural killer cells and stimulate various sig-
naling pathways upon binding to immune receptors
[44]. Studies show that high TYROBP expression in
breast cancer cells is correlated with bone metastasis
and poor prognosis [45]. Besides, Ping Wu et al. and
Junjie Jiang et al. reveal that TYROBP is a potential
prognostic biomarker for clear cell renal cell carcin-
oma and gastric cancer [14, 15]. Although the correl-
ation between TYROBP expression and LGG has not
been elucidated so far, our results indicate that

Fig. 8 Univariate and Multivariate Cox analysis of TYROBP expression and other clinical pathological factors for OS (A-B), PFS (C-D) and DSS (E-F).
(Covariates -TYROBP expression, age, gender, race, grade and radiation therapy independent prognostic factors). OS, overall survival; PFS,
progression free survival; DSS, disease specific survival; HR, hazard ratio

(See figure on previous page.)
Fig. 7 Correlation between immune infiltrates and TYROBP expression in LGG. Correlation between TYROBP expression and 24 tumor-infiltrating
immune cell types (A). TYROBP expression was positively correlated with neutrophil, macrophage, myeloid dendritic cell and monocyte (B).
Higher infiltration of macrophage M2 (C), cancer associated fibroblast (D) and myeloid dendritic cell (E) correlated with worse prognosis. P value
< 0.05 was considered statistically significant. ns, p≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001

Lu et al. BMC Cancer          (2021) 21:723 Page 12 of 14



TYROBP is a prognostic biomarker of LGG plays an
essential role in its progression.
This study has some limitations that ought to be

considered. Due to technical limitations, we did not
verify the in-silico data on clinical samples. In
addition, the mechanistic role of TYROBP in LGG
genesis and progression have to be validated by
in vitro and in vivo functional studies. Nevertheless,
we established TYROBP overexpression as an inde-
pendent factor of poor prognosis in LGG, which pro-
vides new insights into the pathological mechanisms
underlying LGG progression, especially in the context
of the tumor immunological environment.
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